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Abstract 

The ultrasound image sequences are not only majorly contaminated by multiplicative 

noises but they are also usually contaminated with additive noises. As in the past few 

decades, there were some works, which had focused on removing the noises from ultrasound 

images, such as in the JY model [1] and in the variational model, which were able to remove 

both types of noises. However, denoising these noises from the ultrasound image sequence is 

a time-consuming process that occurred from using fixed-point iterative method. From our 

investigation, the most time-consuming process part of the denoising process is the Gauss-

Seidel. By parallelizing these processes with modern multi-core and many-core processor, the 

denoising ultrasound image in real-time is possible. In this study, we propose the modified 

strategy from [2] for managing threads and propose the modified state-based Gauss-Seidel 

method from [16] for GPUs. Our proposed model can retain the frame order, and get the 

satisfactory frame rate (about 23.33 fps). The proposed strategy boosts the speedup of the 

frame denoising to 13.80 times compare to the sequential computation. 

 

Keywords: Real-time image sequence denoising; Parallel computing; OpenMP; Graphic 

Processing Units (GPUs); multi-core; CUDA; Image processing; Ultrasound image sequence 

 

1. Introduction 

In the real-world, the usage of image sensor, such as image sequence camera, sonar, and 

ultrasound usually incurs the noises to the media. The noises may cause degrading in image 

quality or image sequence quality; therefore, this can lead to losing some important 

information in the media. In the past decades, there were a lot of studies aimed to restore 

images or image sequences from noise. 

In the mathematical area, image noises are categorized into two categories: additive and 

multiplicative noises. The additive noise can be written as 

         z u   .      (1) 
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where z is the noisy image, u is the noise-free image and   is the noise in the image. The 

multiplicative noise can be expressed as 

z u       (2) 

The ultrasound image and image obtained from Synthetic Aperture Radars (SARs), such as 

radars and satellites [12] contains both additive and multiplicative noises as suggested by 

Hirakawa and Parks [4]. These noises can be expressed as (3): 

0 1( )z u k k u     ,     (3) 

where k0 and k1 are parameters indicating how many additive and multiplicative noises are in 

the image. These noises require more complicate model to remove them. 

      However, the ultrasound image has  different noise model [1] as in Equation (4) 

0 1( )z u k k u     ,     (4) 

In this study, we assume that each frame has the same distribution of noises and the 

ratio(k0/k1) of additive and multiplicative noises are the same in every frame, and there is no 

noise dependency between each frame. 

The image sequence denoising is more complicated than single-image denoising. There are 

complications due to the following aspects.   

1. Frame rate. Normally, human eyesight can process about 10-12 frames per second 

[5]. As suggested by [5], the real-time image sequence frame rate should be normally 

higher than 15 frames per second, in order that the latency will not be noticed. 

2. Frame order. The denoised image sequence frames order must be retained. In the 

process, the output frames need to be merged in the correct order. 

3. Frame rate control. The output image sequence should have a stable frame rate for 

the entire image sequence playback to guarantee the quality of service. 

With these challenges, image sequence denoising usually cannot be done in real-time due to 

the extensive computation.  With the current   multi-core and many-core technology, such as 

multi-core processor and graphic processing units (GPU), it makes the image sequence 

denoising possible.  

In this paper, we extend the previous work from [2] which used the ROF model [8] for 

denoising image sequences in real-time using GPUs. The work in [2] can only remove additive 

noise with GPUs in real-time. Nevertheless, this study aims to remove noises from the 

streaming ultrasound image sequences which contain both additive and multiplicative noises 

by using both GPU and OpenMP technology. 

 

2. Backgrounds 

This section consists of two parts: the first subsection shows the denoising model used in 

this work and the next subsection shows the CUDA architecture for GPU computing [6, 7]. 

 

2.1. New Variational Model Noise Removal Algorithm 

The variation model for restoring an image that is contaminated with both additive and 

multiplicative noises can be modified from Equation (3) as described by Equation (5), 
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0 1z u k k u    ,      (5) 

where   is the additive noise and multiplicative noise, respectively.  

Due to the independence of additive and multiplicative noise, we can measure these noises 

using Equation (6) 
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          (6) 

Here 1 >0  and 2 >0 are the regularized fitting parameters for the additive noise  and the 

multiplicative noise  removals, respectively,   is the domain of the image, ux and uy is the 

differential on the x-axis and y-axis correspondingly. By using Euler-Lagrance equations. 
The variation model and JY Model[1] for removing both additive and multiplicative noises 

is given by Equation (7) 

 

1 2,min{ ( ) [ ] [ ]}J u D u R u         (7) 

where D[u] is the total variation term and R[u] is the regularization term described as 

2 2[ ] | | , 0x yR u u d u u d  
 

             (8) 

 

According to the calculus of variations, the Euler-Lagrange equation from Equation (7) is 

given by: 
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    (9) 

where
( ) ,

| |

u
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u 

 
    

2| | | |u u    
, and 0  is a small constant to avoid the divide-by-

zero. By using the finite difference method for discretization   to the discrete domain h , 

where h is the distance between each grid point, we discretize the domain into x yn n  grid 

cells. Each cell has the size of 1×1 ( 1x yh h  ). The discrete equation on (xi, yj) on h   is 

obtained by Equation (10) 
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where 
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      .   (11) 

From Equation (10), there are several methods to solve it; for example, the Time Marching 

technique is a simple iterative technique using a synthetic time variable [13]. However, this 

method converged slowly to the solution and, therefore, is not suitable for the parallel 

computing because of the data dependency in each iteration. 

Alternatively, the fast and robust method for solving Equation (10), called Fixed-Point 

iterative method, was proposed by Vogel and Oman [9, 10]. This method works by freezing 

some coefficients and converting the problem into a system of linear equations, which can be 

solved by using an iterative solver such as Gauss-Seidel, a modern solver technique like multi-

grid(MG), or a preconditioned conjugate gradient (PCG). However, our previous researches 

showed that using Gauss-Seidel method can obtain a satisfactory convergence rate with an 

acceptable accuracy. Thus, in this work, the local fixed point iterative method is used because 

it is highly parallelizable and it is easy to implement on both the multi-core CPU and the 

GPUs. 

 

2.2. Compute Unified Device Architecture (CUDA) 

Compute Unified Device Architecture (CUDA) is an architecture for Single Instruction 

Multiple Data(SIMD) from NVIDIA®. Despite of the graphic processing, this render graphic 

card with CUDA can be used as a general-purposed processor, which is called General Purpose 

Graphic Processing Unit (GPGPU). 

CUDA has 4 levels of memory. The first level is called "global memory". It is the slowest 

memory accessed by the GPU. Hundreds of clock cycles are needed to access the global 

memory. The next level is called "shared memory," which is the fastest memory that a user can 

allocate and manage on the GPU device. Reading and writing through the shared memory uses 

approximately 40 clock cycles. Another two levels are local memory and texture memory. 

Both are large memories and can be allocated by users. To access them, more cycles are 

needed when compared to accessing the shared memory. However, this still uses the same 

number of cycles as the global memory. The CUDA memory model can be shown as in Figure 

1. 
 

Shared Memory Shared Memory

Register Register Register Register

Thread (0,0) Thread (0,1) Thread (0,0) Thread (0,1)

Local Memory Local Memory Local Memory Local Memory

Shared Memory

Constant Memory

Texture Memory

Block 0 Block 1

 

Figure 1. CUDA memory model [6,7] 
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For programming on the CUDA platform, the developer has to specify the number of 

threads for computation. Threads that will be executed in a kernel must be managed as groups 

of threads with shared data, called thread blocks. A group of blocks forms a grid. Creating, 

organizing, and destroying threads on the GPU consume only a few resources. This allows the 

developers to manage hundreds of threads very fast and effectively. 

 

2.3. Sliding Window Gauss-Seidel 

The approach is to parallelize Gauss-Seidel from the fixed-point method as we have 

described in Subsection 2.1. At the best of our knowledge, the latest and most efficient 

parallel approach for Gauss-Seidel named "Sliding Window Gauss-Seidel" works [14] by 

dividing the matrix row into blocks and windows. Each thread executes the Gauss-Seidel 

method on its window.  After executing the method, all threads slide down to the next block 

and execute again in the same manner until the last thread executes the job in the last block. 

This parallelization is illustrated in Figure 2. 

 

 

Figure 2. Sliding Window Gauss-Seidel (SWGS) example for 2-threads 
computation [16] 

 

The work in [14] is based on the multicore platform. For the GPU platform, the appropriate 

window size and block size may be different. In our work, we need to consider this issue 

since utilizing the GPU platform, which has massive number of threads, as many threads as 

possible should be executed. 

To explain this algorithm, consider Figure 2.  It shows how SWGS works with 4×6 domain 

size with the window size of 4 and the block size of 2. The algorithm divides each main 

iteration into substeps. For the substep in Figure 3(a), first thread enters its job first, and then 

works one block while other threads wait to enter its job. After the first thread finishes its 

computation, it will slide one block as in substep in Figure 3 (b). When it slides more than 1 

window, another thread can enter its job as substep in Figure 3 (c) and will keep doing this 

until the last thread finishes its job. 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol.9, No.1 (2014) 

 

 

34                                                                                                                         Copyright ⓒ 2014 SERSC 

Uncomputed

Thread 1

Thread 2

Thread 3

(a) (b) (c)

(f)(e)

(d)

(h) (h)

 

Figure 3. Example of Sliding Window Gauss-Seidel (SWGS) for the first 6 
substeps on the domain size of 4×6. 

The original SWGS works in the producer-consumer model in [14] which performs greatly 

on the multi-core computer because not many threads are used in the computation. This keeps 

the thread synchronization and the memory transfer overheads very low compared to the 

whole computation time. On the contrary, in Graphic Processing Units (GPU), there are a lot 

of threads which can incur lots of overheads. 

In our previous works, we had proposed a new State-Based Gauss-Seidel method [16] 

which works efficiently on the multi-core processor. However, to use this method on the GPU, 

which differs very much in architecture, the proper modification is required. Therefore, we 

redesign the data structure and management as described Section 3.2. 
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2.4. State-based Gauss-Seidel 

In the previous work by [14], there are two main bottlenecks on the algorithm due to the 

pipeline computation style. First, there is a significant amount of thread synchronization since 

it uses the producer-consumer model, which the synchronization occurs at the end of each 

substep. Next, the pipeline computation style makes a lot of idle threads at the early stage of 

computation. To alleviate these problems, in our method, we introduce a state-based 

framework with an asynchronous-style communication to parallelize the Gauss-Seidel 

computation.   

 

2.4.1. Data Structure: In the proposed approach, a novel data structure design is used to keep 

track of the  progress in states as follows: matrix U represents the domain with  initial values, 

an integer matrix, called an Iteration_Matrix, with the same size of U for storing the current 

iteration number on each matrix cell. We use a list, called Job Table to store available jobs and 

a constant (Max_Iteration) to specify the maximum iteration.  

Mark_As_Read is a one-dimensional array of integers which stores the Mark_As_Read signal 

for each thread. As an example, in Figure 4 assuming the 3 3 domain size with 4 threads, we 

assign the first thread (Thread #1) to work on the cell (3,1). For the sake of clarity, we use this 

example throughout this section.   

 

0

0

0

0

0

0

0

0

0

#1 on (3,1)

Domain (U) Iteration Matrix

Job Table

 

Figure 4. Initial state on each matrix U and Iteration Matrix. 

After applying the first job on the first cell, each thread will move to the following states. 

 

2.4.2. Thread States: In the following explanation, we use the legend to indicate the cell 

occupied by each thread shown in Figure 5. 

 

Thread 1 Thread 2

Thread 3 Thread 4
 

Figure 5. Legend for each thread illustrated in the proposed method. 
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The thread has four states: Waiting State, Working State, Validation State, and Shifting 

State. 

(i) Waiting State  

Every threads start at this state. While a thread is in the Waiting State, it keeps scanning Job 

Table to check if there is an available job for it. If it finds the job, it will delete the job list from 

the Job Table and will change its state to Working State. 

(ii) Working State 

The thread starts working on the cell number given by Job Table and performs the 

following actions. 

1. Read the data from current and its neighboring cells. For the right and upper cells, 

the thread sends Mark_As_Read signal to threads that compute neighboring cells. 

2. Start working on the current cell but does not update the data on the current cell 

yet. 

3. Increase the iteration number by 1 on Iteration_Matrix  in the corresponding 

working element and enter the Validation State. 

The results after the first thread computes on its job are shown in Figure 6. 
 

0

1

0

0

0

0

0

0

0

Domain (U) Iteration Matrix

Job Table 
(Empty)  

Figure 6. Job Table,  Iteration_Matrix, and U  after the first thread finishes its 
Working State 

(iii) Validation State 

To maintain the correctness of the Gauss-Seidel method and data integrity, when the thread 

finishes its computation, the following checking steps are performed. 

1. If the current cell is in the first cell, say cell number (3,1) in the example, the thread can 

update the data in the current cell without any validation. 

2. If the thread computes the element in the last row or in the first column, it must receive a 

Mark_As_Read signal from the thread computing the left cell before it can update the data. 

This is to ensure that the left cell uses the correct data to compute. 

3. Other threads must have two Mark_As_Read signals from the left and lower cells before 

it can update the data.  This means the previous cell’s computation has been finished.  

In particular, this validation is to ensure that the right and upper cells of the current working 

cell are not updated by the new data from the next  iteration if the threads on the right and 

upper cells finish the computation before the data is read by the current cell. After updating the 

data, the thread is turned into Shifting State. 
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(iv) Shifting State 

The thread which enters this state must decide what to do next. The thread makes a decision 

based on the following conditions: 

1. If the thread is working on the last column, it will enter the Waiting State again. 

2. If the current iteration number in  Iteration_Matrix on its right cell reaches Max_Iteration, 

it will stop the computation and return to  Waiting state.  

3. If the thread is working on the first column and on   Max_Row, it will pick two threads 

which is in  Waiting State and assign new threads to work on its upper and current cells. If 

there is no thread available in the Waiting State, it will pick the first thread found from the Job 

Table and increase Max_Row value by 1, if it doesn’t reach   Max_Row. It will pick one for its 

current cell only . The current thread checks   Iteration_Matrix. If the right cell has  

Iteration_Matrix value lower than that of the current cell by 1, the current thread will check for 

the iteration number of the right cell in Iteration_Matrix, if its value is  greater than that of the 

current cell, then it shifts itself to work on its right cell and turns itself to  Working State. 

4. If the thread does not work on the first column, it will compare the Iteration_Matrix 

between its cell and its right cell. If the iteration number of the right cell is greater than or 

equal to that of its cell, then the thread moves to compute the right cell and turns itself to  

Working State. 

From our example, we show the working of threads and the computing data U after this 

stage in Figure 7 and the next working state of Thread #1 in Figure 8. Thread #1 starts its 

Working State and Thread #2 and Thread #3 have found their jobs from Job Table. Then, they 

delete their jobs from Job Table and start working. 

 

0

1

0

0

0

0

0

0

0

#2 on (3,1)

Domain (U) Iteration Matrix

Job Table 

#3 on (2,1)
 

Figure 7. Working of threads and data after Shifting State 
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1

2

0

0

1

0

0

0

0

Domain (U) Iteration Matrix

Job Table
(Empty) 

 

Figure 8. Job Table and Iteration_Matrix after thread #1 enters its working state 
again 

 

Figure 9 shows the state diagram of the approach. It shows each thread state transition 

where S1, S2, S3 and S4 denote the Waiting State, Working State, Validation State and Shifting 

State respectively. A thread in S1 will change to S2 when it finds a job in the job table and then 

starts working on it. After the thread finishes computation, it will enter S3 for the Validation 

State. Once the validation is complete, the thread will update the data and enter the last state 

(S4). 

After the thread enters S4, it will decide by the following condition: If there are more non-

computed cells on that row and the right cell (if any) has finished its computation, it will shift 

itself to the right cell and back to Working State.  

 

S1 S2 S3 S4

Find a job

Finish last column, 

Reach maximum iteration

Move to next cell

Finish computation Update data

No job is found

 

Figure 9. State diagram for each thread 

3. Proposed Strategy 

We divide this section into 3 parts. First, we investigate time used in each parts of the 

denoising algorithm. Next, we make State-Based Gauss-Seidel from [16] suitable for GPU 

computing by redesigning the data structure and hierarchy. Finally, we put the Gauss-Seidel 

and other techniques together by using OpenMP and CUDA, so denoising ultrasound image 

sequence is done in real-time. 

 

3.1. Investigation of time used in frame denoising. 

To help designing our strategy for denoising the ultrasound image frame; first, we measure 

the time used in each step in percentage as in Figure 10. 
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Figure 10. Time used in each part in percentage of denoising process of 
256×256 frame size 

 

From Figure 10, it clearly shows that Gauss-Seidel is the most time consuming part of the 

denoising process. Additionally, we tried to vary the frame size to 1024×1024 as in Figure 11. 

 

 

Figure 11. Time used in each part in percentage of denoising process of 
1024×1024 frame size 

The results in Figure 10 and Figure 11 are very similar. We found that the larger frame size, 

the more dominant of Gauss-Seidel part. On the 256×256 frame size, Gauss-Seidel part 

consumes 67% of the total time whereas when the frame size is larger, 1024×1024, the Gauss-

Seidel consumes 71% of the total computational time. 

Since the Gauss-Seidel part is the major part of the denoising process, to denoise the 

ultrasound image sequence in real-time, the acceleration of Gauss-Seidel process is necessary. 

In our previous works, we parallelize Gauss-Seidel by using Sliding Window Gauss-Seidel 

from [14]. However, this method has a lot of overhead when working with many threads. We 

proposed the state-based method in [16], but the data structure was not suitable for GPU. In 

67%

15%

4%

7%

7%

 

 

Gauss-Seidel

Gradiant Operation

Fetch from Disk

CPU/GPU Data Transfer

Display

71%

13%

4%

6%

6%
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this work, we also make some modifications of the data structure and memory usage to fit the 

GPU platform in Section 3.2. 
 

3.2. Modification for State-based Gauss-Seidel for GPU 

In the GPU implementation, the GPU programming paradigm has some limitation on the 

pointer data type. We employ queue data structure instead to represent Job Table. Each thread 

has its own queue structure to avoid the single point of synchronization and to guarantee the 

mutual exclusion. Notice that we may use the queue data structure in the previous version; 

however, the queue approach usually takes more memory space because in practice, array 

memory allocation for each thread is required at the beginning of computation while using the 

list structure, we can allocate and deallocate each element dynamically. On the GPU, each 

thread has its own queue. The job queue will be allocated on shared memory on GPU to 

reduce access time. Each block of thread will have its own job queue as shown in Figure 12. 
 

Q11 Q12 Q13 Q14

Q31

Q21 Q22

Qt1

Q32

Qt2 Qt3

N1

N2

N3

Nt

.

.

.

...

...

...

...

Head Element

Job Elements

Q11 Q12 Q13

Q31

Q21 Q22

Qt1 Qt2

N1

N2

N3

Nt

.

.

.

...

...

...

...

Block 0 Block 1

 

Figure 12. The example use of new data structure for GPU version 

In Figure 12, we use two-dimentional array for storing the job queue. Each thread will use a 

row of array to store and search for their job. There are two types of array elements: 

First, the head element contains the number of job element in its row. Every time a new job 

is inserted (enqueued), the head element will increase its value by 1, and when the job is 

fetched (dequeued), the head node value will decrease by 1. N1..Nt  indicate the head node for 

thread number 1..t in Figure 12.  

Unlike the CPU, which consists of few threads, the GPUs have massive number of threads. 

There will be an issue that may cause our algorithm to be less efficient. Many threads will 

keep searching on the Job Table and Iteration Matrix; consequently, the single point of 

synchronization occurs which cause only one thread to be able to search and update Job Table 

and Iteration Matrix, while the others need to wait to guarantee the mutual exclusion. 

To overcome this problem, we make these synchronization points become distributed. For 

the Job Table, we divide threads into blocks and use a shared memory, which is the fastest 

usable memory for storing Job Table. In the Fermi® device, there is 48kB of shared memory 

per processor. The shared memory on each block of the GPU is allocated by a queue array 

and will be used only for the threads of each block. When a thread is going to add a job for 

another thread in Job Table, it will pick a free thread in its own block only. This will reduce 

the single point of synchronization issue from many threads accessing the Job Table at one 

time. In this experiment, we use up to 32 threads per block.   
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3.3. Thread Management Strategy 

The aim of our strategy is to make the denoising process to be able to be done in real-time 

by utilizing all the computation resource both CPUs and GPUs efficiently. 

On the CPU side, we create 4 types of threads as follow: 

1. Fetching Thread is used to fetch and pre-fetch the frame and convert the image into 8-bit 

grayscale image, create the label for each frame and store them in the main memory and label. 

2. Compute Thread is used to compute gradient operation (K(u)) and transfer the computed 

frame to GPU’s memory. 

3. Merging Thread is used to transfer denoised frame data back from GPUs and sort the 

denoised frame and discard expired frame.  

4. Display Thread is an optional thread to display the denoised image sequence in real-time. 

Our strategy is illustrated in Figure 13. 

Fetching Thread

 

Main 
Memory

Compute Thread

GPU
(Compute Fixed-Point 

Iterative Method & Gauss-
Seidel)Prefetch

Label & Store

Fetch

Compute gradient and 
transfer

Merging Thread

Transfer back

Display Thread

Merge & store

Fetch

Output

Streaming video frames

 

Figure 13. Our propose strategy for denoising image sequence in real-time 
 

The explanation of the denoising process is presented step-by-step as follow: 

1. Fetching Thread fetches and uses the prefetching technique by fetching the frames ahead, 

stores them into the main memory and labels them. Each frame’s label contains (i) frame 

sequence, (ii) frame expiration time. 

2.  Compute Thread  keeps fetched frames from the main memory, computes K(u) and 

transfers them to the  GPU’s memory, then invokes the kernel after the data transfer is 

finished. 

3. Next, the GPU denoises the frame in Equation (7) by using the Fixed-point iterative method 

and Sliding Windows Gauss-Seidel [14]. 
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4. After the GPU finishes denoising, the Merging Thread transfers the denoised frame back 

into the main memory, reads the frame label and then rearranges the denoised frame in the 

buffer in the main memory and discards the expired frames. 

5.   Display Thread   displays the denoised output in real-time. 

 

4. Experiment Results 

In this section, we divide our results into 3 parts. First, we validate our strategy and the 

noise removal algorithm. Next, we show the performance gain and the frame rate by using our 

strategy and finally, the results of some denoised frames are displayed. 

The experiments were made on Intel® Core 2 Duo with 2.5 GHz of CPU and 4GB of main 

memory. The NVIDIA® GeForce GTX-480 with 480 CUDA cores and 1.5GB of the graphic 

memory. Each core runs at 750MHz. 

We use 64-bit Fedora 17 Linux with GNU C Compiler (GCC) 4.7 with GNU debugger 

(gdb) enabled, OpenCV 2.3 for image and image sequence manipulation. 

 

4.1. Denoising Model Validation 

To ensure that the noise removal algorithm and our strategy can efficiently remove both 

additive and multiplicative noises, we use the sample image sequence and synthesize both 

additive and multiplicative noises into it. The first frame of sample image sequence is shown in 

Figure 14. 

 

  

(a) (b) 

Figure 14. An original sample picture for testing denoising algorithm (a) and a 
sample picture with synthesized noises (b) 

The synthesized noisy frame has Peak Signal-to-Noise Ratio (PSNR) value of 19.77dB. 

After denoising the image sequence with well-selected parameters, the first frame is 

denoised as shown in Figure 15(b). 
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(a) (b) 

Figure 15. Denoised sample picture from JY Model [1] (a) and from model in [3] 
(b) 

The PSNR value of image with the synthesized noise comparing with the original image is 

85.64 while JY Model [1] denoised image PSNR value is 51.54dB. This shows the denoising 

model and our strategy outperforms the previous JY Model by removing both multiplicative 

and additive noises efficiently. 

In denoising the streaming image sequence, the frame order is also checked to make sure 

that our strategy is working correctly. 

 

4.2. Performance Results 

First, we measure the average frame rate for the denoised image sequence as in Figure 16, 

while varying the number of GPU threads per frame. 

 

 

Figure 16. Time used per frame varying threads per frame 

We define the average speedup as: 
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Where savg is the average speedup for each frame,   tavg is the average time for each frame 

including the discarded frames. The tseq is the time used for denoising the frame sequentially. 

The average speedup varying the number of GPU threads per frame is shown in Figure 17. 

 

 
Figure 17. Speedup of proposed strategy varying thread per frame 

We fix the frame rate of the output image sequence at 24 frames per second and measure 

the frame rate of the output varying the number of threads per frame without discarded frames 

as in Figure 18. Please note that only the entire image sequence average frame rates are 

shown in Figure 18. 

 

 

Figure 18. The average frame-per-second vary thread per frame 

Figure 18 shows that after utilizing both multi-core CPUs and GPUs asynchronously at the 

same time, the number of frames per second for processing increased dramatically. This is 

because multiple kernels are launched and the pipeline latency in the traditional Sliding 

Window Gauss-Seidel is eliminated in our proposed state-based method. The increase of the 

number of threads per frame causes the increment of frame rate by allowing more GPU cores 

to work on the same frame in parallel.  

The frame per second is satisfactory (~20-25 fps) when the number of threads per frame is 

≥ 8, as we had described in the first section that the output image sequence should have the 

frame rate at around 12-15 fps. 
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We investigate the frame drop and between-frame-delay (BFD). The between-frame-

latency shows how smooth the image sequence is. We also show the average frame drop per 

second, the average between-frame-delay and standard deviation of between-the frame-delay 

is shown in Table 1. 

 

Table 1. Average frame drop per second, average and S.D. of between frame 
delay 

Thread 

per frame 

Avg. Frame Drop (fps) Avg. BFD (ms.) S.D. of BFD (ms.) 

SWGS Proposed SWGS Proposed SWGS Proposed 

1 19.33 17.89 514 393 61.1 79.3 

2 15.73 13.55 289 230 83.5 80.1 

4 10.89 8.94 183 159 74.2 82.2 

8 7.94 3.90 149 119 90.2 86.8 

16 8.96 1.72 159 108 97.9 99.6 

32 9.22 0.67 162 103 101.8 99.7 

 

Table 1 shows that our proposed method can greatly decrease the average number of frame 

drop while the average values between-frame-delay is slightly improved. The output video 

seems smoother than the output that uses Sliding Window Gauss-Seidel. The frame drop is 

improved up to 92.73% on 32 threads per frame or 23.72% by average compared to Sliding 

Window Gauss-Seidel. 

 

4.3. Denoised Image sequence Quality 

We use sample ultrasound image sequence from public domain image sequence achieve 

[15]. The image sequence resolution is 480×352 pixel and the frame rate is 29 frames per 

second. Each frame is converted into the 8-bit grayscale image in the denoising process. The 

80
th
 and 300

th
 sample frames are shown in Figure 19. 

 

  

(a) (b) 

Figure 19. The 80th (a) and 300th (b) frames from sample ultrasound image 
sequence 

The denoised 80
th
 and 300

th
 frames are shown in Figure 20. 
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(a) (b) 

  

(c)  (d) 

Figure 20. Denoised frame of 80th  and 300th frame from the sample ultrasound 
image sequence by using JY Model (a, b) and the new variation method (c, d) 

The PSNR of denoised frame comparing with the noisy image sequence frame is in the 

range of 78.97 dB – 86.43dB. 

 

5. Conclusion and Future Work 

We propose the new thread management strategy and redesign the data structure and 

memory usage for the state-based Gauss-Seidel for denoising the ultrasound image sequence 

which contains both additive and multiplicative noises. The GPUs and multi-core processor are 

used to accelerate the computation to ensure satisfactory frame rate. 

Our strategy uses the denoising model and improves image-sequence denoising strategy 

from [1]. The proposed strategy uses both multi-core advantages and reduces some overhead 

from the frame distribution while utilizing the GPUs efficiently. 

Our results show that our strategy can achieve speedup per single frame computation up to 

13.18 times compared to the sequential computation. The output image sequence frame rate is 

boosted up 106.04 times comparing to the sequential computation. Moreover, the denoising 

image sequence quality is visually satisfactory. This makes the real-time image sequence 

denoising possible.  However, fine denoising parameter tuning is still essential in practice to 

make sure that the denoised picture is smooth and retains all necessary information in each 

frame. 
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