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AbstracO

The ultrasound image sequences are not majorly (%aminated by multiplicative
noises but they are also usually contami ith af i’e noises. As in the past few
decades, there were some works, which used 0 ving the noises from ultrasound

images, such as in the JY model [1] a model, which were able to remove
both types of noises. However, d oi hese ri’g om the ultrasound image sequence is

a time-consuming process th d fro flxed -point iterative method. From our
investigation, the most time- consu |ng p part of the denoising process is the Gauss-
Seidel. By parallelizing thes cesses dern multi-core and many-core processor, the
denoising ultrasound rm real -ti possmle In this study, we propose the modified
strategy from [2] for glng th ds and propose the modified state-based Gauss-Seidel
method from [ posed model can retain the frame order, and get the
satisfactory fr‘ (abo t 2333 1ps). The proposed strategy boosts the speedup of the
frame denorsrn 3.80 % ompare to the sequential computation.

Keywords: Real-ti @bﬁage sequence denoising; Parallel computing; OpenMP; Graphic
Processing Units ); multi-core; CUDA; Image processing; Ultrasound image sequence

1. Introd

s?- orld, the usage of image sensor, such as image sequence camera, sonar, and
ultr% usually incurs the noises to the media. The noises may cause degrading in image
lith7or image sequence quality; therefore, this can lead to losing some important
information in the media. In the past decades, there were a lot of studies aimed to restore
images or image sequences from noise.
In the mathematical area, image noises are categorized into two categories: additive and
multiplicative noises. The additive noise can be written as

Z=U+77. (1)
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where z is the noisy image, u is the noise-free image and 7 is the noise in the image. The
multiplicative noise can be expressed as

Z=uy @)

The ultrasound image and image obtained from Synthetic Aperture Radars (SARS), such as
radars and satellites [12] contains both additive and multiplicative noises as suggested by
Hirakawa and Parks [4]. These noises can be expressed as (3):

z=u+(k, +ku)y , (3)

where ko and k; are parameters indicating how many additive and multiplicative nwe in
the image. These noises require more complicate model to remove them.

However, the ultrasound image has different noise model ] as in Equa 0
z=u+ (K, +ku)7

In this study, we assume that each frame has’s n of noises and the
ratio(ke/k,) of additive and multiplicative n0|ses are same frame and there is no
noise dependency between each frame.

The image sequence denoising is more @cated thaNc‘r?gle -image denoising. There are
complications due to the following aspe

1. Frame rate. Normally; hl@ eyesig@rocess about 10-12 frames per second
[5]. As suggested by [ real-time .image sequence frame rate should be normally
higher than 15 frames per second in that the latency will not be noticed.

2. Frame ordegr. en0|se sequence frames order must be retained. In the
process, the mes ne%‘ e merged in the correct order.

3. Frame ntrol put image sequence should have a stable frame rate for
the enti ade seq s yback to guarantee the quality of service.

With these challenges, sequence denoising usually cannot be done in real-time due to
the extensive computati ith the current multi-core and many-core technology, such as
multi-core process graphic processing units (GPU), it makes the image sequence
denoising possible.

In this pap@e extend the previous work from [2] which used the ROF model [8] for
denoising i equences in real-time using GPUs. The work in [2] can only remove additive
noise Wi Us in real-time. Nevertheless, this study aims to remove noises from the
str trasound image sequences which contain both additive and multiplicative noises
by usig both GPU and OpenMP technology.

2. Backgrounds

This section consists of two parts: the first subsection shows the denoising model used in
this work and the next subsection shows the CUDA architecture for GPU computing [6, 7].
2.1. New Variational Model Noise Removal Algorithm

The variation model for restoring an image that is contaminated with both additive and
multiplicative noises can be modified from Equation (3) as described by Equation (5),
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z=u+kyp+kuny, )

where 77 is the additive noise and multiplicative noise, respectively.

Due to the independence of additive and multiplicative noise, we can measure these noises
using Equation (6)

D[u]:%j(u—z)zdm%j(Z‘u“)2 dQ (6) V'

Here o, >0 and &, >0 are the regularized fitting parameter for the agx% Ise and the

multiplicative noise removals, respectively, € is the do f the
differential on the x-axis and y-axis correspondlngly ler

The variation model and JY Model[1] for remo th aq& d multiplicative noises

e) uy and uy is the
Ce equations.

is given by Equation (7)

where D[u] is the total variation t R[u] is

2+ pd 70 ®)
Y

min{J,, . (u)=Du]+ @ )
gecgularlzatlon term described as

R[u]=I|Vu|ﬂ dQ =

According to_th Ius %ns the Euler-Lagrange equation from Equation (7) is
given by:

ZZ
Z)+0¢2 [1——j=0 )
u
K(u) QVM _ |VU |2 /8
where o s , and #>0js a small constant to avoid the divide-by-
zero. By, the finite difference method for discretization Q to the discrete domain€2,,,

wh@s the distance between each grid point, we discretize the domain into n, xn, grid
I

cells. Each cell has the size of 1x1 (h, = hy =1). The discrete equation on (x;, y;) on €, is
obtained by Equation (10)

KU, + o (W) - (2 ).,)"'az(l —] (9" (10)

N(u)

where
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h hx h h

X y y

ey {g (D(u“)i,,-(sz(u“)i,,- } s [D<uh>i,,-5;(uh>i,,- H
(1)

From Equation (10), there are several methods to solve it; for example, the Time Marching
technique is a simple iterative technique using a synthetic time variable [13]. However, this
method converged slowly to the solution and, therefore, is not suitable for the parallel
computing because of the data dependency in each iteration.

Alternatively, the fast and robust method for solving Equation (10), called Fixed-Point
iterative method, was proposed by Vogel and Oman [9, 10]. This method works by freezing
some coefficients and converting the problem into a system of linear equations, whi
solved by using an iterative solver such as Gauss-Seidel, a modern solver technique>hi
grid(MG), or a preconditioned conjugate gradient (PCG). However, our pgev
showed that using Gauss-Seidel method can obtain a satisfaétory con
acceptable accuracy. Thus, in this work, the local fixed po iPfg:ative m
it is highly parallelizable and it is easy to implem@@ th theSqulii

GPUs. V
2.2. Compute Unified Device Architecture (C@A) . A\

Compute Unified Device Architecture’ A) is anﬁgh’itecture for Single Instruction
Multiple Data(SIMD) from NVIDIA®. e of e@phic processing, this render graphic
card with CUDA can be used as a e% urpo rogessor, which is called General Purpose
Graphic Processing Unit (GPGPU)!

CUDA has 4 levels of memory™The first | is called "global memory". It is the slowest

memory accessed by the G?I Hundr%fy ock cycles are needed to access the global
eGP

researches
rate with an
is used because
core CPU and the

memory. The next leve) i ory," which is the fastest memory that a user can

"share
allocate and manage % U devi é&eading and writing through the shared memaory uses
approximately 40 ycle er two levels are local memory and texture memory.
Both are Iarg@es and%@allocated by users. To access them, more cycles are
needed when ared ssing the shared memory. However, this still uses the same
number of cycles as the gmemory. The CUDA memory model can be shown as in Figure

“Prock 0 Block 1
%« ‘ Shared Memory ‘ ‘ Shared Memory ‘
O A A A A

‘ Register ‘ Register ‘ Register ‘ Register

S S R S
‘ Thread (0,0) ‘ ‘ Thread (0,1) ‘ ‘ Thread (0,0) ‘ Thread (0,1) ‘
t A t 4 i AA A 1 A

Local Memory Local Memory Local Memory Local Memory

Shared Memory ‘

A 4 v A 4 A4

Constant Memory ‘

Texture Memory ‘

Figure 1. CUDA memory model [6,7]
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For programming on the CUDA platform, the developer has to specify the number of
threads for computation. Threads that will be executed in a kernel must be managed as groups
of threads with shared data, called thread blocks. A group of blocks forms a grid. Creating,
organizing, and destroying threads on the GPU consume only a few resources. This allows the
developers to manage hundreds of threads very fast and effectively.

2.3. Sliding Window Gauss-Seidel

The approach is to parallelize Gauss-Seidel from the fixed-point method as we have
described in Subsection 2.1. At the best of our knowledge, the latest and mos eff C|ent
parallel approach for Gauss-Seidel named "Sliding Window Gauss-Seidel" work ] by
dividing the matrix row into blocks and windows. Each thread executes t e?ﬂus -Seidel
method on its window. After executing the method, all threa s slide dow t next block
and execute again in the same manner until the last thre ufes t he last block.
This parallelization is illustrated in Figure 2.

Matrix size 16*16 2 | 3 | A/LS |N 7 | 8 10 | 11‘

Az.% *@T

A P 13

\ 1

N N 15
e N d 16 } }
y

Thre s number (T)=2
Q@ck size (S) = 2*16
- Thread aximum window size (W) = 4*16 (multiple of S blocks)
* Number of updates on each element of the solution vector after all

- e‘ab threads complete one pass over the matrix

Figure 2, Sliding Window Gauss-Seidel (SWGS) example for 2-threads
\&r computation [16]

wi ize and block size may be different. In our work, we need to consider this issue
since dtilizing the GPU platform, which has massive number of threads, as many threads as
possible should be executed.

To explain this algorithm, consider Figure 2. It shows how SWGS works with 4x6 domain
size with the window size of 4 and the block size of 2. The algorithm divides each main
iteration into substeps. For the substep in Figure 3(a), first thread enters its job first, and then
works one block while other threads wait to enter its job. After the first thread finishes its
computation, it will slide one block as in substep in Figure 3 (b). When it slides more than 1
window, another thread can enter its job as substep in Figure 3 (c) and will keep doing this
until the last thread finishes its job.

T%V\@ in [14] is based on the multicore platform. For the GPU platform, the appropriate
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93. Example of Sliding Window Gauss-Seidel (SWGS) for the first 6
substeps on the domain size of 4x6.

The original SWGS works in the producer-consumer model in [14] which performs greatly
on the multi-core computer because not many threads are used in the computation. This keeps
the thread synchronization and the memory transfer overheads very low compared to the
whole computation time. On the contrary, in Graphic Processing Units (GPU), there are a lot
of threads which can incur lots of overheads.

In our previous works, we had proposed a new State-Based Gauss-Seidel method [16]
which works efficiently on the multi-core processor. However, to use this method on the GPU,
which differs very much in architecture, the proper modification is required. Therefore, we
redesign the data structure and management as described Section 3.2.
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2.4. State-based Gauss-Seidel

In the previous work by [14], there are two main bottlenecks on the algorithm due to the
pipeline computation style. First, there is a significant amount of thread synchronization since
it uses the producer-consumer model, which the synchronization occurs at the end of each
substep. Next, the pipeline computation style makes a lot of idle threads at the early stage of
computation. To alleviate these problems, in our method, we introduce a state-based
framework with an asynchronous-style communication to parallelize the Gauss-Seidel
computation.

2.4.1. Data Structure: In the proposed approach, a novel data structure design is \o)keep
track of the progress in states as follows: matrix U represents the domain v@ tial values,
r,steking

an integer matrix, called an Iteration_Matrix, with the sa a%z)’of U the current
iteration number on each matrix cell. We use a list, calle KT le to store dvailable jobs and
a constant (Max_Iteration) to specify the maximum @ .
Mark_As_Read is a one-dimensional array of integerSwhich st M Mark_As_Read signal
for each thread. As an example, in Figure 4 a g thes3 omain size with 4 threads, we
assign the first thread (Thread #1) to work o& cell (3,1). the sake of clarity, we use this
example throughout this section. ,@ \Q)
&
0

| - .\% atlor; atrl);
°\\ 4 w 0 0 0
Q A '\ > ol oflo

O

T menin |

Figuu@nitial state on each matrix U and Iteration Matrix.
After apr@&'ﬁhe first job on the first cell, each thread will move to the following states.

2.4, 2 @d States: In the following explanation, we use the legend to indicate the cell
occugied by each thread shown in Figure 5.

Thread 1 /////// Thread 2

Thread 3 Thread 4

Figure 5. Legend for each thread illustrated in the proposed method.
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The thread has four states: Waiting State, Working State, Validation State, and Shifting
State.

(i) Waiting State

Every threads start at this state. While a thread is in the Waiting State, it keeps scanning Job
Table to check if there is an available job for it. If it finds the job, it will delete the job list from
the Job Table and will change its state to Working State.

(i) Working State

The thread starts working on the cell number given by Job Table and performssthe
following actions.

1. Read the data from current and its neighboring cells. For the rig pper cells,
the thread sends Mark_As_Read signal to threads that compu oring cells.

2. Start working on the current cell but does n '\gd e the da the current cell
yet. &)

3. Increase the iteration number by 1 o@ration@ in the corresponding

working element and enter the Valti'Qn State.
The results after the first thread computegc\@s job are s‘h&% in Figure 6.

Domain Ite @/Iatrix
\ ()Y %r 0o o
> ~;\¢O ollollo
XN R dnnE
N
O R

Figure 6. J able,a@tion_Matrix, and U after the first thread finishes its

Working State

il Validation State

To maintain corfectness of the Gauss-Seidel method and data integrity, when the thread
finishes its ation, the following checking steps are performed.

1. t@u rent cell is in the first cell, say cell number (3,1) in the example, the thread can
up ata in the current cell without any validation.

2. If'the thread computes the element in the last row or in the first column, it must receive a
Mark_As_Read signal from the thread computing the left cell before it can update the data.

This is to ensure that the left cell uses the correct data to compute.

3. Other threads must have two Mark_As_Read signals from the left and lower cells before
it can update the data. This means the previous cell’s computation has been finished.

In particular, this validation is to ensure that the right and upper cells of the current working
cell are not updated by the new data from the next iteration if the threads on the right and
upper cells finish the computation before the data is read by the current cell. After updating the
data, the thread is turned into Shifting State.
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(iv) Shifting State

The thread which enters this state must decide what to do next. The thread makes a decision
based on the following conditions:

1. If the thread is working on the last column, it will enter the Waiting State again.

2. If the current iteration number in Iteration_Matrix on its right cell reaches Max_ Iteration,
it will stop the computation and return to Waiting state.

3. If the thread is working on the first column and on  Max_Row, it will pick two threads
which is in Waiting State and assign new threads to work on its upper and c rre&g’ls. If
there is no thread available in the Waiting State, it will pick the first thread fo :?Mthe Job
Table and increase Max_Row value by 1, if it doesn’t reach %ﬁ( Row. It will PicK one for its

current cell only . The current thread checks  lIter atrix. right cell has
Iteration_Matrix value lower than that of the current ceII ent ead will check for

the iteration number of the right cell in Iteration M@ eater than that of the
current cell, then it shifts itself to work on its rlght celtand tur 0 Working State.
4. If the thread does not work on the f@& mn, |t compare the Iteration_Matrix

between its cell and its right cell. If the n num the right cell is greater than or
equal to that of its cell, then the thre ves te the right cell and turns itself to

Working State %

From our example, we show t workiﬂ&O threads and the computing data U after this
stage in Figure 7 and the n t Worklnw f Thread #1 in Figure 8. Thread #1 starts its
Working State and T &r and Thre have found their jobs from Job Table. Then, they
delete their jObS fro able an rt working.

orffajn (U) Iteration Matrix

\(b 0 0 0
¥

Q& N 1 0 0
A

Job Table

#2 on (3,1) H #3 on (2,1)

Figure 7. Working of threads and data after Shifting State
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Domain (U) Iteration Matrix

0 0 0

1 0 0

g
W \\\ 2l 11lo
7 N

Job Table
(Empty)

Figure 8. Job Table and Iteration_Matrix after thread #1 enters its state
again E

Figure 9 shows the state diagram of the approach. It & ea h%;b state transition
where S1, S2, S3 and S4 denote the Waiting State, Woxki ate, V State and Shifting
State respectively. A thread in S1 will change to S2 ¥

i fmd he job table and then
starts working on it. After the thread finishes computation, it er S3 for the Validation
State. Once the validation is complete, the threﬂ%ﬂill update. the’data and enter the last state

(S4). °

After the thread enters S4, it will deC| the foll }éondltlon If there are more non-
computed cells on that row and the nlshed its computation, it will shift
itself to the right cell and back to m State %

ind a job, putatlon Update data

t ’Q Move to next cell
Finish last column,

‘b Reach maximum iteration
'&qgure 9. State diagram for each thread

3. Propos@%'ategy

e this section into 3 parts. First, we investigate time used in each parts of the
denﬁﬁh algorithm. Next, we make State-Based Gauss-Seidel from [16] suitable for GPU
computing by redesigning the data structure and hierarchy. Finally, we put the Gauss-Seidel
and other techniques together by using OpenMP and CUDA, so denoising ultrasound image
sequence is done in real-time.

3.1. Investigation of time used in frame denoising.

To help designing our strategy for denoising the ultrasound image frame; first, we measure
the time used in each step in percentage as in Figure 10.
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7%

4%

15%

67%

I Gauss-Seidel
[ IGradiant Operation

[ IFetch from Disk E )
[ cPU/GPU Data Transfer

-Dlsplay« -
Figure 10. Time used in each part in percent ﬂ)de %rocess of
256x256 fram@@ &
>

From Figure 10, it clearly shows that Gauss?el is ;he% st'time consuming part of the
denoising process. Additionally, we tried to fram to 1024x1024 as in Figure 11.

‘@o\ gx\q’

4%

13%

(b I Gauss-Seidel
@ [ IGradiant Operation

[ I Fetch from Disk

[ cPU/GPU Data Transfer
I Display

Fi @ . Time used in each part in percentage of denoising process of
1024x1024 frame size

The results in Figure 10 and Figure 11 are very similar. We found that the larger frame size,
the more dominant of Gauss-Seidel part. On the 256x256 frame size, Gauss-Seidel part
consumes 67% of the total time whereas when the frame size is larger, 1024x1024, the Gauss-
Seidel consumes 71% of the total computational time.

Since the Gauss-Seidel part is the major part of the denoising process, to denoise the
ultrasound image sequence in real-time, the acceleration of Gauss-Seidel process is necessary.
In our previous works, we parallelize Gauss-Seidel by using Sliding Window Gauss-Seidel
from [14]. However, this method has a lot of overhead when working with many threads. We
proposed the state-based method in [16], but the data structure was not suitable for GPU. In
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this work, we also make some modifications of the data structure and memory usage to fit the
GPU platform in Section 3.2.

3.2. Modification for State-based Gauss-Seidel for GPU

In the GPU implementation, the GPU programming paradigm has some limitation on the
pointer data type. We employ queue data structure instead to represent Job Table. Each thread
has its own queue structure to avoid the single point of synchronization and to guarantee the
mutual exclusion. Notice that we may use the queue data structure in the previous version;
however, the queue approach usually takes more memory space because in pract ce, array

list structure, we can allocate and deallocate each element dynamically. On th , each

thread has its own queue. The job queue will be allocated on shared m

reduce access time. Each block of thread will have its own jobqugue as ni
Al

Block 0 Block 1 \' I V
N1|Q1,/Q1,/Q15/Qly]| .. %
N2 |Q2;1Q2,]| - Q2;| Q2, ‘\

N3 |Q3;]Q3; | .- . (‘l\ 03| *

| =
: .fo\ )
Nt | Qt; | Qt, | Qt3 @ & Qt;

&S o
&S S

Figure 12 Xexa e of new data structure for GPU version

In Figure 12, \@e two;di
row of array to store and
First, the head elem

ntional array for storing the job queue. Each thread will use a
for their job. There are two types of array elements:

tains the number of job element in its row. Every time a new job
is inserted (enque e head element will increase its value by 1, and when the job is
fetched (dequeue head node value will decrease by 1. N;..N; indicate the head node for
thread num ..t in Figure 12.

, which consists of few threads, the GPUs have massive number of threads.
an issue that may cause our algorithm to be less efficient. Many threads will
ing on the Job Table and Iteration Matrix; consequently, the single point of
sync ization occurs which cause only one thread to be able to search and update Job Table
and Iteration Matrix, while the others need to wait to guarantee the mutual exclusion.

To overcome this problem, we make these synchronization points become distributed. For
the Job Table, we divide threads into blocks and use a shared memory, which is the fastest
usable memory for storing Job Table. In the Fermi® device, there is 48kB of shared memory
per processor. The shared memory on each block of the GPU is allocated by a queue array
and will be used only for the threads of each block. When a thread is going to add a job for
another thread in Job Table, it will pick a free thread in its own block only. This will reduce
the single point of synchronization issue from many threads accessing the Job Table at one
time. In this experiment, we use up to 32 threads per block.
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3.3. Thread Management Strategy

The aim of our strategy is to make the denoising process to be able to be done in real-time
by utilizing all the computation resource both CPUs and GPUs efficiently.
On the CPU side, we create 4 types of threads as follow:

1. Fetching Thread is used to fetch and pre-fetch the frame and convert the image into 8-bit
grayscale image, create the label for each frame and store them in the main memory and label.

2. Compute Thread is used to compute gradient operation (K(u)) and transfer the computed
frame to GPU’s memory. °

3. Merging Thread is used to transfer denoised frame data back from GPUs rt the
denoised frame and discard expired frame.

4. Display Thread is an optional thread to display the denﬂ& image s%)c} real-time.

Our strategy is illustrated in Figure 13.

=

- [ ]

- - angfér back
\V (Compute Fixed-Pgi

- Iterative Meghod us:

Prefetch l o %

uy \

FeﬁchﬁﬁT

A

Label & sm?l ° co

O AN

° Q» Main sﬂerge &store | [7] Merging Thread
N ek
Q AL

r J j Fetch .
Q Feh-) Display Thread
&
\ pute Thread Compute gradient and Output
:z transfer

& &

Figure @&ur propose strategy for denoising image sequence in real-time

anation of the denoising process is presented step-by-step as follow:

1. Fetching Thread fetches and uses the prefetching technique by fetching the frames ahead,
stores them into the main memory and labels them. Each frame’s label contains (i) frame
sequence, (ii) frame expiration time.

2. Compute Thread keeps fetched frames from the main memory, computes K(u) and

transfers them to the GPU’s memory, then invokes the kernel after the data transfer is
finished.

3. Next, the GPU denoises the frame in Equation (7) by using the Fixed-point iterative method
and Sliding Windows Gauss-Seidel [14].
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4. After the GPU finishes denoising, the Merging Thread transfers the denoised frame back
into the main memory, reads the frame label and then rearranges the denoised frame in the
buffer in the main memory and discards the expired frames.

5. Display Thread displays the denoised output in real-time.

4. Experiment Results

In this section, we divide our results into 3 parts. First, we validate our strategy and the
noise removal algorithm. Next, we show the performance gain and the frame rate by using our
strategy and finally, the results of some denoised frames are displayed. \2 o

The experiments were made on Intel® Core 2 Duo with 2.5 GHz of CPU and ¥GB 9f main
memory. The NVIDIA® GeForce GTX-480 with 480 CUDA cores and 1.5 %@’graphic
memory. Each core runs at 750MHz.

m%

o

We use 64-bit Fedora 17 Linux with GNU C Compi cC) 4.
(gdb) enabled, OpenCV 2.3 for image and image sequenc ula on.

U debugger

4.1. Denoising Model Validation

To ensure that the noise removal algorlthm our str an eff|C|entIy remove both
additive and multiplicative noises, we use ple | sequence and synthesize both
additive and multiplicative noises into |t rst fram ple image sequence is shown in

Figure 14.

Q € (b)
Figggm. An original sample picture for testing denoising algorithm (a) and a
sample picture with synthesized noises (b)

The synthesized noisy frame has Peak Signal-to-Noise Ratio (PSNR) value of 19.77dB.
After denoising the image sequence with well-selected parameters, the first frame is
denoised as shown in Figure 15(b).
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ol

(a)
Figure 15. Denoised sample picture from J [1 ) a from model in [3]
(b)

The PSNR value of image with the synth 0|se C ing with the original image is
85.64 while JY Model [1] denoised |ma valu 54dB. This shows the denoising
model and our strategy outperforms t |ous eI by removing both multiplicative
and additive noises efficiently. @

In denoising the streaming m% quenc ame order is also checked to make sure
that our strategy is working correct %

4.2. Performance Resu t& \Q

First, we measur erage fm% rate for the denoised image sequence as in Figure 16,
while varying er of G%@ ds per frame.

—4&— Sequential
——SWGS
—t—Propose State Based

r r r r
1 2 4 8 16 32
Number of threads per frame

Figure 16. Time used per frame varying threads per frame

We define the average speedup as:

Savg = (10)
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Where s, is the average speedup for each frame, t,q is the average time for each frame
including the discarded frames. The tq is the time used for denoising the frame sequentially.
The average speedup varying the number of GPU threads per frame is shown in Figure 17.

[

12 —+— Sliding Window Gauss-Seidel
—— Propose State Based

Speedup

Figure 17. Speedup of proposed stravar i ead per frame

We fix the frame rate of the output im%@ ence at %ames per second and measure
ent

the frame rate of the output varying the n of threads pér frame without discarded frames
as in Figure 18. Please note that onl {t& sequence average frame rates are

shown in Figure 18. 4@
) . O

T T T T

T T v
- \
e N
° L Propose State-Ba§i¢d
20‘*

Sequential 1 2 4 8 16 32

Number of threads per frame
@Figure 18. The average frame-per-second vary thread per frame

Figure 18 shows that after utilizing both multi-core CPUs and GPUs asynchronously at the
same time, the number of frames per second for processing increased dramatically. This is
because multiple kernels are launched and the pipeline latency in the traditional Sliding
Window Gauss-Seidel is eliminated in our proposed state-based method. The increase of the
number of threads per frame causes the increment of frame rate by allowing more GPU cores
to work on the same frame in parallel.

The frame per second is satisfactory (~20-25 fps) when the number of threads per frame is
> 8, as we had described in the first section that the output image sequence should have the
frame rate at around 12-15 fps.
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We investigate the frame drop and between-frame-delay (BFD). The between-frame-
latency shows how smooth the image sequence is. We also show the average frame drop per
second, the average between-frame-delay and standard deviation of between-the frame-delay
is shown in Table 1.

Table 1. Average frame drop per second, average and S.D. of between frame

delay
Thread Avg. Frame Drop (fps) Avg. BFD (ms.) S.D. of BFD (ms.)

per frame SWGS Proposed SWGS Proposed SWGS Proposed
1 19.33 17.89 514 393 61.1 . °
2 15.73 13.55 289 230 835 ‘so.y
4 10.89 8.94 183 159 74.2
8 7.94 3.90 149 119 90.2 4 1868
16 8.96 1.72 159 108 4 |, 979~ 99.6
32 9.22 0.67 162 1&N 1 \ 99.7

Table 1 shows that our proposed method can grew%ase he average number of frame
drop while the average values between-frame-del sligh xg/bved The output video
seems smoother than the output that uses SlidimgWindow Ga eidel. The frame drop is
improved up to 92.73% on 32 threads peg fr@ 23.729 average compared to Sliding

Window Gauss-Seidel. \

4.3. Denoised Image sequence

We use sample ultrasound sequgnc publlc domain image sequence achieve
[15]. The image sequence resolution is 48 plxel and the frame rate is 29 frames per
second. Each frame is co into theNg-hit grayscale image in the denoising process. The
80™ and 300" sample,fr re shown MFigure 19.

(@) (b)

Figure 19. The 80" (a) and 300" (b) frames from sample ultrasound image
sequence

The denoised 80™ and 300" frames are shown in Figure 20.
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(b) \

(©) . \g (d
Figure 20. Denoised ;& of 80‘§§é 300" frame from the sample ultrasound
g

image sequenc JY Mo

The PSNR ed fraﬁ@ aring with the noisy image sequence frame is in the

range of 78.97'd 86.43 BQ)

(a, b) and the new variation method (c, d)

5. Conclusion and re Work

We propose th@v thread management strategy and redesign the data structure and
memory usage for the state-based Gauss-Seidel for denoising the ultrasound image sequence
which conte{&h additive and multiplicative noises. The GPUs and multi-core processor are
used to a e the computation to ensure satisfactory frame rate.

@) s@gy uses the denoising model and improves image-sequence denoising strategy
fro@ The proposed strategy uses both multi-core advantages and reduces some overhead
from the frame distribution while utilizing the GPUs efficiently.

Our results show that our strategy can achieve speedup per single frame computation up to
13.18 times compared to the sequential computation. The output image sequence frame rate is
boosted up 106.04 times comparing to the sequential computation. Moreover, the denoising
image sequence quality is visually satisfactory. This makes the real-time image sequence
denoising possible. However, fine denoising parameter tuning is still essential in practice to
make sure that the denoised picture is smooth and retains all necessary information in each
frame.
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