
International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014), pp.29-48

http://dx.doi.org/10.14257/ijmue.2014.9.1.04

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

State-Based Gauss-Seidel Framework for Real-time 2D Ultrasound

Image Sequence Denoising on GPUs

Banpot Dolwithayakul
1
, Chantana Chantrapornchai

2
 and Noppadol Chumchob

3

1
Department of Computing, Faculty of Science, Silpakorn University, Thailand

2
Department of Computer Engineering, Faculty of Engineering, Kasetsart University,

Bangkok, Thailand and

 Department of Computing, Faculty of Science, Silpakorn University, Thailand
3
Department of Mathematics, Faculty of Science, Silpakorn University and

Centre of Excellence in Mathematics CHE, Si Ayudthaya Rd., Bangkok, Thailand

chumchob@gmail.com*

Abstract

The ultrasound image sequences are not only majorly contaminated by multiplicative

noises but they are also usually contaminated with additive noises. As in the past few

decades, there were some works, which had focused on removing the noises from ultrasound

images, such as in the JY model [1] and in the variational model, which were able to remove

both types of noises. However, denoising these noises from the ultrasound image sequence is

a time-consuming process that occurred from using fixed-point iterative method. From our

investigation, the most time-consuming process part of the denoising process is the Gauss-

Seidel. By parallelizing these processes with modern multi-core and many-core processor, the

denoising ultrasound image in real-time is possible. In this study, we propose the modified

strategy from [2] for managing threads and propose the modified state-based Gauss-Seidel

method from [16] for GPUs. Our proposed model can retain the frame order, and get the

satisfactory frame rate (about 23.33 fps). The proposed strategy boosts the speedup of the

frame denoising to 13.80 times compare to the sequential computation.

Keywords: Real-time image sequence denoising; Parallel computing; OpenMP; Graphic

Processing Units (GPUs); multi-core; CUDA; Image processing; Ultrasound image sequence

1. Introduction

In the real-world, the usage of image sensor, such as image sequence camera, sonar, and

ultrasound usually incurs the noises to the media. The noises may cause degrading in image

quality or image sequence quality; therefore, this can lead to losing some important

information in the media. In the past decades, there were a lot of studies aimed to restore

images or image sequences from noise.

In the mathematical area, image noises are categorized into two categories: additive and

multiplicative noises. The additive noise can be written as

 z u . (1)

 Corresponding Author

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

30 Copyright ⓒ 2014 SERSC

where z is the noisy image, u is the noise-free image and is the noise in the image. The

multiplicative noise can be expressed as

z u (2)

The ultrasound image and image obtained from Synthetic Aperture Radars (SARs), such as

radars and satellites [12] contains both additive and multiplicative noises as suggested by

Hirakawa and Parks [4]. These noises can be expressed as (3):

0 1()z u k k u , (3)

where k0 and k1 are parameters indicating how many additive and multiplicative noises are in

the image. These noises require more complicate model to remove them.

 However, the ultrasound image has different noise model [1] as in Equation (4)

0 1()z u k k u , (4)

In this study, we assume that each frame has the same distribution of noises and the

ratio(k0/k1) of additive and multiplicative noises are the same in every frame, and there is no

noise dependency between each frame.

The image sequence denoising is more complicated than single-image denoising. There are

complications due to the following aspects.

1. Frame rate. Normally, human eyesight can process about 10-12 frames per second

[5]. As suggested by [5], the real-time image sequence frame rate should be normally

higher than 15 frames per second, in order that the latency will not be noticed.

2. Frame order. The denoised image sequence frames order must be retained. In the

process, the output frames need to be merged in the correct order.

3. Frame rate control. The output image sequence should have a stable frame rate for

the entire image sequence playback to guarantee the quality of service.

With these challenges, image sequence denoising usually cannot be done in real-time due to

the extensive computation. With the current multi-core and many-core technology, such as

multi-core processor and graphic processing units (GPU), it makes the image sequence

denoising possible.

In this paper, we extend the previous work from [2] which used the ROF model [8] for

denoising image sequences in real-time using GPUs. The work in [2] can only remove additive

noise with GPUs in real-time. Nevertheless, this study aims to remove noises from the

streaming ultrasound image sequences which contain both additive and multiplicative noises

by using both GPU and OpenMP technology.

2. Backgrounds

This section consists of two parts: the first subsection shows the denoising model used in

this work and the next subsection shows the CUDA architecture for GPU computing [6, 7].

2.1. New Variational Model Noise Removal Algorithm

The variation model for restoring an image that is contaminated with both additive and

multiplicative noises can be modified from Equation (3) as described by Equation (5),

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 31

0 1z u k k u , (5)

where is the additive noise and multiplicative noise, respectively.

Due to the independence of additive and multiplicative noise, we can measure these noises

using Equation (6)

2
21

2

()
[] ()

2

z u
D u u z d d

u

 (6)

Here 1 >0 and 2 >0 are the regularized fitting parameters for the additive noise and the

multiplicative noise removals, respectively, is the domain of the image, ux and uy is the

differential on the x-axis and y-axis correspondingly. By using Euler-Lagrance equations.
The variation model and JY Model[1] for removing both additive and multiplicative noises

is given by Equation (7)

1 2,min{ () [] []}J u D u R u (7)

where D[u] is the total variation term and R[u] is the regularization term described as

2 2[] | | , 0x yR u u d u u d

 (8)

According to the calculus of variations, the Euler-Lagrange equation from Equation (7) is

given by:

2

1 2 2
() 1 0

| |

u z
u z

u u

 (9)

where
() ,

| |

u
u

u

2| | | |u u
, and 0 is a small constant to avoid the divide-by-

zero. By using the finite difference method for discretization to the discrete domain h ,

where h is the distance between each grid point, we discretize the domain into x yn n grid

cells. Each cell has the size of 1×1 (1x yh h). The discrete equation on (xi, yj) on h is

obtained by Equation (10)

2

, 1 , , 2 ,2

()

() (() ()) 1 ()h h h h h

i j i j i j i j

u

z
u u z g

u

, (10)

where

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

32 Copyright ⓒ 2014 SERSC

, , , ,

,

() () () ()
()

h h h h

i j x i j y i j y i jh h x
i j

x y y

D u u D u u
u

h hx h h

 . (11)

From Equation (10), there are several methods to solve it; for example, the Time Marching

technique is a simple iterative technique using a synthetic time variable [13]. However, this

method converged slowly to the solution and, therefore, is not suitable for the parallel

computing because of the data dependency in each iteration.

Alternatively, the fast and robust method for solving Equation (10), called Fixed-Point

iterative method, was proposed by Vogel and Oman [9, 10]. This method works by freezing

some coefficients and converting the problem into a system of linear equations, which can be

solved by using an iterative solver such as Gauss-Seidel, a modern solver technique like multi-

grid(MG), or a preconditioned conjugate gradient (PCG). However, our previous researches

showed that using Gauss-Seidel method can obtain a satisfactory convergence rate with an

acceptable accuracy. Thus, in this work, the local fixed point iterative method is used because

it is highly parallelizable and it is easy to implement on both the multi-core CPU and the

GPUs.

2.2. Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) is an architecture for Single Instruction

Multiple Data(SIMD) from NVIDIA®. Despite of the graphic processing, this render graphic

card with CUDA can be used as a general-purposed processor, which is called General Purpose

Graphic Processing Unit (GPGPU).

CUDA has 4 levels of memory. The first level is called "global memory". It is the slowest

memory accessed by the GPU. Hundreds of clock cycles are needed to access the global

memory. The next level is called "shared memory," which is the fastest memory that a user can

allocate and manage on the GPU device. Reading and writing through the shared memory uses

approximately 40 clock cycles. Another two levels are local memory and texture memory.

Both are large memories and can be allocated by users. To access them, more cycles are

needed when compared to accessing the shared memory. However, this still uses the same

number of cycles as the global memory. The CUDA memory model can be shown as in Figure

1.

Shared Memory Shared Memory

Register Register Register Register

Thread (0,0) Thread (0,1) Thread (0,0) Thread (0,1)

Local Memory Local Memory Local Memory Local Memory

Shared Memory

Constant Memory

Texture Memory

Block 0 Block 1

Figure 1. CUDA memory model [6,7]

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 33

For programming on the CUDA platform, the developer has to specify the number of

threads for computation. Threads that will be executed in a kernel must be managed as groups

of threads with shared data, called thread blocks. A group of blocks forms a grid. Creating,

organizing, and destroying threads on the GPU consume only a few resources. This allows the

developers to manage hundreds of threads very fast and effectively.

2.3. Sliding Window Gauss-Seidel

The approach is to parallelize Gauss-Seidel from the fixed-point method as we have

described in Subsection 2.1. At the best of our knowledge, the latest and most efficient

parallel approach for Gauss-Seidel named "Sliding Window Gauss-Seidel" works [14] by

dividing the matrix row into blocks and windows. Each thread executes the Gauss-Seidel

method on its window. After executing the method, all threads slide down to the next block

and execute again in the same manner until the last thread executes the job in the last block.

This parallelization is illustrated in Figure 2.

Figure 2. Sliding Window Gauss-Seidel (SWGS) example for 2-threads
computation [16]

The work in [14] is based on the multicore platform. For the GPU platform, the appropriate

window size and block size may be different. In our work, we need to consider this issue

since utilizing the GPU platform, which has massive number of threads, as many threads as

possible should be executed.

To explain this algorithm, consider Figure 2. It shows how SWGS works with 4×6 domain

size with the window size of 4 and the block size of 2. The algorithm divides each main

iteration into substeps. For the substep in Figure 3(a), first thread enters its job first, and then

works one block while other threads wait to enter its job. After the first thread finishes its

computation, it will slide one block as in substep in Figure 3 (b). When it slides more than 1

window, another thread can enter its job as substep in Figure 3 (c) and will keep doing this

until the last thread finishes its job.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

34 Copyright ⓒ 2014 SERSC

Uncomputed

Thread 1

Thread 2

Thread 3

(a) (b) (c)

(f)(e)

(d)

(h) (h)

Figure 3. Example of Sliding Window Gauss-Seidel (SWGS) for the first 6
substeps on the domain size of 4×6.

The original SWGS works in the producer-consumer model in [14] which performs greatly

on the multi-core computer because not many threads are used in the computation. This keeps

the thread synchronization and the memory transfer overheads very low compared to the

whole computation time. On the contrary, in Graphic Processing Units (GPU), there are a lot

of threads which can incur lots of overheads.

In our previous works, we had proposed a new State-Based Gauss-Seidel method [16]

which works efficiently on the multi-core processor. However, to use this method on the GPU,

which differs very much in architecture, the proper modification is required. Therefore, we

redesign the data structure and management as described Section 3.2.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 35

2.4. State-based Gauss-Seidel

In the previous work by [14], there are two main bottlenecks on the algorithm due to the

pipeline computation style. First, there is a significant amount of thread synchronization since

it uses the producer-consumer model, which the synchronization occurs at the end of each

substep. Next, the pipeline computation style makes a lot of idle threads at the early stage of

computation. To alleviate these problems, in our method, we introduce a state-based

framework with an asynchronous-style communication to parallelize the Gauss-Seidel

computation.

2.4.1. Data Structure: In the proposed approach, a novel data structure design is used to keep

track of the progress in states as follows: matrix U represents the domain with initial values,

an integer matrix, called an Iteration_Matrix, with the same size of U for storing the current

iteration number on each matrix cell. We use a list, called Job Table to store available jobs and

a constant (Max_Iteration) to specify the maximum iteration.

Mark_As_Read is a one-dimensional array of integers which stores the Mark_As_Read signal

for each thread. As an example, in Figure 4 assuming the 3 3 domain size with 4 threads, we

assign the first thread (Thread #1) to work on the cell (3,1). For the sake of clarity, we use this

example throughout this section.

0

0

0

0

0

0

0

0

0

#1 on (3,1)

Domain (U) Iteration Matrix

Job Table

Figure 4. Initial state on each matrix U and Iteration Matrix.

After applying the first job on the first cell, each thread will move to the following states.

2.4.2. Thread States: In the following explanation, we use the legend to indicate the cell

occupied by each thread shown in Figure 5.

Thread 1 Thread 2

Thread 3 Thread 4

Figure 5. Legend for each thread illustrated in the proposed method.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

36 Copyright ⓒ 2014 SERSC

The thread has four states: Waiting State, Working State, Validation State, and Shifting

State.

(i) Waiting State

Every threads start at this state. While a thread is in the Waiting State, it keeps scanning Job

Table to check if there is an available job for it. If it finds the job, it will delete the job list from

the Job Table and will change its state to Working State.

(ii) Working State

The thread starts working on the cell number given by Job Table and performs the

following actions.

1. Read the data from current and its neighboring cells. For the right and upper cells,

the thread sends Mark_As_Read signal to threads that compute neighboring cells.

2. Start working on the current cell but does not update the data on the current cell

yet.

3. Increase the iteration number by 1 on Iteration_Matrix in the corresponding

working element and enter the Validation State.

The results after the first thread computes on its job are shown in Figure 6.

0

1

0

0

0

0

0

0

0

Domain (U) Iteration Matrix

Job Table
(Empty)

Figure 6. Job Table, Iteration_Matrix, and U after the first thread finishes its
Working State

(iii) Validation State

To maintain the correctness of the Gauss-Seidel method and data integrity, when the thread

finishes its computation, the following checking steps are performed.

1. If the current cell is in the first cell, say cell number (3,1) in the example, the thread can

update the data in the current cell without any validation.

2. If the thread computes the element in the last row or in the first column, it must receive a

Mark_As_Read signal from the thread computing the left cell before it can update the data.

This is to ensure that the left cell uses the correct data to compute.

3. Other threads must have two Mark_As_Read signals from the left and lower cells before

it can update the data. This means the previous cell’s computation has been finished.

In particular, this validation is to ensure that the right and upper cells of the current working

cell are not updated by the new data from the next iteration if the threads on the right and

upper cells finish the computation before the data is read by the current cell. After updating the

data, the thread is turned into Shifting State.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 37

(iv) Shifting State

The thread which enters this state must decide what to do next. The thread makes a decision

based on the following conditions:

1. If the thread is working on the last column, it will enter the Waiting State again.

2. If the current iteration number in Iteration_Matrix on its right cell reaches Max_Iteration,

it will stop the computation and return to Waiting state.

3. If the thread is working on the first column and on Max_Row, it will pick two threads

which is in Waiting State and assign new threads to work on its upper and current cells. If

there is no thread available in the Waiting State, it will pick the first thread found from the Job

Table and increase Max_Row value by 1, if it doesn’t reach Max_Row. It will pick one for its

current cell only . The current thread checks Iteration_Matrix. If the right cell has

Iteration_Matrix value lower than that of the current cell by 1, the current thread will check for

the iteration number of the right cell in Iteration_Matrix, if its value is greater than that of the

current cell, then it shifts itself to work on its right cell and turns itself to Working State.

4. If the thread does not work on the first column, it will compare the Iteration_Matrix

between its cell and its right cell. If the iteration number of the right cell is greater than or

equal to that of its cell, then the thread moves to compute the right cell and turns itself to

Working State.

From our example, we show the working of threads and the computing data U after this

stage in Figure 7 and the next working state of Thread #1 in Figure 8. Thread #1 starts its

Working State and Thread #2 and Thread #3 have found their jobs from Job Table. Then, they

delete their jobs from Job Table and start working.

0

1

0

0

0

0

0

0

0

#2 on (3,1)

Domain (U) Iteration Matrix

Job Table

#3 on (2,1)

Figure 7. Working of threads and data after Shifting State

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

38 Copyright ⓒ 2014 SERSC

1

2

0

0

1

0

0

0

0

Domain (U) Iteration Matrix

Job Table
(Empty)

Figure 8. Job Table and Iteration_Matrix after thread #1 enters its working state
again

Figure 9 shows the state diagram of the approach. It shows each thread state transition

where S1, S2, S3 and S4 denote the Waiting State, Working State, Validation State and Shifting

State respectively. A thread in S1 will change to S2 when it finds a job in the job table and then

starts working on it. After the thread finishes computation, it will enter S3 for the Validation

State. Once the validation is complete, the thread will update the data and enter the last state

(S4).

After the thread enters S4, it will decide by the following condition: If there are more non-

computed cells on that row and the right cell (if any) has finished its computation, it will shift

itself to the right cell and back to Working State.

S1 S2 S3 S4

Find a job

Finish last column,

Reach maximum iteration

Move to next cell

Finish computation Update data

No job is found

Figure 9. State diagram for each thread

3. Proposed Strategy

We divide this section into 3 parts. First, we investigate time used in each parts of the

denoising algorithm. Next, we make State-Based Gauss-Seidel from [16] suitable for GPU

computing by redesigning the data structure and hierarchy. Finally, we put the Gauss-Seidel

and other techniques together by using OpenMP and CUDA, so denoising ultrasound image

sequence is done in real-time.

3.1. Investigation of time used in frame denoising.

To help designing our strategy for denoising the ultrasound image frame; first, we measure

the time used in each step in percentage as in Figure 10.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 39

Figure 10. Time used in each part in percentage of denoising process of
256×256 frame size

From Figure 10, it clearly shows that Gauss-Seidel is the most time consuming part of the

denoising process. Additionally, we tried to vary the frame size to 1024×1024 as in Figure 11.

Figure 11. Time used in each part in percentage of denoising process of
1024×1024 frame size

The results in Figure 10 and Figure 11 are very similar. We found that the larger frame size,

the more dominant of Gauss-Seidel part. On the 256×256 frame size, Gauss-Seidel part

consumes 67% of the total time whereas when the frame size is larger, 1024×1024, the Gauss-

Seidel consumes 71% of the total computational time.

Since the Gauss-Seidel part is the major part of the denoising process, to denoise the

ultrasound image sequence in real-time, the acceleration of Gauss-Seidel process is necessary.

In our previous works, we parallelize Gauss-Seidel by using Sliding Window Gauss-Seidel

from [14]. However, this method has a lot of overhead when working with many threads. We

proposed the state-based method in [16], but the data structure was not suitable for GPU. In

67%

15%

4%

7%

7%

Gauss-Seidel

Gradiant Operation

Fetch from Disk

CPU/GPU Data Transfer

Display

71%

13%

4%

6%

6%

Gauss-Seidel

Gradiant Operation

Fetch from Disk

CPU/GPU Data Transfer

Display

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

40 Copyright ⓒ 2014 SERSC

this work, we also make some modifications of the data structure and memory usage to fit the

GPU platform in Section 3.2.

3.2. Modification for State-based Gauss-Seidel for GPU

In the GPU implementation, the GPU programming paradigm has some limitation on the

pointer data type. We employ queue data structure instead to represent Job Table. Each thread

has its own queue structure to avoid the single point of synchronization and to guarantee the

mutual exclusion. Notice that we may use the queue data structure in the previous version;

however, the queue approach usually takes more memory space because in practice, array

memory allocation for each thread is required at the beginning of computation while using the

list structure, we can allocate and deallocate each element dynamically. On the GPU, each

thread has its own queue. The job queue will be allocated on shared memory on GPU to

reduce access time. Each block of thread will have its own job queue as shown in Figure 12.

Q11 Q12 Q13 Q14

Q31

Q21 Q22

Qt1

Q32

Qt2 Qt3

N1

N2

N3

Nt

.

.

.

...

...

...

...

Head Element

Job Elements

Q11 Q12 Q13

Q31

Q21 Q22

Qt1 Qt2

N1

N2

N3

Nt

.

.

.

...

...

...

...

Block 0 Block 1

Figure 12. The example use of new data structure for GPU version

In Figure 12, we use two-dimentional array for storing the job queue. Each thread will use a

row of array to store and search for their job. There are two types of array elements:

First, the head element contains the number of job element in its row. Every time a new job

is inserted (enqueued), the head element will increase its value by 1, and when the job is

fetched (dequeued), the head node value will decrease by 1. N1..Nt indicate the head node for

thread number 1..t in Figure 12.

Unlike the CPU, which consists of few threads, the GPUs have massive number of threads.

There will be an issue that may cause our algorithm to be less efficient. Many threads will

keep searching on the Job Table and Iteration Matrix; consequently, the single point of

synchronization occurs which cause only one thread to be able to search and update Job Table

and Iteration Matrix, while the others need to wait to guarantee the mutual exclusion.

To overcome this problem, we make these synchronization points become distributed. For

the Job Table, we divide threads into blocks and use a shared memory, which is the fastest

usable memory for storing Job Table. In the Fermi® device, there is 48kB of shared memory

per processor. The shared memory on each block of the GPU is allocated by a queue array

and will be used only for the threads of each block. When a thread is going to add a job for

another thread in Job Table, it will pick a free thread in its own block only. This will reduce

the single point of synchronization issue from many threads accessing the Job Table at one

time. In this experiment, we use up to 32 threads per block.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 41

3.3. Thread Management Strategy

The aim of our strategy is to make the denoising process to be able to be done in real-time

by utilizing all the computation resource both CPUs and GPUs efficiently.

On the CPU side, we create 4 types of threads as follow:

1. Fetching Thread is used to fetch and pre-fetch the frame and convert the image into 8-bit

grayscale image, create the label for each frame and store them in the main memory and label.

2. Compute Thread is used to compute gradient operation (K(u)) and transfer the computed

frame to GPU’s memory.

3. Merging Thread is used to transfer denoised frame data back from GPUs and sort the

denoised frame and discard expired frame.

4. Display Thread is an optional thread to display the denoised image sequence in real-time.

Our strategy is illustrated in Figure 13.

Fetching Thread

Main
Memory

Compute Thread

GPU
(Compute Fixed-Point

Iterative Method & Gauss-
Seidel)Prefetch

Label & Store

Fetch

Compute gradient and
transfer

Merging Thread

Transfer back

Display Thread

Merge & store

Fetch

Output

Streaming video frames

Figure 13. Our propose strategy for denoising image sequence in real-time

The explanation of the denoising process is presented step-by-step as follow:

1. Fetching Thread fetches and uses the prefetching technique by fetching the frames ahead,

stores them into the main memory and labels them. Each frame’s label contains (i) frame

sequence, (ii) frame expiration time.

2. Compute Thread keeps fetched frames from the main memory, computes K(u) and

transfers them to the GPU’s memory, then invokes the kernel after the data transfer is

finished.

3. Next, the GPU denoises the frame in Equation (7) by using the Fixed-point iterative method

and Sliding Windows Gauss-Seidel [14].

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

42 Copyright ⓒ 2014 SERSC

4. After the GPU finishes denoising, the Merging Thread transfers the denoised frame back

into the main memory, reads the frame label and then rearranges the denoised frame in the

buffer in the main memory and discards the expired frames.

5. Display Thread displays the denoised output in real-time.

4. Experiment Results

In this section, we divide our results into 3 parts. First, we validate our strategy and the

noise removal algorithm. Next, we show the performance gain and the frame rate by using our

strategy and finally, the results of some denoised frames are displayed.

The experiments were made on Intel® Core 2 Duo with 2.5 GHz of CPU and 4GB of main

memory. The NVIDIA® GeForce GTX-480 with 480 CUDA cores and 1.5GB of the graphic

memory. Each core runs at 750MHz.

We use 64-bit Fedora 17 Linux with GNU C Compiler (GCC) 4.7 with GNU debugger

(gdb) enabled, OpenCV 2.3 for image and image sequence manipulation.

4.1. Denoising Model Validation

To ensure that the noise removal algorithm and our strategy can efficiently remove both

additive and multiplicative noises, we use the sample image sequence and synthesize both

additive and multiplicative noises into it. The first frame of sample image sequence is shown in

Figure 14.

(a) (b)

Figure 14. An original sample picture for testing denoising algorithm (a) and a
sample picture with synthesized noises (b)

The synthesized noisy frame has Peak Signal-to-Noise Ratio (PSNR) value of 19.77dB.

After denoising the image sequence with well-selected parameters, the first frame is

denoised as shown in Figure 15(b).

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 43

(a) (b)

Figure 15. Denoised sample picture from JY Model [1] (a) and from model in [3]
(b)

The PSNR value of image with the synthesized noise comparing with the original image is

85.64 while JY Model [1] denoised image PSNR value is 51.54dB. This shows the denoising

model and our strategy outperforms the previous JY Model by removing both multiplicative

and additive noises efficiently.

In denoising the streaming image sequence, the frame order is also checked to make sure

that our strategy is working correctly.

4.2. Performance Results

First, we measure the average frame rate for the denoised image sequence as in Figure 16,

while varying the number of GPU threads per frame.

Figure 16. Time used per frame varying threads per frame

We define the average speedup as:

seq

avg

avg

t
s

t
 (10)

1 2 4 8 16 32
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of threads per frame

T
im

e
 U

s
e
d
 (

m
s
.)

Sequential

SWGS

Propose State Based

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

44 Copyright ⓒ 2014 SERSC

Where savg is the average speedup for each frame, tavg is the average time for each frame

including the discarded frames. The tseq is the time used for denoising the frame sequentially.

The average speedup varying the number of GPU threads per frame is shown in Figure 17.

Figure 17. Speedup of proposed strategy varying thread per frame

We fix the frame rate of the output image sequence at 24 frames per second and measure

the frame rate of the output varying the number of threads per frame without discarded frames

as in Figure 18. Please note that only the entire image sequence average frame rates are

shown in Figure 18.

Figure 18. The average frame-per-second vary thread per frame

Figure 18 shows that after utilizing both multi-core CPUs and GPUs asynchronously at the

same time, the number of frames per second for processing increased dramatically. This is

because multiple kernels are launched and the pipeline latency in the traditional Sliding

Window Gauss-Seidel is eliminated in our proposed state-based method. The increase of the

number of threads per frame causes the increment of frame rate by allowing more GPU cores

to work on the same frame in parallel.

The frame per second is satisfactory (~20-25 fps) when the number of threads per frame is

≥ 8, as we had described in the first section that the output image sequence should have the

frame rate at around 12-15 fps.

1 2 4 8 16 32
0

2

4

6

8

10

12

14

Number of threads per frame

S
p
e
e
d
u
p

Sliding Window Gauss-Seidel

Propose State Based

Sequential 1 2 4 8 16 32
0

5

10

15

20

25

Number of threads per frame

F
ra

m
e
 p

e
r

s
e
c
o
n
d
 (

fp
s
)

SWGS

Propose State-Based

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 45

We investigate the frame drop and between-frame-delay (BFD). The between-frame-

latency shows how smooth the image sequence is. We also show the average frame drop per

second, the average between-frame-delay and standard deviation of between-the frame-delay

is shown in Table 1.

Table 1. Average frame drop per second, average and S.D. of between frame
delay

Thread

per frame

Avg. Frame Drop (fps) Avg. BFD (ms.) S.D. of BFD (ms.)

SWGS Proposed SWGS Proposed SWGS Proposed

1 19.33 17.89 514 393 61.1 79.3

2 15.73 13.55 289 230 83.5 80.1

4 10.89 8.94 183 159 74.2 82.2

8 7.94 3.90 149 119 90.2 86.8

16 8.96 1.72 159 108 97.9 99.6

32 9.22 0.67 162 103 101.8 99.7

Table 1 shows that our proposed method can greatly decrease the average number of frame

drop while the average values between-frame-delay is slightly improved. The output video

seems smoother than the output that uses Sliding Window Gauss-Seidel. The frame drop is

improved up to 92.73% on 32 threads per frame or 23.72% by average compared to Sliding

Window Gauss-Seidel.

4.3. Denoised Image sequence Quality

We use sample ultrasound image sequence from public domain image sequence achieve

[15]. The image sequence resolution is 480×352 pixel and the frame rate is 29 frames per

second. Each frame is converted into the 8-bit grayscale image in the denoising process. The

80
th
 and 300

th
 sample frames are shown in Figure 19.

(a) (b)

Figure 19. The 80th (a) and 300th (b) frames from sample ultrasound image
sequence

The denoised 80
th
 and 300

th
 frames are shown in Figure 20.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

46 Copyright ⓒ 2014 SERSC

(a) (b)

(c) (d)

Figure 20. Denoised frame of 80th and 300th frame from the sample ultrasound
image sequence by using JY Model (a, b) and the new variation method (c, d)

The PSNR of denoised frame comparing with the noisy image sequence frame is in the

range of 78.97 dB – 86.43dB.

5. Conclusion and Future Work

We propose the new thread management strategy and redesign the data structure and

memory usage for the state-based Gauss-Seidel for denoising the ultrasound image sequence

which contains both additive and multiplicative noises. The GPUs and multi-core processor are

used to accelerate the computation to ensure satisfactory frame rate.

Our strategy uses the denoising model and improves image-sequence denoising strategy

from [1]. The proposed strategy uses both multi-core advantages and reduces some overhead

from the frame distribution while utilizing the GPUs efficiently.

Our results show that our strategy can achieve speedup per single frame computation up to

13.18 times compared to the sequential computation. The output image sequence frame rate is

boosted up 106.04 times comparing to the sequential computation. Moreover, the denoising

image sequence quality is visually satisfactory. This makes the real-time image sequence

denoising possible. However, fine denoising parameter tuning is still essential in practice to

make sure that the denoised picture is smooth and retains all necessary information in each

frame.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 47

Acknowledgements

This work is supported in part by the Thailand Research Fund through the Royal Golden Jubilee

Ph.D. Program., contract no. PHD/0275/2551

References

[1] Z. Jin and X. Yang, “Analysis of a new variational model for multiplicative noise removal”, Journal of Math.

Anal. Appl., vol. 362, (2010), pp. 415-426.

[2] B. Dolwithayakul, C. Chantrapornchai and N. Chumchob, "Two Parallel Strategies for Real-time Spatial

Image sequence Denoising for Multi-core Processors", International Journal of Computer Applications, vol.

48, no. 16, (2012), pp. 28-35.

[3] N. Chumchob, K. Chen and C. Brito-Loeza, “A new variational model for removal of combined additive and

multiplicative noise and a fast algorithm for its numerical approximation”, International Journal of Computer

Mathematics, (2012), pp. 1-12.

[4] K. Hirakawa and T. W. Parks, "Image Denoising usig total least squares", IEEE Trans. Image Process, vol.

15, no. 9, (2006), pp. 2730-2742.

[5] R. Paul and M. Meyer, "Restoration of motion picture film,Conservation and Museology", Butterworth-

Heinemann, (2000).

[6] NVIDIA® Corporation, “NVIDIA CUDA compute unified device architecture programming guide version

2.1”, (2008).

[7] NVIDIA® Corporation, “NVIDIA CUDA™: NVIDIA C Programming Guide Version 4.2”, (2012).

[8] L. Rudin, S. Osher and E. Fatemi, “Nonlinear total variation based noise removal algorithms”, Physica D., vol

60, (1992), pp. 130-120.

[9] C. R. Vogel and M. E. Oman, “Iterative methods for total variation denoising”, SIAM Journal of Sci.

Comput., vol. 17, (1996), pp. 227-238.

[10] C. R. Vogel and M. E. Oman, “Fast, Robust total variation-based reconstruction of noisy, blurred images”,

IEEE Transaction of Image Processing, vol. 7, (1998), pp. 813-824.

[11] S. S. Al-amri, N. V. Kalyankar and S. D. Khamitkar, “A Comparative Study of Removal Noise from Remote

Sensing Image”, IJCSI International Journal of Computer Science, vol. 7, (2010), pp. 32-36.

[12] Y. Iikura, “Estimation of noise component in satellite images and its application”, Geoscience and Remote

Sensing Symposium, (1995), pp. 102-104.

[13] A. Marquina and S. Osher, “Explicit algorithms for a new time dependent model based on level set motion

for nonlinear deblurring and noise removal”, SIAM J. Sci Comput., vol. 22, pp. 387-405.

[14] H. Moghnieg and D. A. Lowther, “The solution of Electromagnetic Field Problems Using Sliding Windows

Gauss-Seidel Algorithm on a Multicore Processor”, IEEE Trans. Magnetic, vol. 46, (2010), pp. 3081-3084.

[15] The Sunday Times Online, “Ultrasound Fetal Response to Alcohol Fetal Syndrome”, (2005) November.

[16] B. Dolwithayakul, C. Chantrapornchai and N. Chumchob, “An efficient asynchronous approach for Gauss-

Seidel iterative solver for FDM/FEM equations on multi-core processors”, 2012 International Joint

Conference onComputer Science and Software Engineering (JCSSE), (2012), pp. 357-361.

Authors

Banpot Dolwithayakul

 He received his bachelor’s degree of Computer Science (B. Sc.) in

2006 from Silpakorn University, Nakhon-Pathom, Thailand. In 2009, he

received M.Sc. in computer science from the same place. Currently, he’s

working in the Department of Software Development, Computer Centre,

Silpakorn University and he is also a Ph.D. student of the Department of

Computing, Faculty of Science, Silpakorn University. His research

interests are high performance computing, computational science,

image restoration and parallel computing.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

48 Copyright ⓒ 2014 SERSC

Chantana Chantrapornchai

 She obtained her Bachelor degree from Thammasat University of

Thailand in 1991. Her major was Computer Science. She graduated from

Northeastern University at Boston, College of Computer Science, U.S.A.

in 1993 and University of Notre Dame, Department of Computer Science

and Engineering, U.S.A., in 1999, for her Master and Ph.D. degrees

respectively. She is an associated professor of Dept. of Computing,

Faculty of Science, Silpakorn University, Thailand. She currently is a

lecturer at Department of Computer Engineering, Faculty of Engineering,

Kasetsart University, Thailand. Her research interest includes parallel

and distributed systems, embedded real-time systems, wireless and

mobile computing, data mining and artificial intelligence for architecture

design.

Noppadol Chumchob

 He received his B.Sc. and M.Sc. in mathematics, and Ph.D. in

mathematical sciences respectively, from Thaksin University, Thailand,

Silpakorn University, Thailand, and the University of Liverpool, U.K. He

is currently a lecturer at the Department of Mathematics, Faculty of

Science, Silpakorn University, Nakhon-Pathom, Thailand and a member

of the Centre for Mathematical Imaging Techniques (CMIT), Department

of Mathematical Sciences, The University of Liverpool, U.K. He is a

computational mathematician specializing in developing novel

mathematical models and fast numerical algorithms for various scientific

applications. His research interests are currently centered on developing

effective variational models and efficient numerical solvers for image

processing applications, including image restoration and registration.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

