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Abstract 

This paper presents the development of Short Term Load Forecasting (STLF) model using 

Artificial Neural Network (ANN). STLF is required for electric power planning and electricity 

market planning. The proposed model predicts the load demand of Connecticut in the U.S. 

using hourly historical electric load and weather data. For improving the load prediction 

accuracy, we consider two main issues that are seasons and weather factors. Each season has 

different load demand patterns, thus the weather factors are differently applied in each 

season. The proposed model uses the composited weather factor which consists of 

temperature and dew point. The temperature and dew point weather factors are selected 

through the correlation coefficient to obtain the meaningful data among the weather factors. 

The selected weather factors adjust the level of the pitch which is the predicted load demand 

of one day ahead. The proposed model improves the forecasting accuracy both in summer 

and winter. 
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1. Introduction 

Load forecasting can be divided into three categories such as long-term load 

forecasting (LTLF), mid-term load forecasting (MTLF) and short-term forecasting 

(STLF). LTLF is necessary to manage the electric supply and demand planning which 

requires a lot of cost for electric facilities such as power station, power transmission, 

transformer, etc. STLF is required to optimize power control and scheduling such as 

adjusting power capacity and load switching [1, 2].  

STLF has been widely studied using ANN approach which is an effective method for 

processing nonlinear data such as weather factors and historical load data.  The Back 

Propagation Learning (BPL) is the famous learning algorithm among ANNs [3]. In 

order to develop the one day ahead forecasting model, we use BPL algorithm. Weather 

factors are the most influencing factor for load demand forecasting using BPL. In this 

paper, according to the result of correlation analysis, the temperature and dew point are 

selected as primary weather factor. Selected weather factor is used to adjust the weather 

weight to improve the load forecasting accuracy. 
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2. Backpropagation Learning Algorithm 

BPL is the most commonly used method for time series prediction, pattern 

recognition as well as short term load forecasting. BPL algorithm aims to reduce the 

error between calculated value and desired output value using the gradient-decent 

search method [4]. 

Each input nodes receive input variables using the initial weight and send them to all 

hidden layer’s nodes. At this time, the transfer function is used for sending to hidden 

layer. Each hidden unit computes the weight and transfers it to the output node. Output 

node calculates the error with desired output, and error is propagated back. Each hidden 

node updates the weights that were propagated back [5]. 

BPL is separated into two phases which are the propagation and weight update. In the 

Propagation phase, first, we initialize input value such as the weight and bias. The input 

value is conveyed to the hidden layers using equation (1). 
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Where, j is number of hidden layer, i is number of input layer. 

 (1) 

jiW  is the weight of the connection from unit j to unit i. jiW  determines the strength 

of the connection.   is the bias of the hidden layer and pjnet  is the input value which is 

the sum of the weights. Next, the equation (1) transfers the result of the total weight 

into the next hidden layer through the log-sigmoid function (equation (2)). 
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Next phase, we compute the weight update for the back propagation. First, the error 

E is calculated using equation (3).  pkt  is the desired target output values. 
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Where, k is number of output layer. 

(3) 

The error of neuron k
th

 is calculated by equation (4) and each hidden layer’s error is 

calculated by equation (5). 
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jiW  is used to update each hidden network weight for correcting errors. η is the 

learning rate parameter and  is the momentum (equation (6)) [4]. 
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3.  Input Variables Selection 

Selecting Input variables is very important to apply the multilayer feed forward 

neural network model for forecasting the load demand [6]. There is a high correlation 

between load demand and three factors which are categorized as the weather factors, 

time factors, and economic factors. Economic factors have relevance to load demand in 

terms of economic perspective such as a rate of population growth or activation of 

economies [7, 8]. Also, weather factors (temperature, dew point, humidity, etc.) and 

time factors (season, holiday, week pattern) are closely related with short term load 

forecasting [9].  

Economic factors are much more difficult to apply for load forecasting model 

because of complicated statistical methods which need a lot of time and efforts. So, we 

choose the average growth rate of the load demand which can be easily reflect a rate of 

economic growth and population [1]. 

Time and weather factors are selected from the past 3 years data between 2010 and 

2012. The time factors are selected from the weekly load demand patterns and weather 

factors are picked from correlation among the weather elements [10]. In order to 

measure a correlation, we used the person correlation coefficient method and results can 

be shown as Table 1 and Table 2. 

 

Table 1. Correlation coefficient in summer 

  load temp dew hum hpa win 

load 1 
     

temp 0.895665 1 
    

dew 0.710718 0.734864 1 
   

hum 0.176281 0.160577 0.528748 1 
  

hpa -0.39809 -0.458 -0.48081 -0.14238 1 
 

win -0.0434 -0.08961 -0.05868 -0.36261 -0.24729 1 

 

Table 2. Correlation coefficient in winter 

  load temp dew hum hpa win 

load 1 
     

temp -0.6617 1 
    

dew -0.58172 0.856977 1 
   

hum -0.34752 0.461009 0.765228 1 
  

hpa 0.090318 -0.15689 -0.17703 -0.07288 1 
 

win 0.175425 -0.11674 -0.2122 -0.40506 -0.33922 1 

 

Table 1 and Table 2 show the correlation coefficients between historical load demand 

and each weather variable. The correlation between temperature and historical load for 

the summer season has value 0.895665 and the next largest value is the dew point 

which has value 0.710718. Also, in the winter season, the correlation between 

temperature and historical load is -0.6617 as the most correlated parameter and as the 

second, dew point is 0.58172. In the summer season, the load demand more strongly 
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depends on the temperature than the winter season. Other weather factors are negligible 

on the load demand because it has meaningless correlation coefficient.  

 

Loadinput = L(d-1,t) + L(d-2,t) +L(d-7,t) (7) 

The input load data is consisted of hourly data of three days which are one day before,  

two days before and one week before the day. Equation (7) denotes the input load 

variable Loadinput, d is a day, and t is an hour. 

 

4. Temperature Weight Generation 

In order to improve the accuracy of short term load forecasting, we use the weight 

value of the temperature and dew point in every hours. The weight value of temperature 

is composed of two parts which are the Polynomial Regression curve and the variation 

of the weather elements data. Dew point weight value used to adjust the bias of the 

weather weight that is related to load demand and temperature. Load demand has 

closely related to the temperature and dew point. Figure 1 shows the relationship among 

the weather elements which are the load demand, temperature and dew point.  

 

 

Figure 1. Relationship among the weather elements 
 

 The load demand is changed dramatically when the temperature and dew point are 

raised in the same time. However, the load demand shows the less change when the 

temperature is raised while the dew point is descended or the temperature is descended 

while the dew point is raised. Table 3 shows the load demand changing with the 

temperature and dew point fluctuation. 

 

Table 3. load demand changing with temperature and dew point fluctuation 

Temperature Increase Decrease 

Dew point Increase Decrease Increase Decrease 

Load demand Sensitive increase 
Insensitive 

increase 

Insensitive 

decrease 

Sensitive 

decrease 
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Figure 2.  Summer and winter load distributions 
 

Linear regression equations of the electricity load demand are representing the 

temperature response in the summer and winter seasons. Figure 2. shows the linear 

regression model of the load demand which is correlated with temperature. The 

regression equations are given by: 

 

Ysum = -0.6569X
3
 + 51.29X

2
 - 1077.4X + 10473 (8) 

Ywin = 0.0101x
4
 + 0.2103x

3
 - 0.0213x

2
 - 52.009x + 3690.2 (9) 

The equation Ysum represents the summer regression and the equation Ywin represents 

the winter regression. In addition, variation of weather factors is measured by the 

equation (10) and (11). iΔT  is the variance between one day ahead forecast temperature 

and present temperature. iΔD  is the variance of dew point which is between one day 

ahead forecast dew point and  present dew point. 

 

beforepresenti TTΔT   (10) 

beforepresenti DDΔD   (11) 

The weather weight ( iW ) is calculated under condition of the Table 3. If iΔT is 

larger than 0, the temperature is increased. In this situation, the weight increase 

variance is adjusted by the dew point variance iΔD . In the other hand, if iΔT  is less 

than 0, the weight decrease variation is adjusted by the dew point variance iΔD . 

 

 ii TW  

 

Where,   is the bias of the weather weight 

 

(12) 

 

In the summer, if the temperature weight (
iW ) is increased, the weight value should 
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be increased. On the contrary, if 
iW  is increased in the winter season, it lead to decrease 

the weight value because increased temperature reduces the heating load demand. The 

temperature weight is applied to the proposed model using the equation (13). 

 

If season == summer 

iW  = sumY + 
iW  

Else If season == winter 

iW  = 
winY    

iW  

 

 

 

 

 

(13) 

The weather weight ( iW ) is added to the load prediction data (equation (14)). 
iL  is 

the load demand prediction data which is calculated by BPL algorithm. 

 

iL  = 
iL + ( iL iW ) (14) 

 

5. Experiments and Results 

The proposed model derived the input variables from the historical hourly load 

demand dataset of the U.S. State of Connecticut during the years 2010~2012 and it is 

tested on the summer and winter seasons 2012 with the actual load and weather data. To 

implement the proposed model, we use the Matlab 7.12.0. The hourly load demand and 

weather data was stored in MySQL database which is retrieved by SQL query. 

In order to evaluate the performance of the load forecasting model, the mean absolute 

percentage error (MAPE) [11, 12] is considered to measure the accuracy of the load 

forecast performance between the actual load data and the forecasted load data . The 

MAPE is defined as follows:   
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Where, iY  is the actual load data, and iX  is the forecasted load data. 

(15) 

Figure 3 and Figure 4 show the experimental results of the one day ahead load 

prediction in the summer and winter season.  
 

 

Figure 3. Load forecasting result of the summer season form July 9th to 
July 15th, 2012 
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Figure 4. Load forecasting result of the winter season from February 17th 
to February 23th, 2012 

  

Table 4. The result of the MAPE with weather weight 

 Summer Winter 

Hours excluding including excluding including 

0 ~ 24h 9.2490 3.3786 6.8673 3.6459 

24 ~ 48h 8.8202 2.3989 16.7048 2.2713 

48 ~ 72h 13.1150 3.3360 7.9971 1.5920 

72 ~ 96h 16.0661 3.9576 5.0664 1.3154 

96 ~ 120h 5.2823 1.7770 6.3404 1.9196 

120 ~ 144h 9.2400 1.6175 7.7083 3.7838 

144 ~ 168h 19.6818 2.2179 7.8262 4.1012 

Average 11.6363 2.6691 8.3586 2.6613 

 

Table 2 presents the result of MAPE applied the weather weights for 7 days. In the 

summer, applying weather weight provides better performance than winter season 

because the temperature and dew point have more effect on summer. Table 1 and Table 

2 indicate that the correlation coefficient of summer temperature and the dew point 

have higher number than winter season. It means that using the composited weather 

weight brings out more accuracy forecasting in summer. 

 

6. Conclusions 

The load demand forecasting accuracy is the important factor to reduce the cost of 

generating electricity in the electricity market. BPEL algorithm is being widely used for 

load demand forecasting. In order to improve the accurate forecasting, we used not only 

weather factors but also seasonal approach. For recognizing the significant weather 

factors, the proposed model used the correlation coefficient. Temperature and dew point 

were selected by the result of the correlation analysis. The temperature and dew point 

interact to adjust the weather weight size, and the weather weight is used to determine 

the load demand prediction. Summer and winter season have a different pattern of the 

load demand. Thus, the weather weight differently applied to each season which has 

season’s own pattern of the electric consumption. This paper proposed the hourly load 

demand forecast of a day ahead using BPL algorithm with weather weight. The 

simulation on the actual load demand has shown the improvement of load forecasting 

performance in both summer and winter season. In summer season, the error percentage 

has been reduced about 77%, and in winter season, the error percentage has been 

reduced about 68%. 
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