
International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014), pp.199-208

http://dx.doi.org/10.14257/ijmue.2014.9.1.19

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

Fast 3D Graphics Rendering Technique with CUDA Parallel

Processing

Ji-Hoon Kang
1
, Syung-Og An

2
, Shin-Jin Kang

3
, Seok-Hun Kim

4
 and SooKyun Kim

2

1
Department of Computer Science Education, Korea University

2
Department of Game Engineering, Paichai University

3
School of Games, Hongik University

4
Department of Mobile Media, Suwon Women’s College

Corresponding Author: SooKyun Kim (kimsk@pcu.ac.kr)

Abstract

3D Graphic Rendering has been used to express realistic, 3-dimensional, and emphasized

effects in the graphics. As 3D Graphic Rendering developed and became more prevalent, the

need for acceleration in data processing grew as well, leading to a development of GPU

(Graphic Processing Unit) and shading language used for GPU such as GLSL (OpenGL

Shading Language) and HLSL (Higher Language Shading Language). 3D Graphic Rendering

based on GPU, however, clearly has its limitation in processing complicated calculations

such as calculating curvatures of the surface or ray tracing method, especially as the greater

magnitude of the 3D polygonal model data is being used. The following paper will discuss the

new method of 3D graphic rendering that is based on faster GPU parallel processing system

called CUDA (Compute Unified Device Architecture) to administer 3D polygonal model data

and process calculations. In the paper, we will discuss about the characteristics of CUDA

and test for graphic rendering of 3D polygonal model according to those characteristics. We

will also examine whether it is possible to accelerate the graphic rendering process using

CUDA for 3D graphic rendering.

Keywords: 3D Graphic, CUDA, Parallel Processing, GLSL, GPU

1. Introduction

Developed from the 2D computer graphics that used points and lines to express images

[15], 3D graphic rendering system has introduced the new concept of 3-dimensional space in

the graphics and has been used to produce more realistic images. As the visual quality of the

graphics improved thanks to the development of 3D graphic technology, the amount of the

data used relatively increased as well, and consequently created a lot of problems with the

duration of the calculation process. Thus, there was a need for a consensus and a balance

between the calculation rate and the visual qualities. In order to resolve these problems with

data processing speeds, shading languages such as GLSL (Open GL Shading Language)[1]

and HLSL (High Level Shader Language)[2] were established. While the complications with

rate of calculation are being resolved and improved, there are still problems in finding a

consensus between the calculation speed and visual quality. The following thesis will propose

a new method of data processing for 3D graphic rendering. We have adopted 3-dimensional

polygonal model and have tested with calculation of normal vectors used for lighting of the

rendering of these models.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

200 Copyright ⓒ 2014 SERSC

The administrations and calculations of data are operated through CUDA (Compute

Unified Device Architecture)[3], a type of GPGPU (General Purpose computing on Graphics

Processing Units) technology developed by the hardware manufacturer company NVidia [3].

CUDA acquired parallel processing technique, C programming language, and GPU(Graphics

Processing Unit), which has relatively faster calculation rate compared to CPU(Central

Processing Unit), to provide a new method of administering and calculating data of 3D

polygonal model. The proposed method in the paper is used to improve data administration

speed through GPU. Such improvements in speed not only apply for rendering of 3D

polygonal model, but also apply for processing multiple and complicated calculation.

Compared to the common rendering method that uses only graphic library, this new method

of rendering will possibly accelerate calculation in various areas of 3D environment such as

bounding volume test and matrix multiplication.

In the following paper, we will discuss the related studies in Section 2 and characteristics

of CUDA in Section 3. We will discuss how to perform 3D polygonal rendering using CUDA

in Section 4, compare the result with that of currently standard rendering method that uses

only graphic library in Section 5, and discuss conclusions and planned future research in

section 6.

2. Related Work

Rendering process that we have discussed in the previous paragraphs is a technique used to

make 3-dimensional images from a 2D model by changing geometry, location, and lighting.

There are varieties of procedures that can be taken to perform this task. As discussed in the

paper, there have also been a lot of studies to use GPU in rendering. As a technique often

used to produce high quality rendering, ray tracing technique requires a lots of calculation,

and for that that reason, there has been a lots of new studies on using GPU for rendering

instead of CPU. Foley et al., [4] has proposed a raytracer that implements GPU and kd-tree to

search for the space that that is to be drawn by raytracing. There has also been a new method

of 3D polygonal model rendering that uses GPU parallel processing based on CUDA to

perform a rendering from information of points.

These studies of using GPU allowed acceleration of calculation tasks, as GPU has

relatively more advanced calculation process compared to CPU. Additionally, there have

been current studies of rendering by using CUDA, which has supplemented parallel

processing technique to GPU’s earlier real number calculation ability.

3. Characteristics of CUDA

This paper incorporates CUDA (Compute Unified Device Architecture), a type of GPGPU

(General Purpose computing on Graphics Processing Units) technology developed by the

hardware manufacturer company nVidia. In addition to the real number calculation ability

that the original GPU was known for, CUDA uses thread-based parallel processing to

accelerate the calculation speed, and has contributed in improving calculation rate in various

areas such as cryptography and physics. As discussed in the previous paragraphs, CUDA has

a parallel processing element, implemented by GPU. In other word, it can use parallel thread

to accomplish iterative calculations or same calculations all at once. The number of thread

block is determined by general size of processed data and number of system processor.

Because all the threads within block must be on a common processor, they share limited

amount of data. Hence, the number of threads in each block is restricted to 1024 [5, 6].

CUDA bases its calculation on data exchange between the main memory, called host, and

GPU memory, called device. Generally, when calculations are operated through CUDA, input

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 201

data is first transferred from host to device and then parallel processing is computed using

various threads according to the instructions given by CPU. When the result value is

transmitted from device to host, the operation is completed. Additionally, even when each

thread is being operated, data can be read or used from device memory and data can relatively

be sent at a faster rate from device compared to data sent from host.

Architecture designed by CUDA has many benefits but there are also some limitations that

must be aware of during programming. As explained earlier, CUDA transfers input data from

host to device. Because this design does not allow the user to directly take data from device,

data can only be delivered from host to device. As a result, there is a time delay during data

transmission, which does not happen in usual processes that only use CPU. Considering such

gap in time, time-consuming calculations must be managed by GPU. Due to this time gap, if

CUDA is used for all the calculations, there is a possibility that the overall operation may be

decelerated compared to when CPU is used [7, 8, 9]. Such data transmission design also

indicates that clashes can occur during data delivery process due to a system bus bandwidth

and time delay.

There is also a possibility of an overflow if a large quantity of data is copied all at once.

When programming codes, it should be considered that operation will proceed through

parallel processing carried out by threads when CUDA is used for calculation. If each

concurring parallel processing design is not considered when creating codes, it is difficult to

predict the data synchronization and renewal. This could lead to flawed results as threads

compete against each other when reading and using memory data.

4. Fast 3D Polygonal Model Rendering using CUDA

4.1. Data Administration using CUDA

As stated previously, the first step of CUDA-based operation is transmitting input data

from the host memory to the device memory. The proposed method in the following paper is

structured to easily administer 3D polygonal model data. Although the proposed structure in

the paper seems to be simple in that it only solves for a normal vector of 3D polygonal model,

considering the actual structure where calculation is operated in device and the results are

received by host, administrating all the data of 3D polygonal model in a single structure can

lead to memory wastage because it will send all the structure used in CUDA as a result value.

In order to effectively control organization when delivering the calculation result to host, each

data must be administered separately to prevent an unnecessary copy of data. Administering

data separately, as explained previously, can also prevent overflow of data, which often occur

when copying an excessive amount of data all at once. Because data is copied as a whole

when copying data from host to device, data must be administered separately in the host

memory, just as well as in the device memory. This means that memory must be allocated in

both host and device. Memory allocation function cudaMalloc [10, 11] is commonly used to

allocate memory in device. In host, function malloc is used, which is a memory allocation

function of main memory that is commonly used in C programming language. When it is

prepared to read and use memory from both host and device, 3D polygonal model data must

first be inputted in host and then be transferred to device. Data transmission uses the function

cudaMemcpy [10, 11], a data copying function of CUDA. The function cudaMemcpy can be

used for both when copying an input data from host to device and transmitting a result value

from device to host.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

202 Copyright ⓒ 2014 SERSC

(a)Connection information data struct (b)normal vector data struct (c) peak data struct

Figure 1. Data administration structure

The Figure 1 is a data administration structure of 3D polygonal model data. By

individually managing peaks, connection information, and normal vectors calculated through

CUDA’s parallel processing, all the data would be processed in device and only the essential

data would be copied to host, which will assist in minimizing memory leak. GPU- based data

administration can also allow the user to access the data relatively faster than CPU-based

administration.

4.2. Processing calculations using CUDA

As stated above, when calculation is processed through CUDA, its architecture will be

organized to input data to host, calculate the transmitted data in device, and retransmit the

result value to host. The calculation is processed in device only, and it will be performed

through parallel processing. Calculation processing in CUDA applies kernel function used in

GPU. Kernel is mostly analogous to other general functions of C programming language, but

it differs in that the number of threads and blocks must be specified when using kernel. When

the number of threads is specified, the user can activate the threads through thread ID inside

each thread and approach to the input data [12].

The following paper simply tested calculating normal vector for each mesh using 3D

polygonal model data. Figure 2 shows an overall flow chart of the test system performed in

the paper. When 3D polygonal data is transmitted to device, kernel implements each thread

and uses the essential data from 3D polygonal data for normal vector calculation.

Figure 2. Flow chart

Although the system tested in the paper only tested for normal vector, this system can be

used for other time-consuming tasks as well and can accelerate the calculation process

through parallel processing. Figure 3 represents a display of the normal vector in the triangle

mesh.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 203

Figure 3. Normal vector of the triangle mesh

As shown in Figure 3, normal vector n is calculated by using the vector and . It is

commonly solved by finding cross product of the two vectors, as shown below.

Normal vector is solved for in each triangle mesh. Also, 3D polygonal model data can be

used individually. In other words, instead of using general iterative calculations, normal

vectors can be calculated simultaneously by using parallel processing. Below figure

represents parallel processing architecture of normal vector calculation. As shown in Figure 4,

the number of each thread formed is consistent with the number of the planes in 3D polygonal

model and each of them independently calculates for its normal vector. Since the normal

vector calculation is a relatively fast process, the benefit of saving time does not apply much

in this case but a time difference definitely exists between iterative calculation and parallel

processing. Although this paper used CUDA to only process normal vector calculation, its

time saving element can be maximized if it is used for other vector calculations or other

processes used in 3D graphics.

Figure 4. Normal vector calculation using parallel processing

As discussed previously, CUDA processes calculation in device using parallel processing

and retransmits the result value to host. The tested result values of the system in the paper

represent normal vectors of each triangle mesh that compose of 3D polygonal model

processed in GPU. Each normal vector of triangle mesh that was calculated through CUDA

must be transmitted to host, or the main memory. CUDA only processes arithmetic function

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

204 Copyright ⓒ 2014 SERSC

of GPU and cannot process any operations in device data other than data processing and

calculation. After transmitting the result values to host, the resident data in GPU no longer

has purpose and is released. Memory release uses the function cudaFree [5, 10, 11] to cancel

structure connected by each pointer. After transmitting the result value to host, all the tasks in

device are completed and only host is used from that point. After transmitting normal vectors

of each triangle mesh as result values, normal vectors are used for 3D polygonal model

rendering. The essential data required when rendering 3D polygonal model are peak data,

connection information, and normal vector. Peak data and connection information would be

used to shape 3D polygonal model and normal vector would be used to add lightening to the

model to display a realistic effect.

In a general OpenGL rendering method, if the function glNormal3d [13, 14] and the

function glVertex3d [13, 14] are applied to search for all the information to form a 3D

polygonal model and if lightening is added to the model, it will display a realistic 3D

polygonal model just as shown in Figure 5.

Table 1. Result comparison table

5. Result

All the experiments tested in this paper were performed in Intel i7 3.2Ghz CPU main

memory and Window 7(x64) computer installed with Nvidia Gforce 285 GTX graphic card.

For 3D graphic rendering, we have implemented c from OpenGL library and Visual Studio

2008, and have operated CUDA 4.0 SDK for parallel processing.

Table 1 compares the result of the experiment. Most of the total duration barely show any

difference and some of them were even decelerated. However, in the normal vector

calculation, which was the main purpose of the experiment, it clearly showed acceleration of

the operation. For the model TurbineBlade, while the total duration barely changed, the

duration of normal vector calculation showed a clear decrease, from 0.1240 seconds when

processed through CPU to 0.0270 seconds when processed through CUDA. For the model

Buddha model, although its total duration increased, its duration of normal vector calculation

dropped from 0.0810 seconds to 0.0171 seconds. For the model Igea, its total duration

increased as well but its duration of normal vector calculation was shortened from 0.0160

seconds to 0.0013 seconds. The model Bunny also showed increase in its total duration but its

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 205

duration of normal vector calculation was reduced from 0.0160 seconds to 0.0013 seconds.

For the last model Sphere, although its total duration was increased and its duration of normal

vector calculation could not be measured due to limitations with range, the duration of normal

vector calculation was kept under 0.0001 seconds both with CPU and CUDA.

Figure 5 demonstrates the rendered images of 3D polygonal models. Previously, we have

illustrated that duration of data transmission exists between host and device. This can be seen

in Table 1, as it shows that excluding the model Turbine Blade, rest of the model show

deceleration of calculation rate. Such problem occurred because the magnitude of data that

was processed through parallel processing of CUDA was not sufficient enough to show a

positive result. If the total amount of data was increased to a sufficient amount and if there

were more computational processes, the overall performance would be enhanced. Figure 5

shows the result images of rendering.

(a)Sphere(planes: 24,000 faces) (b)Buddha(planes: 1,085,634 faces) (c)Igea(planes: 268,686 faces)

 (d)Bunny(planes: 69,451 faces) (e)Turbine blade(planes: 1,765,388 faces)

Figure 5. Result

6. Conclusion and Future Work

In the following paper, we have proposed a method of rendering by administrating data of

3D polygonal model using CUDA. By administering 3D polygonal model data using GPU

instead of a standard CPU, it not only greatly improve calculation of normal vectors, but also

aid tremendously in acceleration of complicated processes such as calculating curvatures of

the surface of 3D polygonal model or ray tracing method, which was discussed earlier in the

related studies.

In this paper, we have performed a simple experiment to display a presentation of

processing 3D polygonal model using CUDA. Basing this system as a fundamental, we aim to

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

206 Copyright ⓒ 2014 SERSC

maximize the efficiency of the calculation rate with various types of rendering processes in

the future.

References

[1] R. J. Rost and B. Licea-kane, "OpenGL Shading Language 3/E", Addison-Wesley, (2009).

[2] J. Zink, M. Pettineo and J. Hoxley, "Practical rendering and computation with Direct3D 11", CRC Press,

(2011).

[3] https://developer.nvidia.com/category/zone/cuda-zone.

[4] T. Foley and J. Sugerman, “Kd-tree Acceleration Structures for a GPU Ray tracer”, In HWWS ’05: Proc. of

the ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics Hardware, ACM Press, New York, NY, USA,

(2005), pp.15-22.

[5] J. Sanders and E. Kandrot, “CUDA by Example”, Addison-Wesley, (2010).

[6] W. -M. Hwu and D. Kirk, "Programming Massively Parallel Processors: A Hands-on Approach", Morgan

Kaufmann, (2010).

[7] R. Farber, “CUDA Application Design and Development”, Elsevier, (2011).

[8] W. -M. Hwu, “Gpu Computing Gems”, Morgan Kaufmann Publ Inc., (2011).

[9] H. Nguyen, “Gpu Gems 3”, Addison-Wesley Professional, (2007).

[10] nVidia, “NVIDIA CUDA C Programming Guide”, nVidia, (2011).

[11] nVidia, “CUDA API REFERENCE MANUAL“, nVidia, (2011).

[12] nVidia, “Getting Started with CUDA”, nVidia, (2008).

[13] R. S. Wright jr, "OPENGL SUPERBIBLE 3/E", Sams, (2005).

[14] Hearn, “Computer Graphics with OpenGl 4/E”, PearsonEducationAsia, (2011).

[15] W. O. Odoyo, J. -H. Choi, I. -K. Moon and B. -J. Cho,”Silhouette-Edge-Based Descriptor for Human Action

Representation and Recognition”, Journal of Communication convergence and engineering, vol. 11, no. 2,

(2013), pp. 124-131.

Authors

Jihun Kang is a Ph.D. student in Department of Computer Science

Education at Korea University, Seoul, Korea. His research interests

include GPGPU, parallel processing, computer graphics and distribute

data processing.

Syung-Og An is a professor in the Department of Game Engineering

at Paichai University, Korea. She received M.S. and Ph.D. in Computer

Science & Engineering Department of Korea University, Seoul, Korea, in

1984 and 1989, respectively. She was a visiting professor at the

University of Pennsylvania State University from 1993 to 1994. Her

research interests include multimedia system, computer graphics and

database.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 207

Shin Jin Kang received Ph.D. degree in Computer Science from Korea

University in 2011. Since 2003, he has worked at Sony Computer

Entertainment Korea and NCsoft as a lead game designer. He is now a

professor at the School of Games at Hongik University. He is also the

technical advisor of NCsoft.

Seok-Hun Kim is an assistant professor in the Mobile Media at

Suwon Women’s College. He received the M.S and Ph.D. degree in

Computer Engineering from Hannam University in 2003 and 2006,

respectively. His teaching and research specialties are in the fields

Mobile computing, Web-App programming, information security.

SooKyun Kim (Corresponding Author) received Ph.D. in Computer

Science & Engineering Department of Korea University, Seoul, Korea, in

2006. He joined Telecommunication R&D center at Samsung Electronics

Co., Ltd., from 2006 and 2008. He is now a professor at Department of

Game Engineering at Paichai University, Korea. Dr. Kim has published

many research papers in international journals and conferences. Dr. Kim

has been served as Chairs, program committee or organizing committee

chair for many international conferences and workshops; Chair of

ICCCT’11, ITCS’10, HumanCom’10, EMC’10, ICA3PP’10,

FutureTech’10, ACSA’09, Em-Com’09, CSA’09, CGMS’09, ISA’09,

SIP’08,FGCN’08 and so on. Also Dr. Kim is guest editor of the

International Journal of “IET Image Processing” and “Multimedia Tools

and Applications”. His research interests include multimedia, pattern

recognition, image processing, mobile graphics, geometric modeling, and

interactive computer graphics. He is a member of ACM, IEEE, IEEE CS,

KACE, KMMS, KKITS and KIIT

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

208 Copyright ⓒ 2014 SERSC

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

