International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014), pp.199-208
http://dx.doi.org/10.14257/ijmue.2014.9.1.19

Fast 3D Graphics Rendering Technique with CUDA Parallel
Processing

Ji-Hoon Kang', Syung-Og An?, Shin-Jin Kang®, Seok-Hun Kim* and SooKyun Kim?

'Department of Computer Science Education, Korea University
Department of Game Engineering, Paichai University
%3chool of Games, Hongik University
*Department of Mobile Media, Suwon Women s College Y’

Corresponding Author: SooKyun Kim (klmsk@pcu ac.

Abstract ?
3D Graphic Rendering has been used to expres’ ic, 3 nal and emphasized

effects in the graphics. As 3D Graphic Rendering devefoped @ ame more prevalent, the
need for acceleration in data processing grex&%well I to a development of GPU

(Graphic Processing Unit) and shading el @ e used % PU such as GLSL (OpenGL
Shading Language) and HLSL (Higher Lé&a Language). 3D Graphic Rendering

ge Shal

based on GPU, however, clearly ha K%&rocessing complicated calculations
such as calculating curvatures of ace oraQﬂ cing method, especially as the greater
magnitude of the 3D polygona | data,is peing’Used. The following paper will discuss the
new method of 3D graphic regdering that mﬂ d on faster GPU parallel processing system
called CUDA (Compute URi Devic itecture) to administer 3D polygonal model data
and process calculatio the paper, will discuss about the characteristics of CUDA

Qﬁ%olygonal model according to those characteristics. We

and test for graphi ing of
will also exam @her it sible to accelerate the graphic rendering process using
CUDA for 3D .uc re de

Keywords: 3D Graphic! DA, Parallel Processing, GLSL, GPU

1. Introductior@

Develope%%m the 2D computer graphics that used points and lines to express images
[15], 3D graphic rendering system has introduced the new concept of 3-dimensional space in
the and has been used to produce more realistic images. As the visual quality of the
gra@improved thanks to the development of 3D graphic technology, the amount of the
data used relatively increased as well, and consequently created a lot of problems with the
duration of the calculation process. Thus, there was a need for a consensus and a balance
between the calculation rate and the visual qualities. In order to resolve these problems with
data processing speeds, shading languages such as GLSL (Open GL Shading Language)[1]
and HLSL (High Level Shader Language)[2] were established. While the complications with
rate of calculation are being resolved and improved, there are still problems in finding a
consensus between the calculation speed and visual quality. The following thesis will propose
a new method of data processing for 3D graphic rendering. We have adopted 3-dimensional
polygonal model and have tested with calculation of normal vectors used for lighting of the
rendering of these models.

ISSN: 1975-0080 IUMUE
Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

The administrations and calculations of data are operated through CUDA (Compute
Unified Device Architecture)[3], a type of GPGPU (General Purpose computing on Graphics
Processing Units) technology developed by the hardware manufacturer company NVidia [3].
CUDA acquired parallel processing technigue, C programming language, and GPU(Graphics
Processing Unit), which has relatively faster calculation rate compared to CPU(Central
Processing Unit), to provide a new method of administering and calculating data of 3D
polygonal model. The proposed method in the paper is used to improve data administration
speed through GPU. Such improvements in speed not only apply for rendering of 3D
polygonal model, but also apply for processing multiple and complicated calculation.
Compared to the common rendering method that uses only graphic library, this n thod
of rendering will possibly accelerate calculation in various areas of 3D enviro ch as
bounding volume test and matrix multiplication. D%V

In the following paper, we will discuss the related studies in Section 2 @1 racteristics
of CUDA in Section 3. We will discuss how to perform 3 gbnal r using CUDA
in Section 4, compare the result with that of currently re der| ethod that uses
only graphic library in Section 5, and discuss co@& and pl future research in

section 6.

2. Related Work Q
he

Rendering process that we have discus%p pre aragraphs is a technigue used to
make 3-dimensional images from a 2 % geometry, location, and lighting.
There are varieties of procedures4h be ta% perform this task. As discussed in the
paper, there have also been a f studles use”GPU in rendering. As a technique often
used to produce high quality_rendering, ra E@mg technique requires a lots of calculation,
and for that that reason has be s of new studies on using GPU for rendering
instead of CPU. Fole has pr d a raytracer that implements GPU and kd-tree to
search for the space & at is to %awn by raytracing. There has also been a new method
of 3D polygonalyhodel rend t uses GPU parallel processing based on CUDA to

performaren om inf; on of points.
These studieS=of usig;h U allowed acceleration of calculation tasks, as GPU has

relatively more advan culation process compared to CPU. Additionally, there have
been current studi rendering by using CUDA, which has supplemented parallel
processing techniq@GPU’s earlier real number calculation ability.

3. Chara%ics of CUDA

Thi f@ incorporates CUDA (Compute Unified Device Architecture), a type of GPGPU
(G@ Purpose computing on Graphics Processing Units) technology developed by the
hardwafe manufacturer company nVidia. In addition to the real number calculation ability
that the original GPU was known for, CUDA uses thread-based parallel processing to
accelerate the calculation speed, and has contributed in improving calculation rate in various
areas such as cryptography and physics. As discussed in the previous paragraphs, CUDA has
a parallel processing element, implemented by GPU. In other word, it can use parallel thread
to accomplish iterative calculations or same calculations all at once. The number of thread
block is determined by general size of processed data and number of system processor.
Because all the threads within block must be on a common processor, they share limited
amount of data. Hence, the number of threads in each block is restricted to 1024 [5, 6].
CUDA bases its calculation on data exchange between the main memory, called host, and
GPU memory, called device. Generally, when calculations are operated through CUDA, input

200 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

data is first transferred from host to device and then parallel processing is computed using
various threads according to the instructions given by CPU. When the result value is
transmitted from device to host, the operation is completed. Additionally, even when each
thread is being operated, data can be read or used from device memory and data can relatively
be sent at a faster rate from device compared to data sent from host.

Architecture designed by CUDA has many benefits but there are also some limitations that
must be aware of during programming. As explained earlier, CUDA transfers input data from
host to device. Because this design does not allow the user to directly take data from device,
data can only be delivered from host to device. As a result, there is a time delay during data
transmission, which does not happen in usual processes that only use CPU. Considgring, such
gap in time, time-consuming calculations must be managed by GPU. Due to thi Mp, if
CUDA is used for all the calculations, there is a possibility that the overall en?(may be
decelerated compared to when CPU is used [7, 8, 9]. Such data transméz esign also
indicates that clashes can occur during data delivery proR ueto a sys s bandwidth

and time delay.
antity ofﬂ&%& copied all at once.
hat 0 ion’will proceed through
f

There is also a possibility of an overflow if a |
When programming codes, it should be consideke

parallel processing carried out by threads wh ODA is&? or calculation. If each
concurring parallel processing design is not ﬁered whefcreating codes, it is difficult to
predict the data synchronization and reng is couIN to flawed results as threads
compete against each other when readi@using e@ary data.
4. Fast 3D Polygonal Moﬂl@ddering%{g CUDA
4.1. Data Administration usi CUDA\%'{‘O

As stated previously irst step)ﬁg DA-based operation is transmitting input data
from the host memorgo e devicgq;mory. The proposed method in the following paper is

structured to easi nister&@o gonal model data. Although the proposed structure in
the paper see simple ip that it only solves for a normal vector of 3D polygonal model,
considering the“aetual st% where calculation is operated in device and the results are
received by host, admini ng all the data of 3D polygonal model in a single structure can
lead to memory was cause it will send all the structure used in CUDA as a result value.
In order to effecti ntrol organization when delivering the calculation result to host, each
data must be,administered separately to prevent an unnecessary copy of data. Administering
explained previously, can also prevent overflow of data, which often occur
an excessive amount of data all at once. Because data is copied as a whole
whe g data from host to device, data must be administered separately in the host
me’@just as well as in the device memory. This means that memory must be allocated in
both host and device. Memory allocation function cudaMalloc [10, 11] is commonly used to
allocate memory in device. In host, function malloc is used, which is a memory allocation
function of main memory that is commonly used in C programming language. When it is
prepared to read and use memory from both host and device, 3D polygonal model data must
first be inputted in host and then be transferred to device. Data transmission uses the function
cudaMemcpy [10, 11], a data copying function of CUDA. The function cudaMemcpy can be
used for both when copying an input data from host to device and transmitting a result value
from device to host.

Copyright © 2014 SERSC 201

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

struct Face struct Normal struct Vertex
{ { {
int index[3]; double normal[3]; double coord[3];

(a)Connection information data struct (b)normal vector data struct (c) peak data struct

Figure 1. Data administration structure

The Figure 1 is a data administration structure of 3D polygonal model data. By
individually managing peaks, connection information, and normal vectors calcula thr,
CUDA’s parallel processing, all the data would be processed in device and onl entlal
data would be copied to host, which will assist in minimizing memory leak. %& ed data
administration can also allow the user to access the data re atlvely faste PU-based
administration. %

4.2.Processing calculations using CUDA OQ
ugh

As stated above, when calculation is processe its archltecture will be
organized to input data to host, calculate the I@mltted data if-device, and retransmit the
result value to host. The calculation is pr in deV/ nIy, and it will be performed
through parallel processing. Calculatlon ng |n applies kernel function used in
GPU. Kernel is mostly analogous to t nera s of C programming language, but
it differs in that the number of threa block e specified when using kernel. When
the number of threads is speu&% user can activate the threads through thread ID inside
each thread and approach to th mp tdataf

The following paper si tested'ﬁ% tmg normal vector for each mesh using 3D
polygonal model data-F 2 shows erall flow chart of the test system performed in
the paper. When 3D nal da transmltted to device, kernel implements each thread
and uses the ess ty@a a fro gonal data for normal vector calculation.

Nw Device

oﬂ‘iﬁolygonal Data input 3D polygonal

ata input data storage

%V Result value 4
Q Normal vector transmission .

Calculation of
storage Normal vector

¢
: Generatin of a

basic model

Figure 2. Flow chart

Although the system tested in the paper only tested for normal vector, this system can be
used for other time-consuming tasks as well and can accelerate the calculation process
through parallel processing. Figure 3 represents a display of the normal vector in the triangle
mesh.

202 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

Pz
Vz
P1

Figure 3. Normal vector of the triangle mesh

w'
As shown in Figure 3, normal vector n is calculated by using the vector Vi Lltis
commonly solved by finding cross product of the two vectors, as shown bel

[]
vy(ax,ay,az) X v,(bx, by, bz) X) @
= (ax* bz —az=*by,az* bi:_® Z, axw y

* bx)

Normal vector is solved for in each triangle mesh. Also, 3D gonal model data can be
used individually. In other words, instead @hg generdl, iterative calculations, normal

vectors can be calculated simultaneousl.)% using el processing. Below figure
represents parallel processing architectu r calculation. As shown in Figure 4,
the number of each thread formed is @; i umber of the planes in 3D polygonal
model and each of them independe calcula r its normal vector. Since the normal

benefit of saving time does not apply much
ists between iterative calculation and parallel
to only process normal vector calculation, its
it is used for other vector calculations or other

vector calculation is a relatlve y process,

in this case but a time difference defini

processing. Although ;hi&r used

time saving elemen maxi

processes used in 3 D&

\ @}ad 1 Thread 2
Y

jion of Mesh 1's two vectors

| Calculation of Mesh 2's two vectors I

Calculation of normal vector |

é *Ealculation of nermal vector
Q Thread 3 Thread n

@ l Calculation of Mesh 2's two vectors | | Calculation of Mesh n's two vectors

Calculation of normal vector | | Calculation of normal vector I

Figure 4. Normal vector calculation using parallel processing

As discussed previously, CUDA processes calculation in device using parallel processing
and retransmits the result value to host. The tested result values of the system in the paper
represent normal vectors of each triangle mesh that compose of 3D polygonal model
processed in GPU. Each normal vector of triangle mesh that was calculated through CUDA
must be transmitted to host, or the main memory. CUDA only processes arithmetic function

Copyright © 2014 SERSC 203

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

of GPU and cannot process any operations in device data other than data processing and
calculation. After transmitting the result values to host, the resident data in GPU no longer
has purpose and is released. Memory release uses the function cudaFree [5, 10, 11] to cancel
structure connected by each pointer. After transmitting the result value to host, all the tasks in
device are completed and only host is used from that point. After transmitting normal vectors
of each triangle mesh as result values, normal vectors are used for 3D polygonal model
rendering. The essential data required when rendering 3D polygonal model are peak data,
connection information, and normal vector. Peak data and connection information would be
used to shape 3D polygonal model and normal vector would be used to add lightening to the
model to display a realistic effect. o

In a general OpenGL rendering method, if the function glNormal3d [13, M the
function glVertex3d [13, 14] are applied to search for all the information. to a 3D
polygonal model and if lightening is added to the model |t WI|| is @ alistic 3D
polygonal model just as shown in Figure 5. Q)

Table 1. Result com

Model information Duratl n o alculatlo u t: seconds)
Processing | Name of Number Data jnp Ntrm Resultvalue | Total
method | the model | of planes A nsmission Ca"\; transmission| duration

Turbine

1,765,388 [—A—<
blade S
CUDA A ‘1\»860 @ 0.0270 0.0470 11.1540

cpu p@q\’ N QL) 0.1240 . 11.3880

cPU 6.5770 0.0810 - 6.9400
Buddha 1,085} 80 c
CUDA . 6.53 \00.0330 0.0171 0.0330 7.1560
Py W f - 0.0310 - 1.9660
Igga &,sss —W
CUDA A A > 0.0070 0.0066 0.0080 2.2500
cPU Yy A\ 04050 - 0.0160 . 0.7170
4
cuomq I; %) 0.4550 0.0030 0.0013 0.0030 0.8880
cPU 0.1410 - 0.0000 - 04520
Sphere @,OOO
CUDA 0.1600 0.0000 0.0000 0.0020 0.7850
O
5. Result @
All the iments tested in this paper were performed in Intel i7 3.2Ghz CPU main
memory indow 7(x64) computer installed with Nvidia Gforce 285 GTX graphic card.

hic rendering, we have implemented ¢ from OpenGL library and Visual Studio
have operated CUDA 4.0 SDK for parallel processing.

Table 1 compares the result of the experiment. Most of the total duration barely show any
difference and some of them were even decelerated. However, in the normal vector
calculation, which was the main purpose of the experiment, it clearly showed acceleration of
the operation. For the model TurbineBlade, while the total duration barely changed, the
duration of normal vector calculation showed a clear decrease, from 0.1240 seconds when
processed through CPU to 0.0270 seconds when processed through CUDA. For the model
Buddha model, although its total duration increased, its duration of normal vector calculation
dropped from 0.0810 seconds to 0.0171 seconds. For the model Igea, its total duration
increased as well but its duration of normal vector calculation was shortened from 0.0160
seconds to 0.0013 seconds. The model Bunny also showed increase in its total duration but its

204 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

duration of normal vector calculation was reduced from 0.0160 seconds to 0.0013 seconds.
For the last model Sphere, although its total duration was increased and its duration of normal
vector calculation could not be measured due to limitations with range, the duration of normal
vector calculation was kept under 0.0001 seconds both with CPU and CUDA.

Figure 5 demonstrates the rendered images of 3D polygonal models. Previously, we have
illustrated that duration of data transmission exists between host and device. This can be seen
in Table 1, as it shows that excluding the model Turbine Blade, rest of the model show
deceleration of calculation rate. Such problem occurred because the magnitude of data that
was processed through parallel processing of CUDA was not sufficient enough to show a
positive result. If the total amount of data was increased to a sufficient amount if there
were more computational processes, the overall performance would be enhaniz%gﬁe 5

shows the result images of rendering. :

ﬁidha(pl

(a)Sphere(planes: 24,000 faces) a

|‘\|“\)|“|\“‘I‘l\‘4 i

1]

~

@)Bunny(planes: 69,451 faces) (e)Turbine blade(planes: 1,765,388 faces)
@ Figure 5. Result

6. Conclusion and Future Work

In the following paper, we have proposed a method of rendering by administrating data of
3D polygonal model using CUDA. By administering 3D polygonal model data using GPU
instead of a standard CPU, it not only greatly improve calculation of normal vectors, but also
aid tremendously in acceleration of complicated processes such as calculating curvatures of
the surface of 3D polygonal model or ray tracing method, which was discussed earlier in the
related studies.

In this paper, we have performed a simple experiment to display a presentation of
processing 3D polygonal model using CUDA. Basing this system as a fundamental, we aim to

Copyright © 2014 SERSC 205

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

maximize the efficiency of the calculation rate with various types of rendering processes in
the future.

References

[1] R.J.Rostand B. Licea-kane, "OpenGL Shading Language 3/E", Addison-Wesley, (2009).

[2] J. Zink, M. Pettineo and J. Hoxley, "Practical rendering and computation with Direct3D 11", CRC Press,
(2011).

[3] https://developer.nvidia.com/category/zone/cuda-zone.

[4] T. Foley and J. Sugerman, “Kd-tree Acceleration Structures for a GPU Ray tracer”, In HWWS 05 Proc of
the ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics Hardware, ACM Press, New Yo
(2005), pp.15-22.

[5] J. Sanders and E. Kandrot, “CUDA by Example”, Addison-Wesley, (2010).

[6] W.-M. Hwu and D. Kirk, "Programming Massively Parallel Processors: A Hands-o g h", Morgan
Kaufmann, (2010).

[7]1 R. Farber, “CUDA Application Design and Development”, Elsevi 1)

[8] W.-M. Hwu, “Gpu Computing Gems”, Morgan Kaufmann Publ ‘\20

[9] H. Nguyen, “Gpu Gems 3”, Addison- Wesley Professiona ’\)

[10] nVidia, “NVIDIA CUDA C Programming Guide”, nVIdI‘

[11] nVidia, “CUDA API REFERENCE MANUAL*, nVidia V

[12] nVidia, “Gettlng Started with CUDA”, nVidia, (200
[13] R. S. Wright jr, "OPENGL SUPERBIBLE 3/E",
n

[14] Hearn, “Computer Graphics with OpenGl 4/E" ducatlon 2011).

[15] W. O. Odoyo, J. -H. Choi, I. -K. Moon and 0,”Silho te ge-Based Descriptor for Human Action
Representation and Recognition”, Journa mmun vergence and engineering, vol. 11, no. 2,
(2013), pp. 124-131. 4@ i

-
&

'\c \ﬁh D. student in Department of Computer Science
d ation ea University, Seoul, Korea. His research interests
arallel processing, computer graphics and distribute

Iude GP

data o@ing.
XS

Syung-Og An is a professor in the Department of Game Engineering
at Paichai University, Korea. She received M.S. and Ph.D. in Computer
Science & Engineering Department of Korea University, Seoul, Korea, in
1984 and 1989, respectively. She was a visiting professor at the
University of Pennsylvania State University from 1993 to 1994. Her
research interests include multimedia system, computer graphics and
database.

206 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

Shin Jin Kang received Ph.D. degree in Computer Science from Korea
== University in 2011. Since 2003, he has worked at Sony Computer
I Entertainment Korea and NCsoft as a lead game designer. He is now a
professor at the School of Games at Hongik University. He is also the
technical advisor of NCsofft.

Seok-Hun Kim is an assistant professor in the Mobile aat
Suwon Women’s College. He received the M.S and Ph. ree in
Computer Engineering from Hannam University ir@}f’a nd 2006,

respectively. His teaching and research specialti n the fields
Mobile computing, Web-App prog% g, info on security.

SR

SooKyun Kim (Cor %ﬂlng) received Ph.D. in Computer
Science & Englneen partme orea University, Seoul, Korea, in
2006. He Jomed T mupic &D center at Samsung Electronics
Co., Ltd., fr and 2 is now a professor at Department of
Game En |ng at Pa ai n|ver5|ty, Korea. Dr. Kim has published
many re arch papers | rnatlonal journals and conferences. Dr. Kim

has b rved as program committee or organizing committee
m& many alonal conferences and workshops; Chair of
11, S’10, HumanCom’10, EMC’10, ICA3PP’10,

?ureTec SA’09, Em-Com’09, CSA’09, CGMS’09, ISA’09,
Q P’08,E 8 and so on. Also Dr. Kim is guest editor of the
Inte 1 Journal of “IET Image Processing” and “Multimedia Tools

ications”. His research interests include multimedia, pattern

ition, image processing, mobile graphics, geometric modeling, and
@active computer graphics. He is a member of ACM, IEEE, IEEE CS,
A

A 1 CE, KMMS, KKITS and KIIT

Copyright © 2014 SERSC 207

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

208

