International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014), pp.1-10
http://dx.doi.org/10.14257/ijmue.2014.9.1.01

Design and Implementation of Binary File Similarity Evaluation
System

Sun-Jung Kim?, Young Jun Yoo, Jungmin So', Jeong Gun Lee', Jin Kim*
and Young Woong Ko*

Dept. of Computer Engineering, Hallym University, Chuncheon, Korea
{willow72, jso, jeonggun.lee,jinkim, yuko}@hallym.ac.kr
’Dept. of Ubiquitous Computing, Hallym University, Chuncheon, Kor. %

sunkim@hallym.ac.kr

Abstract
In cloud storage system, when we search simila '@ ent s, keyword-based
similarity evaluation scheme is well performed. HP f %v;l% flnd similar binary

files then it is very difficult to satisfy user request. B ause th widely used binary file

search system that supports similarity evaluati mong Ie similarity evaluation is
essential for digital forensic and data de tion f|eI the file similarity processing
time, the CPU consumption and resourc ead of ory are increased as the number of
files increase. Moreover, as the fil e% |s |gger the overhead of metadata
management is critical. In this e sugg similarity evaluation scheme using a
hybrid chunking which reduc aII proc ing Xime of similarity evaluation. Experiment

result shows that the propos%system can lx e processing time and data storage capacity

effectively. 'Q \\9
Keywords: File, Swponizatiorﬁgunking, Hash, FLC

1. Introduc@

File similarity evaluati@njs used in various fields such as malicious file detection and data
deduplication. In sec F@area, malicious files are generated by modifying original executable
file, so the file sirr)&v search is used to identify file similarity or find malicious code from
the executable progwams within the system. Usually, the malicious file is very similar with
original file é%ose file patch is appended in the middle of original file. In data deduplication
field, file s@| rity is very effective tools to eliminate duplicated data blocks. If we find
simi f@ then we can apply deduplication algorithm to the file. Data deduplication system
ha@imilar files with various chunking approaches [1-3]. The well-known chunking
approathes are fixed-length chunking and variable-length chunking (content-defined
chunking). Deduplication approaches can save computing resources through detecting the file
similarity and eliminating the duplicated region of a file. In file similarity searching system
module [4, 5], the performance depends on hash comparison speed, therefore effective hash
comparison is very critical.

In this paper, we propose file similarity evaluation system which determines similarity
between client files and the server files. By searching high similarity files, we can reduce file
synchronization overhead. This technique is much faster than traditional file synchronization
systems which compare hash data of a client to the server one. The proposed scheme adapts

! Corresponding author : yuko@hallym.ac.kr

ISSN: 1975-0080 IJMUE
Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

hybrid approach for data chunking, however it only hashes fixed-length data block by
extracting hash values. Also the proposed scheme reduces hash comparison time by using
representative hash scheme which generates a hash list that only contains key feature hash list
of a file. One of the well-known file similarity evaluation schemes adapts representative hash
approach. The key idea of representative hash is to extract set of hash keys from a file. In a
concrete explanation, Rabin hash function [6] calculates hash key from a file and stores the
hash key by shifting one byte step by step. Rabin hash function repeatedly generates hash key
and inserts the hash key to the queue. The queue contains only several number of hash keys in
ascending order or in descending order by configuration of the system. If Rabin hashing is
finished, there remains several hash keys whose value is maximum or minimum4With ¢his
approach, representative hash scheme can predict how a file is similar with the &%e. In
representative hash scheme, when A file and B file have duplicated hash key. th%ﬂans that
the files have duplicated region of data. However, to extract representatiye , all of the
hash keys are compared with hash keys in the queue. Thig iaclrs’high on CPU and
memory resources. To cope with this problem, in this i ed file similarity
evaluation system using hybrid approach that compime \fiXed-le gt nking and variable-
length chunking. The proposed approach chunks g filg and chor bytes. If it finds
anchor bytes, it divides a file into fixed-sizegh chunk and#bﬁg ates the hash key. The
proposed system sorts this hash keys and a\g&és represéntative hash. Our approach can
effectively produces the representative has small nu/ﬁ@ of hash keys.

The rest of this paper is organized owsaln(8ection 2, we describe related works
about data deduplication system. In n 3, e\e‘%ﬁn the design principle of proposed
Byte-index Chunking system and entatiori\details. In Section 4, we show performance
evaluation result of the propose tem and onclude and discuss future research plan.

D
2. Background and d Wo@

There are three dj
approach. The

ent deduplication schemes; source-based, inline and post processing
sed aﬁp@c performs data deduplication in the client side and the
-duplicated Tiles or blocks to deduplication server. The client divides a
file into several Biocks a%’(ulates hash key for each block. In the chunking process, the
block can be divided % ed size chunk or variable size chunk depending on chunking
approach. The list o keys is delivered to the server and the server checks duplicated
blocks by compar&&e hash key with hash keys in the server. The server makes a non-
duplicated blgck list’and sends it to the client. Finally, the client sends the non-duplicated data
blocks to t l%ﬁr. Inline approach performs data deduplication on the server side. A client
sends file Q‘. to the server then the server process deduplication work on the fly by
QQ‘ file stream into blocks. In inline approach, the server has enough CPU resource
ory capacity for processing data deduplication. Finally, in post processing, the
first stores file stream on a temporary storage and performs data deduplication work
later. Accordingly, the server needs additional storage device and all the computation can be
delayed until there is available resource. Inline and post processing approach usually consume
the system resource of a server while minimizing the client resource because all the
deduplication work is processed on the server side.

Data deduplication research is actively studied in various university and research institute.
One of the well-known data deduplication result is Venti [3] that is a network storage system
using fixed-length chunking approach. The key idea of Venti is to divide a file into fixed
blocks and check duplicated blocks using 160-bit SHAL hash key. Venti can reduce storage
capacity by eliminating multiple duplicated blocks that have the identical data, so duplicate

2 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

data is easily identified and the data block is stored only once. In variable-length chunking,
each block size is partitioned by anchor value that divides a file into variable size chunk. One
of the well-known variable-length chunking is a LBFS [2] that exploits similarities between
files or versions of the same file. LBFS avoids sending data over the network when the same
data found in the server file system. LBFS achieves up to two orders of magnitude reduction
in network bandwidth. In our previous research result, data deduplication system uses file
modification pattern. This approach can detect how file is modified and what types of
deduplication is best for data deduplication. Therefore, the optimal data deduplication policy
can be applied to a file.

3. Design and Implementation of File Similarity Evaluation Syst%
for cloud

In this paper, we designed and implemented the file similarity evaluatio
environment. As shown in Figure 1, the proposed system Ittéomposed f r and client

sehds the hash key

module. The client generates hash key by performing ch cess

list to the server. The server maintains metadata of e arity information.
The role of file similarity evaluation system is to @ at f| Itiple locations have
duplicated data blocks in certain rate. If a file is si W|th n another location, then

accurate file similarity evaluation schemeis import our approach, the purpose of
file similarity evaluation is to keep mj m met or each file and provides high
accuracy for predicting file S|m|Iar|t flleg y scheme can be widely used for

we can save network bandwidth by sending :@;dupllcaéfd ion of data. So, fast and

backups or updating on storage syst nd it is IIy useful for mobile devices because
if we reduce network packets verall bat ry consumption will be minimized. To reduce
data bandwidth, file similarit valuatlon sC has to find similar files in a rapid time when

a client requests a file copf: \\9

Server

Client

Access \

Disk File

Hash Module v

Me U

i&ehta data 1}
‘\ T Network T
C> V Memory ¥

Compare

0 Module i Meta data !
t Hash 4 ciilarity

count

& 2/ N /

Figure 1. The proposed system architecture overview

In this paper, we adapt hybrid approach for data chunking. The proposed scheme only
hashes fixed-length data block from anchor point. The anchor approach is very similar with
variable-length chunking approach. However, in variable-length chunking, chunk block size
is variable because it extracts a block between anchors. But, we only extract fixed size blocks
from each anchor point. So, the proposed scheme can reserve the advantage of variable-length

Copyright © 2014 SERSC 3

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

chunking approach and reduce hash calculation time. Figure 2 shows the conceptual diagram
of chunking method. Variable-length chunking divides blocks between anchors and the size
of block is varying. However, the proposed scheme divides blocks between anchors, but the
block has small size and fixed-length. The small and fixed size blocks takes few times during
hash computation compared with variable-length approach.

C 1 | | | |

—

= Variable-length Chunk °
N
— s

[| | | A .

—

’\)

— Hyb roacV

\,

—

Figure 2. Comp %@of ch k}g method

Figure 3 explains how similar @ ation iza works. First, a file stream is divided
into variable chunks between a&& he > syste Iculates a hash key for fixed size blocks
for each chunk. Conceptual the sorting r\'F e lines up hash keys and makes a hash key
list with ascending order o endmc@;.
keys for representative® a@alues

Q Anc| %\d Rabin Hashing

rom the sorting list, we only take a few hash

@ | 3257 | 3495 | 4624 | s420 | evse |

Representative Hash(number=3)

[3257 | 3495 | ae24 |

Figure 3. Similarity evaluation processing step

4 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

As can be seen in Figure 3, Rabin hash function is used for computing a hash key for a
block. The Rabin hash starts at each byte in the first byte of a file and over the block size of
bytes to its right. If the Rabin computation at the first byte is completed then we have to
compute the Rabin hash at the second byte incrementally from the first hash value. Now that
the hash value at the second byte is available then we use it to incrementally compute the
hash value at the third, and continue this process. In this work, we have to sort the Rabin hash
value and choose small number of maximum values as a representative hash. In this work, we
made the representative hash list for all files before data deduplication. We extract one
representative hash for 1 MByte therefore the amount of additional information for file
similarity is not critical for metadata management.

The proposed approach minimizes overall processing time for making similari ation
information. The main idea of this paper is to apply efficient hash compa %ﬂlque by
reducing hash keys of file into small number of hash keys usm representaté? selection.
We designed and implemented the proposed file simil valuati e. Following
MetadataCompare function is the key algorithm of the p sys

MetadataCompare (sender) O %
foreach ChunkList serverchunk in ser }unkLz 1l 11st of the server
similarlist sim < new similarlist x
sim.filename < serverchunk. m

for int 1 < O i<serverchurk. ks.Coynt, /hash list on the server
foreach(Chunk chunk i chentdata cli %unk)

//hash list of the cli
if chunk.hash? %rverchunk s/i].hashl then
clientdata.

.coun n ata clientChunk.Count() * 100

sim.per

chentdatz‘s dd(sim)
clientdata.si Sort(a e)
sender. SendData(SHn(g%

End @

AL

Fi u@ﬂseudo code for similarity evaluation module on the server

@igorithm (Figure 4) shows how the proposed system evaluates similarity value
between files. First, the algorithm reads file list of the server for computing similarity level.
Second, for each file, it counts the same hash keys between two files and computes the
similarity value. Finally, the similarity value list is transferred to the client.

Figure 5 shows the implementation result of the client of proposed system. A user selects a
file from browse button and clicks “the Send File VLC Data” button. The selected
file(file2.DAT) is transferred to the server and the server calculates file similarity value by
comparing the file from the client and files in the server. The calculation result is returned to
the client and presented on the left side of Figure 5. As we can see in Figure 5, the evaluation
result is listed from a top similarity file to a low similarity file. In this result, file2.DAT is the
same file between the client and the server. Filel.DAT file has 79% of duplicated region
compared with original file (file2.DAT in the client).

Copyright © 2014 SERSC 5

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

File Info
File name: C:WlsersWoslab_willowWDeskiopli 0| & E¥file2 DAT

File Size: 104857600 (byte)

File Name

file2 DAT
filel DAT
40MB_1.DAT
40MB_2.DAT

Percent
100

79,8358924364. .,
400184979283,
395889186773,

2MB_2DAT
KoalaZ jpa
test.zip

grad, zip
test-1,zip

Server address 210,115,226,248 g
0
0
nateon, zip 0
0
0
0
0

Connect to server

C#fUsersWoslab.willowWDeskopWHIDIEl A S¥Hle2 Dé «

[Send File VL Data ‘

medieval castle.05,pg
cygwin,egq
20MB_1.DAT
|data_original DAT
FileCreate {2).zip

Idata_modified. DAT
cg{ nvaip

< | D 2T | *

Status: Sending file chunks (waiting for response)

O
result of{?client program

Figure 6 shows the implemen tizjvsult of &ver program. In this implementation,
we stored several files in one falder arfd similarity8valuation is performed for these files. The

user can select a file and do severa peratio&%ch as delete, rename and move.

Figure 5. The implement. i

& Werisene)

Column « File Information
4.7 Server File Mame :
. 5
ata_mudfied.DAT File 10,465,760 Ao Fi
) data_original, @ File 10,48, 760 File Type :
- [2MB_1DAT File awnsn | Craated Dals :
- EDMB_Z% File 20,971,520
- 0 D File 41,943,040
-0 Z AT File 41,543,040 Server Infomation
80g File 549,832,720
%mr‘ cyguin_deveny,zip File M3o53%3 | | Total File Number: 17
o7 fle10AT File 104857600 Totel Fll Size : 2533325405
- fla2 DAT File 104,857,600
<D - FileCreate (2)zip File 576,970,801
- grad,zlp File 331,418,020
- Knala.jpg File 303.217
(| - T I ”HIII = ST
Server VLC _ Statust Running Server(Processing YLC Complete)

Figure 6. The implementation result of the client program

4. Performance evaluation

We now present experimental results that show the effectiveness of the proposed algorithm.
To perform comprehensive analysis on the proposed algorithm, we implemented the client
and the server on the platform that consist of 3GHz Pentium 4 Processor, WD-1600JS hard
disk and 100Mbps network. We made experimental data set using patch that means data

6 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

block used for modifying a file in a random manner. In this experiment, we modified a file
using Iseek function in Linux system using random file offset and applied a patch to make test
data file. For each run, we did multiple runs with different data sets, and plot the average
resulting value. For algorithm comparison purpose, we also implemented variable-length
chunking and fixed-length chunking. Similarity Evaluation Scheme(SES) is the proposed
algorithm in this paper. In this experiment, original data is modified as 90%, 80% and 70%
duplicates by Linux dd command. The experiment parameters of SES are same with VLC
approach.

Table 1. File similarity experiment result & °
FLC SES %’)
Number of hash 128000) 4719 (Y
Perform speed (sec) 0.305 \Q ¢ O.QQ)\/

Table 1 shows the performance result of execu‘u d. T sNeriment result more
detail, FLC file similarity approach produces 128000hashes a% approach only produces

500 representative hashes when performlng hash ope n to the same file. The
difference between performance speed of.tr al FLC ES are 0.3 sec and 0.003 sec,
respectively.

Table 2. Perfﬂrr@e res@%rror distribution

Actual file S|m|Iar|tyN Slmlal@’esult (%) Error (%)

90@®)) ®88 1.6

QRN Y 81 1

7a00mY A 73 3.8

ASH
Table 2 shc@rrors f proposed system for evaluation similarity result. From the

experiment result, the pro system can predict 88 % duplicates of data from actually 90%
duplication data, and 1 0ss 81% of 80 actual duplicates. Therefore, the proposed system
is considered to b d that shows very similar result to can determine file similarity in

very high rate with time.

5. Conclusid

per, we propose the file similarity evaluation scheme that determines similarity
betweer/ files by using advanced representative approach. By searching high similarity files,
we can reduce file synchronization overhead and storage capacity of the file server. The
proposed scheme is much faster than traditional file synchronization systems which compare
hash data of a client to the server one. The key idea is to adapt hybrid approach for data
chunking that combines content-defined chunking and fixed-length chunking. Also the
proposed scheme reduces hash comparison time by using representative hash scheme which
generates a hash list that only contains key feature hash list of a file. Experiment result shows
the proposed system can

Copyright © 2014 SERSC 7

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

Acknowledgements

This research was supported by Basic Science Research Program through the NRF funded by the
MEST(.2012R1A1A2044694) , and this research was supported by Hallym University Research Fund,
2012(HRF-201209-024)

References

[1] K. Eshghi and H. Tang, “A framework for analyzing and improving content-based chunking algorithms”,
Hewlett-Packard Labs Technical Report TR, vol. 30, (2005).

[2] A. Muthitacharoen, B. Chen and D. Mazieres, “A low-bandwidth network file system”, A SIGOPS
Operating Systems Review, vol. 35, no. 5, (2001), pp. 174-187.

[3] S. Quinlan and S. Dorward, “Venti: a new approach to archival storage”, In: Proceedmgs of T 2002
Conference on File and Storage Technologies, (2002).

[4] P. Kulkarni, F. Douglis, J. LaVoie and J. Tracey, “Redundancy eI|m|n tion within lar I ions of files”,
In: Proceedings of the annual conference on USENIX Annual T, | ConferegCe IX Association,
(2004).

[51 H. M. Jung, S. Y. Park, J. G. Lee and Y. W. Ko, “Efficie t pI| stem Considering File
Modification Pattern”, International Journal of Secuntya d atl vo no. 2, (2012).

[6] M. O. Rabin, “Fingerprinting by random polynomlals pter for in Computing Technology,

Harvard University, Report TR-15-81, (1981).

@ x‘b
Sun Jeong K

She reeﬁ% an MS d%ee in Computer Science at the Korea

Unlvers in 1998, anti degree from the Korea University in 2002.

she ha orking as an associate professor in Ubiquitous

Since
w;gwg at the m University. Her research includes Scientific
zation,)%ual Reality, and Bioinformatics.

<Z)

g Jun Yoo

@m received the B.S. degree in computer engineering from Hallym

niversity in 2011. He is currently pursuing his Master degree course in
Department of Computer Engineering, Hallym University. His research
interests include operating systems and file systems.

Jung Min So

He received the B.S. degree in computer engineering from Seoul
National University in 2001, and Ph.D. degree in Computer Science from
University of Illinois at Urbana-Champaign in 2006. He is currently an
assistant professor in Department of Computer Engineering, Hallym
University. His research interests include wireless networking and mobile
computing.

8 Copyright © 2014 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

Jeong Gun Lee

He received the B.S. degree in computer engineering from Hallym
University in 1996, and M.S. and Ph.D. degree from Gwangju Institute of
Science and Technology (GIST), Korea, in 1998 and 2005. He is
currently an assistant professor in the Computer Engineering department

at Hallym University.
x).
Jin Kim . 6
He received an MS degree in com{tes SCi nm%)n the college of
&Qé), and in 1996 a PhD

Engineering at the Michigan State yersity i

degree from the Michigan S iver «%S} e then he has been

working as a professor on compute engin% at the Hallym University.
data’mining.

His research includes Bioi atics.an%

X &
@»fo {\\‘Z)

gKo,
ceived both a@ and Ph.D. in computer science from Korea
Seoul,&ﬁ, in 1999 and 2003, respectively. He is now a

| Unive
b@ in Depar t of Computer engineering, Hallym University,
'&g . His I’ewa%‘l interests include operating system, embedded system
)

Young
He

muItir?h@s tem.

b@

Copyright © 2014 SERSC 9

International Journal of Multimedia and Ubiquitous Engineering
Vol.9, No.1 (2014)

10

