
International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014), pp.1-10

http://dx.doi.org/10.14257/ijmue.2014.9.1.01

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2014 SERSC

Design and Implementation of Binary File Similarity Evaluation

System

Sun-Jung Kim
2
, Young Jun Yoo, Jungmin So

1
, Jeong Gun Lee

1
, Jin Kim

1

and Young Woong Ko
1

1
Dept. of Computer Engineering, Hallym University, Chuncheon, Korea

{willow72, jso, jeonggun.lee,jinkim, yuko}@hallym.ac.kr
2
Dept. of Ubiquitous Computing, Hallym University, Chuncheon, Korea

sunkim@hallym.ac.kr

Abstract

In cloud storage system, when we search similar documentation files, keyword-based

similarity evaluation scheme is well performed. However, if we want to find similar binary

files then it is very difficult to satisfy user request. Because there is no widely used binary file

search system that supports similarity evaluation among files. File similarity evaluation is

essential for digital forensic and data deduplication field. In the file similarity processing

time, the CPU consumption and resource overhead of memory are increased as the number of

files increase. Moreover, as the file size is getting bigger, the overhead of metadata

management is critical. In this paper, we suggest the similarity evaluation scheme using a

hybrid chunking which reduce overall processing time of similarity evaluation. Experiment

result shows that the proposed system can reduce processing time and data storage capacity

effectively.

Keywords: File, Synchronization, chunking, Hash, FLC

1. Introduction

File similarity evaluation is used in various fields such as malicious file detection and data

deduplication. In security area, malicious files are generated by modifying original executable

file, so the file similarity search is used to identify file similarity or find malicious code from

the executable programs within the system. Usually, the malicious file is very similar with

original file because file patch is appended in the middle of original file. In data deduplication

field, file similarity is very effective tools to eliminate duplicated data blocks. If we find

similar files, then we can apply deduplication algorithm to the file. Data deduplication system

handles similar files with various chunking approaches [1-3]. The well-known chunking

approaches are fixed-length chunking and variable-length chunking (content-defined

chunking). Deduplication approaches can save computing resources through detecting the file

similarity and eliminating the duplicated region of a file. In file similarity searching system

module [4, 5], the performance depends on hash comparison speed, therefore effective hash

comparison is very critical.

In this paper, we propose file similarity evaluation system which determines similarity

between client files and the server files. By searching high similarity files, we can reduce file

synchronization overhead. This technique is much faster than traditional file synchronization

systems which compare hash data of a client to the server one. The proposed scheme adapts

1
 Corresponding author : yuko@hallym.ac.kr

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

2 Copyright ⓒ 2014 SERSC

hybrid approach for data chunking, however it only hashes fixed-length data block by

extracting hash values. Also the proposed scheme reduces hash comparison time by using

representative hash scheme which generates a hash list that only contains key feature hash list

of a file. One of the well-known file similarity evaluation schemes adapts representative hash

approach. The key idea of representative hash is to extract set of hash keys from a file. In a

concrete explanation, Rabin hash function [6] calculates hash key from a file and stores the

hash key by shifting one byte step by step. Rabin hash function repeatedly generates hash key

and inserts the hash key to the queue. The queue contains only several number of hash keys in

ascending order or in descending order by configuration of the system. If Rabin hashing is

finished, there remains several hash keys whose value is maximum or minimum. With this

approach, representative hash scheme can predict how a file is similar with the other one. In

representative hash scheme, when A file and B file have duplicated hash keys, this means that

the files have duplicated region of data. However, to extract representative hash, all of the

hash keys are compared with hash keys in the queue. This incurs high overhead on CPU and

memory resources. To cope with this problem, in this work, we implemented file similarity

evaluation system using hybrid approach that combines fixed-length chunking and variable-

length chunking. The proposed approach chunks a file and finds anchor bytes. If it finds

anchor bytes, it divides a file into fixed-sized chunk and calculates the hash key. The

proposed system sorts this hash keys and assume as representative hash. Our approach can

effectively produces the representative hash with small number of hash keys.

 The rest of this paper is organized as follows. In Section 2, we describe related works

about data deduplication system. In Section 3, we explain the design principle of proposed

Byte-index Chunking system and implementation details. In Section 4, we show performance

evaluation result of the proposed system and we conclude and discuss future research plan.

2. Background and Related Works

There are three different deduplication schemes; source-based, inline and post processing

approach. The source-based approach performs data deduplication in the client side and the

client sends only non-duplicated files or blocks to deduplication server. The client divides a

file into several blocks and calculates hash key for each block. In the chunking process, the

block can be divided into fixed size chunk or variable size chunk depending on chunking

approach. The list of hash keys is delivered to the server and the server checks duplicated

blocks by comparing the hash key with hash keys in the server. The server makes a non-

duplicated block list and sends it to the client. Finally, the client sends the non-duplicated data

blocks to the server. Inline approach performs data deduplication on the server side. A client

sends file stream to the server then the server process deduplication work on the fly by

chunking the file stream into blocks. In inline approach, the server has enough CPU resource

and memory capacity for processing data deduplication. Finally, in post processing, the

system first stores file stream on a temporary storage and performs data deduplication work

later. Accordingly, the server needs additional storage device and all the computation can be

delayed until there is available resource. Inline and post processing approach usually consume

the system resource of a server while minimizing the client resource because all the

deduplication work is processed on the server side.

Data deduplication research is actively studied in various university and research institute.

One of the well-known data deduplication result is Venti [3] that is a network storage system

using fixed-length chunking approach. The key idea of Venti is to divide a file into fixed

blocks and check duplicated blocks using 160-bit SHA1 hash key. Venti can reduce storage

capacity by eliminating multiple duplicated blocks that have the identical data, so duplicate

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 3

data is easily identified and the data block is stored only once. In variable-length chunking,

each block size is partitioned by anchor value that divides a file into variable size chunk. One

of the well-known variable-length chunking is a LBFS [2] that exploits similarities between

files or versions of the same file. LBFS avoids sending data over the network when the same

data found in the server file system. LBFS achieves up to two orders of magnitude reduction

in network bandwidth. In our previous research result, data deduplication system uses file

modification pattern. This approach can detect how file is modified and what types of

deduplication is best for data deduplication. Therefore, the optimal data deduplication policy

can be applied to a file.

3. Design and Implementation of File Similarity Evaluation System

In this paper, we designed and implemented the file similarity evaluation scheme for cloud

environment. As shown in Figure 1, the proposed system composed of server and client

module. The client generates hash key by performing chunk process and sends the hash key

list to the server. The server maintains metadata of each file using file similarity information.

The role of file similarity evaluation system is to ensure that files in multiple locations have

duplicated data blocks in certain rate. If a file is similar with a file on another location, then

we can save network bandwidth by sending non-duplicated region of data. So, fast and

accurate file similarity evaluation scheme is very important. In our approach, the purpose of

file similarity evaluation is to keep minimum metadata for each file and provides high

accuracy for predicting file similarity. The file similarity scheme can be widely used for

backups or updating on storage systems and it is especially useful for mobile devices because

if we reduce network packets then overall battery consumption will be minimized. To reduce

data bandwidth, file similarity evaluation scheme has to find similar files in a rapid time when

a client requests a file copying.

Figure 1. The proposed system architecture overview

In this paper, we adapt hybrid approach for data chunking. The proposed scheme only

hashes fixed-length data block from anchor point. The anchor approach is very similar with

variable-length chunking approach. However, in variable-length chunking, chunk block size

is variable because it extracts a block between anchors. But, we only extract fixed size blocks

from each anchor point. So, the proposed scheme can reserve the advantage of variable-length

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

4 Copyright ⓒ 2014 SERSC

chunking approach and reduce hash calculation time. Figure 2 shows the conceptual diagram

of chunking method. Variable-length chunking divides blocks between anchors and the size

of block is varying. However, the proposed scheme divides blocks between anchors, but the

block has small size and fixed-length. The small and fixed size blocks takes few times during

hash computation compared with variable-length approach.

Figure 2. Comparison of chunking method

Figure 3 explains how similarity evaluation system works. First, a file stream is divided

into variable chunks between anchors. The system calculates a hash key for fixed size blocks

for each chunk. Conceptually, the sorting module lines up hash keys and makes a hash key

list with ascending order or descending order. From the sorting list, we only take a few hash

keys for representative hash values.

Figure 3. Similarity evaluation processing step

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 5

As can be seen in Figure 3, Rabin hash function is used for computing a hash key for a

block. The Rabin hash starts at each byte in the first byte of a file and over the block size of

bytes to its right. If the Rabin computation at the first byte is completed then we have to

compute the Rabin hash at the second byte incrementally from the first hash value. Now that

the hash value at the second byte is available then we use it to incrementally compute the

hash value at the third, and continue this process. In this work, we have to sort the Rabin hash

value and choose small number of maximum values as a representative hash. In this work, we

made the representative hash list for all files before data deduplication. We extract one

representative hash for 1 MByte therefore the amount of additional information for file

similarity is not critical for metadata management.

The proposed approach minimizes overall processing time for making similarity evaluation

information. The main idea of this paper is to apply efficient hash comparison technique by

reducing hash keys of file into small number of hash keys using representative hash selection.

We designed and implemented the proposed file similarity evaluation scheme. Following

MetadataCompare function is the key algorithm of the proposed system.

MetadataCompare (sender)

foreach ChunkList serverchunk in serverChunkList //file list of the server

similarlist sim ← new similarlist()

sim.filename ← serverchunk.filename

for int i ← 0 i<serverchunk.Chunks.Count; i++ //hash list on the server

foreach(Chunk chunk in clientdata.clientChunk)

//hash list of the client

if chunk.hash1 == serverchunk.Cunks[i].hash1 then

clientdata.count++;

sim.per ← clientdata.count / clientdata.clientChunk.Count() * 100

clientdata.simlist.Add(sim)

clientdata.simlist.Sort(compare)

sender.SendData(simlist)

End

Figure 4. Pseudo code for similarity evaluation module on the server

The algorithm (Figure 4) shows how the proposed system evaluates similarity value

between files. First, the algorithm reads file list of the server for computing similarity level.

Second, for each file, it counts the same hash keys between two files and computes the

similarity value. Finally, the similarity value list is transferred to the client.

Figure 5 shows the implementation result of the client of proposed system. A user selects a

file from browse button and clicks “the Send File VLC Data” button. The selected

file(file2.DAT) is transferred to the server and the server calculates file similarity value by

comparing the file from the client and files in the server. The calculation result is returned to

the client and presented on the left side of Figure 5. As we can see in Figure 5, the evaluation

result is listed from a top similarity file to a low similarity file. In this result, file2.DAT is the

same file between the client and the server. File1.DAT file has 79% of duplicated region

compared with original file (file2.DAT in the client).

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

6 Copyright ⓒ 2014 SERSC

Figure 5. The implementation result of the client program

Figure 6 shows the implementation result of the server program. In this implementation,

we stored several files in one folder and similarity evaluation is performed for these files. The

user can select a file and do several operations such as delete, rename and move.

Figure 6. The implementation result of the client program

4. Performance evaluation

We now present experimental results that show the effectiveness of the proposed algorithm.

To perform comprehensive analysis on the proposed algorithm, we implemented the client

and the server on the platform that consist of 3GHz Pentium 4 Processor, WD-1600JS hard

disk and 100Mbps network. We made experimental data set using patch that means data

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 7

block used for modifying a file in a random manner. In this experiment, we modified a file

using lseek function in Linux system using random file offset and applied a patch to make test

data file. For each run, we did multiple runs with different data sets, and plot the average

resulting value. For algorithm comparison purpose, we also implemented variable-length

chunking and fixed-length chunking. Similarity Evaluation Scheme(SES) is the proposed

algorithm in this paper. In this experiment, original data is modified as 90%, 80% and 70%

duplicates by Linux dd command. The experiment parameters of SES are same with VLC

approach.

Table 1. File similarity experiment result

FLC SES

Number of hash 128000 479

Perform speed (sec) 0.305 0.003

Table 1 shows the performance result of execution speed. To see experiment result more

detail, FLC file similarity approach produces 128000 hashes and SES approach only produces

500 representative hashes when performing the hash operation to the same file. The

difference between performance speed of traditional FLC and SES are 0.3 sec and 0.003 sec,

respectively.

Table 2. Performance result of error distribution

Actual file similarity Similarity result (%) Error (%)

90(%) 88 1.6

80(%) 81 1

70(%) 73 3.8

Table 2 shows errors of the proposed system for evaluation similarity result. From the

experiment result, the proposed system can predict 88 % duplicates of data from actually 90%

duplication data, and 1.6% loss 81% of 80 actual duplicates. Therefore, the proposed system

is considered to be proved that shows very similar result to can determine file similarity in

very high rate with fast time.

5. Conclusion

In this paper, we propose the file similarity evaluation scheme that determines similarity

between files by using advanced representative approach. By searching high similarity files,

we can reduce file synchronization overhead and storage capacity of the file server. The

proposed scheme is much faster than traditional file synchronization systems which compare

hash data of a client to the server one. The key idea is to adapt hybrid approach for data

chunking that combines content-defined chunking and fixed-length chunking. Also the

proposed scheme reduces hash comparison time by using representative hash scheme which

generates a hash list that only contains key feature hash list of a file. Experiment result shows

the proposed system can

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

8 Copyright ⓒ 2014 SERSC

Acknowledgements

This research was supported by Basic Science Research Program through the NRF funded by the

MEST(.2012R1A1A2044694) , and this research was supported by Hallym University Research Fund,

2012(HRF-201209-024)

References

[1] K. Eshghi and H. Tang, “A framework for analyzing and improving content-based chunking algorithms”,

Hewlett-Packard Labs Technical Report TR, vol. 30, (2005).

[2] A. Muthitacharoen, B. Chen and D. Mazieres, “A low-bandwidth network file system”, ACM SIGOPS

Operating Systems Review, vol. 35, no. 5, (2001), pp. 174-187.

[3] S. Quinlan and S. Dorward, “Venti: a new approach to archival storage”, In: Proceedings of the FAST 2002

Conference on File and Storage Technologies, (2002).

[4] P. Kulkarni, F. Douglis, J. LaVoie and J. Tracey, “Redundancy elimination within large collections of files”,

In: Proceedings of the annual conference on USENIX Annual Technical Conference, USENIX Association,

(2004).

[5] H. M. Jung, S. Y. Park, J. G. Lee and Y. W. Ko, “Efficient Data Deduplication System Considering File

Modification Pattern”, International Journal of Security and Its Applications, vol. 6, no. 2, (2012).

[6] M. O. Rabin, “Fingerprinting by random polynomials”, Center for Research in Computing Technology,

Harvard University, Report TR-15-81, (1981).

Authors

Sun Jeong Kim

She received an MS degree in Computer Science at the Korea

University in 1998, and a PhD degree from the Korea University in 2002.

Since 2005 she has been working as an associate professor in Ubiquitous

Computing at the Hallym University. Her research includes Scientific

Visualization, Virtual Reality, and Bioinformatics.

Young Jun Yoo

He received the B.S. degree in computer engineering from Hallym

University in 2011. He is currently pursuing his Master degree course in

Department of Computer Engineering, Hallym University. His research

interests include operating systems and file systems.

Jung Min So

He received the B.S. degree in computer engineering from Seoul

National University in 2001, and Ph.D. degree in Computer Science from

University of Illinois at Urbana-Champaign in 2006. He is currently an

assistant professor in Department of Computer Engineering, Hallym

University. His research interests include wireless networking and mobile

computing.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

Copyright ⓒ 2014 SERSC 9

Jeong Gun Lee

He received the B.S. degree in computer engineering from Hallym

University in 1996, and M.S. and Ph.D. degree from Gwangju Institute of

Science and Technology (GIST), Korea, in 1998 and 2005. He is

currently an assistant professor in the Computer Engineering department

at Hallym University.

Jin Kim

He received an MS degree in computer science from the college of

Engineering at the Michigan State University in 1990, and in 1996 a PhD

degree from the Michigan State University. Since then he has been

working as a professor on computer engineering at the Hallym University.

His research includes Bioinformatics and data mining.

Young Woong Ko

 He received both a M.S. and Ph.D. in computer science from Korea

University, Seoul, Korea, in 1999 and 2003, respectively. He is now a

professor in Department of Computer engineering, Hallym University,

Korea. His research interests include operating system, embedded system

and multimedia system.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.9, No.1 (2014)

10 Copyright ⓒ 2014 SERSC

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

