
 
International Journal of Multimedia and Ubiquitous Engineering 

Vol.8, No.6 (2013), pp.87-96 

http://dx.doi.org/10.14257/ijmue.2013.8.6.09 

 

 

ISSN: 1975-0080 IJMUE 

Copyright ⓒ 2013 SERSC 

An Adaptive Algorithm to Recommend Favorable Digital Music 

 

 

Taek Lee and Hoh Peter In

 

Korea University 

comtaek@korea.ac.kr, hohin@korea.ac.kr 

Abstract 

Many people enjoy digital music (e.g., MP3 songs), usually with random play mode, or 

their own favorable play list that they have composed. However, such play modes do not 

consider and support listener preferences of feeling or mood changing with time. Usually 

listeners have dynamic, not static, demands on music based on their arbitrary situation or 

mood (e.g., when studying, exercising, being sorrowful, being happy, etc.), so an adaptive 

algorithm to meet the momentary demand is required. This paper proposes an adaptive 

algorithm to recommend favorable songs successively, and enable people to seamlessly keep 

listening to favorable songs, without the action of skipping disliked ones. The algorithm 

monitors if a listener likes or dislikes a song currently being played. Once the algorithm 

detects that a listener likes the song, the algorithm recommends the next song that is most 

similar to the current song. Otherwise, the algorithm recommends quite a different style of a 

song as the next one, by recognizing that the listener now has a different demand. In our 

experiment, the proposed algorithm showed better performance, in terms of reducing the 

action of frequently skipping songs, than random play mode, with statistical significance. 
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1. Introduction 

People enjoy listening to digital audio (e.g., MP3 songs) under many situations, such as 

while exercising, studying, eating, relaxing, and so on. People tend to enjoy different music 

styles, depending not only on the physical situations, but on emotional situations, such as 

when being sorrowful, being happy, or being under stress. For different demands, people 

usually make their own favorable play lists in advance, and choose a proper list for playing 

music, or just simply use random play mode for the songs they possess.  

Random play mode or a play list for preferred songs is a simple way to easily enjoy music. 

However, a problem is that making a preferred play list is effort-consuming if the number of 

songs is huge, and moreover, the preference is often not static, but dynamic, depending on the 

listener’s feeling or mood at a moment, or depending on what the listener is then doing, as 

mentioned above. Random play does not react to the dynamic demand, or the listener’s 

current emotion and mood, and a pre-composed play list also does not always meet listeners’ 

preferences, which arbitrarily change from time to time. Therefore, an adaptive algorithm is 

required to meet the dynamics.  
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For example, supposed that a listener is now happy and satisfied with listening to a classic 

music currently being played. A loud song of rock genre, suggested and played as the next 

song by random play mode, suddenly interferes. The suggestion will make the listener really 

embarrassed and disrupted, so she will skip it right away. Our research hypothesis is that once 

a listener is into any style of song, she tends to keep listening to similar songs for a while.  

Our proposed adaptive algorithm aims to recommend favorable songs successively, with 

minimizing the effort of skipping disliked ones, while listening to a given pool of songs. The 

algorithm monitors if a listener likes or dislikes a suggested song. Once the algorithm detects 

that the listener likes the suggested song, the algorithm adaptively searches the most similar 

style of a song from the pool, and then recommends the searched one as the next song to play. 

However, if the algorithm detects that the listener does not like the currently suggested song, 

it recommends the next song that has quite a different style (dissimilar), in order to search for 

any other favorable one. To compute and compare similarity of songs, we used four features 

digital songs inherently have in their metadata (i.e., MP3 ID3 tag): genre, artist, tempo, and 

lyric. With the four kinds of features, the algorithm defines and distinguishes the style of 

songs. Genre is the most and representative feature to distinguish music, and the same genre 

of songs are differentiated even by artists. In addition, tempo (beat per minute) is another nice 

feature to depict slow or fast music. Lastly, lyrics can describe the semantic feeling of songs, 

even though the former three features of genre, artist, and tempo are hard to deliver such a 

semantic. 

To verify the performance of our proposed algorithm, we conducted an experiment of a 

blind test with 29 subjects, by using our implemented MP3 player. They were asked to listen 

to given MP3 songs, but they do not know whether they are currently listening to the songs in 

the conventional mode of random play, or in the mode of our proposed adaptive algorithm; 

that is, there are two groups, the experimental group and control group. Our research question 

is to know which group of people keeps listening to songs successively and conveniently, 

without the effort of song skipping actions. To show outperformance of our proposed 

algorithm, we collected experimental data, tested our research hypothesis, and finally 

conclude it works effectively as expected, with statistical significance (Section 3.2).  

The rest of the paper consists of the following sections: Section 2 explains our 

proposed algorithm, Section 3 explains the experiment setup and the result analysis, 

Section 4 introduces some related work, and finally Section 5 concludes the paper, with 

remarks about the meaning of the paper, and the future work in brief.  

  

2. The Proposed Algorithm 

The proposed algorithm aims to recommend songs that might be favorable to listeners 

based on our hypothesis: once a listener likes any style of music, and is into that style at any 

moment, she wants to keep listening to a similar style of music for a while. Of course, the 

preferred style might change from time to time. Therefore, the overall recommendation 

process of preference monitoring and searching for similar songs must continuously work in 

real-time.  

The overall process of how our proposed algorithm works is shown in Figure 1. The 

algorithm consists of two parts of steps: (a) one part of the prerequisite processing steps, and 

(b) the other part of the song recommendation steps. 
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Figure 1. An overview of our proposed algorithm 
 

Firstly as shown in part (a) in Figure 1, some preprocessing steps are required to get ready 

for recommending songs. The steps aim at reducing heavy computation, which can be 

problematic in real-time service. Computing similarity between a large number of all the 

songs in real-time and every time is very inefficient and redundant, so it is better for 

similarity analysis to be done in advance, before the steps of similarity comparison (109 and 

110 in Figure 1).  

Secondly, as shown in part (b) in Figure 1, the recommendation steps are processed, while 

listeners are listening to songs in real-time. These steps are again grouped into two main 

processing sub parts: one is monitoring the listener’s preference for a suggested song, and the 

other one is suggesting the next song, by searching for a (dis)similar song in the rest of the 

songs in a pool.  

 

2.1. Part I: prerequisite processing steps 

The overview is shown in (a) prerequisite processing steps of Figure 1. This part of the 

steps is required to run through just one time, and is not required again later. At the beginning, 

features are extracted from the metadata of MP3 song files (101 in Figure 1), and then the 

features are represented in the form of vectors (102 in Figure 1), because similarity 

computation uses vector expression. Basically, genre, artist and lyric among the features have 

text format initially except tempo, so they need to be transformed to numeric values first.  

We used the official list of genres in ID3 tags
1
 to distinguish 149 different genres. By the 

way, the identifier number (0~148) has no meaning relating to its higher or lower number; the 

number is just a code to identify genres. From our application point of view, however, we 

need to convert the identifier numbers into a meaningful ordinal scale; it should mean slower 

                                                           
1
 List of genres: http://www.multimediasoft.com/amp3dj/help/amp3dj_00003e.htm#ss13.3 
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and calmer music like classic or blues as the number is closer to 0, in contrast it should mean 

faster and heavier music like rock or metal as the number is closer to 148. With that meaning, 

we rearranged the identifier numbers.  

To convert artist names into an ordinal scale as genre, the text names of artists are 

sequentially encoded with numbers, but the numbers should have ordinal meaning. As the 

number is close to 1, it means the artist tends to present slower and calmer music. In contrast, 

as the number is further away from 1 (getting higher and closer to the maximum number), the 

artist tends to present a faster and heavier style of music. By analyzing every genre per artist 

for the given pool of songs, the encoding of artist names is done. In this way, all the artist 

names are converted into an ordinal scale, from 1 to the number of distinct artists observed in 

the pool of songs. Finally, the feature vector consisting of genre, artist, and tempo has a 3-

dimensional format like ( fgenre, fartist, ftempo ), where tempo does not need to be converted, 

because it is inherently numeric (102 in Figure 1).  

Every song has a feature vector (fgenre, fartist, ftempo), so we use the Euclidean distance 

equation [1] to compute the similarity between two different songs with feature vectors (104 

in Figure 1) as follows: 
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The Euclidean distance has no upper bound, so it is transformed into the normalized 

similarity measure of range from 0 to 1, similarityeuc(song1, song2). 

In contrast to the feature vector (fgenre, fartist, ftempo), the lyric features of songs have different 

vector format in our algorithm, because lyrics consists of many words, not a single text 

attribute. Therefore, we convert the words consisting of a lyric document into the format of a 

word vector, instead of a feature vector. If lyrics of songs are considered as documents, a 

document consists of many words, so we simply used the Bag-of-Word model [2] to count 

and express the distribution of words consisting of lyric documents. For example, suppose 

that one song A has the lyric of “I love you”, and the other song B has that of “You know I 

love you so much”. In that case, the word vector of the song A becomes (I, love, you, know, 

so, much) = (1, 1, 1, 0, 0, 0), and the word vector of the song B becomes (I, love, you, know, 

so, much) = (1, 1, 2, 1, 1, 1). With the word vector expression of the Bag-of-Word model 

(103 in Figure 1), the similarity between different lyrics of songs can be compared.  

However, one problem exists when adopting the Bag-of-Word model; the dimension size 

of the word vector explosively increases, and most of the attributes are zeros (no-counted 

words), as the number of lyric words from many songs increases. Even though documents 

have hundreds or thousands of words, each document is sparse, since it has relatively few 

non-zero words. Thus, similarity should not depend on the number of shared 0 values, since 

any two documents are likely to not contain many of the same words, and therefore, if 0-0 

matches are counted, most documents will be highly similar to most other documents. 

Therefore, we use cosine similarity to address this problem, which is one of the most popular 

measures of document similarity [1] (105 in Figure 1). 
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where, v1 and v2 are the word vectors of song1 and song2 respectively, and  • indicates the 

vector dot product,       ∑        
 
    (k is the number of word attributes). ||v|| is the 

length of vector v, ‖ ‖  √∑   
  

    √   . Cosine similarity has a range number between 

0 and 1; it means dissimilar as the measure is close to 0, and it means similar as the measure it 

close to 1.  

The two types of similarity measures computed from the steps 104 and 105 in Figure 1 

have the range from 0 to 1 respectively. Thus, we combine them, to get a finalized similarity 

measure as follows: 

          (           )
                (           )                 (           )   ( ) 

where, α and β are weight coefficients so the total of α and β is one; we simply give 0.5 and 

0.5 to α and β  respectively in the paper. Of course, some classical or instrumental music has 

no lyrics, so the term similaritycos cannot be used in the similarity computation of the equation 

(3). In that case, the equation (3) is adopted, by just adjusting α as one and β as zero.   

 

2.2. Part II: recommendation steps 

This part of the steps refers to the similarity measures computed in Section 2.1 for the 

purpose of song recommendation. The algorithm begins with an arbitrary initial song (107 in 

Figure 1). By understanding how long a time a listener has enjoyed the current song, the 

algorithm decides whether the listener likes the song, or not (108 in Figure 1). In our 

experiment, we asked subjects to click the button ‘Next’ in the MP3 player if they do not like 

the current song, and want to skip it. By taking advantage of analyzing the click logs, we had 

figured out that most of the listener’s decision making for preference is done very quickly, at 

the beginning phase of songs; this fact is justified by Figure 3. Thus, our algorithm 

understands that a listener does not like a song, if the play time (the elapsed time before 

clicking the button ‘Next’) is less than 50% of the length of the song. In contrast, the 

algorithm understands that a listener likes a song, once she listens to the song during the play 

time of more than 50%.  

Once the algorithm concludes that the listener likes the current song, the algorithm 

searches for the most similar song, by comparing the similarity measures of every song 

already computed in Section 2.1 (109 and 111 in Figure 1). However, if the algorithm 

concludes that the listener does not like the current song, the algorithm firstly gathers half of 

the song candidates from the song pool, whose similarity gap is furthest away from the 

current song, and then picks up one song from the candidates, as the next song to suggest 

(110 and 112 in Figure 1).  

All the cycle described above is rotated, while listeners want to keep enjoying all the songs 

(113 in Figure 1).   
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3. Experiment and Result 

We conducted an experiment to verify our research question mentioned in Section 1. This 

section explains our experiment setup, and the result of experiment analysis. 

 

3.1. Experiment setup 

We implemented our proposed algorithm with a web-based prototype of the MP3 player, 

for easy access of subjects to our experimental setup. We aggregated an anonymous 29 

subjects who are willing to join in our experiment enjoying the MP3 player. They are asked to 

click the button ‘Next’, depending on their preference. We used 562 genre-balanced songs in 

the experiment. The web server provides the MP3 player service, and at the same time 

records logs of the play time of songs; that is, how long a time subjects listened to songs, 

before clicking the Next button. We conducted a blind test with the subjects. To avoid any 

bias, they are randomly split into two groups: an experimental group (i.e. our proposed 

adaptive algorithm), and a control group (i.e. random play mode). 

 

3.2. Result analysis 

First of all, we surveyed the distribution of actions of clicking the Next button over time, 

by analyzing logs of the play time. Figure 2 shows the distribution; the x axis is the 

percentage of play time, and the y axis is the percentage of listeners. As shown in Figure 2, 

many listeners decide quickly (before 10% listening) whether they will skip the song or not, 

but once they decide to keep listening to the song, they almost always listen to the song until 

the end of song (more than 95% in length). This supports that the threshold of 50% play time 

used in our proposed algorithm (108 in Figure 1) is a reasonable decision making point, to 

decide whether a listener liked a song or not. 

 

 

Figure 2. The distribution of clicking the next button over play time 
 

From the blind test with subjects, we concluded that our algorithm works effectively as 

expected; with little effort of skipping songs, subjects enjoyed conveniently listening to their 

favorable songs. To measure the performance of our proposed algorithm, we prepared for two 

evaluation criteria: one criterion is a measure of how many songs listeners disliked (i.e., 

clicked the Next button) among all their played songs (criterion 1 in Figure 3), and the other 

criterion is a measure of how many songs were successively played one after another, without 

any intermediate skipping action, among all their played songs (criterion2 in Figure 3).  
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Figure 3. A performance comparison of random play and the proposed 
adaptive algorithm 

 

The boxplots of Figure 3 show the evaluation results from subjects. For the criterion 1 ((a) 

left-hand side of boxplots), Figure 3 shows that subjects skipped 57% of songs among their 

played songs in the random play mode. In contrast, however, subjects skipped only 33% of 

songs among their played songs in our proposed adaptive algorithm. In the boxplot of the 

distribution, the variation of skipping actions was also narrower in the case of our algorithm, 

than that of the random play mode. To test the statistical significance of the result analysis, 

we conducted a Wilcoxon Rank-Sum test [3]. Since we cannot assume the exact distribution 

of samples, and we have a relatively small number of samples, the Wilcoxon Rank-Sum test 

was applied to our hypothesis test. With 95% of confidence level, we could confirm 

(p=0.04591<0.05) that the null hypothesis is rejected (N0: there is no difference in medians 

between ‘adaptive’ and ‘random’ experiments), and instead the alternative hypothesis is 

accepted (the approach of ‘adaptive’ has a lower median). 

The evaluation measure of criterion2 is more important than criterion1, because criterion 2 

can verify our main research hypothesis (assumption) -- once a listener likes any style of a 

song, she will want to listen to a similar style of songs for a while. As shown in criterion 2 of 

Figure 3 ((b) right-hand side of boxplots), subjects liked to listen to similar songs 

successively, as suggested by our proposed adaptive algorithm. If they had not liked the 

similar style of suggested songs, they would have frequently clicked the Next button. The 

number of clicking actions in our proposed algorithm was surely less than that of the random 

play mode, so that in other words the indicators of enjoying successive songs without 

skipping is higher (‘adaptive’ = median 0.5 > ‘random’ = median 0.23). Besides, the 

performance gap was more than 200% (0.5 vs 0.23). Lastly, we also applied the Wilcoxon 

Rank-Sum test to the criterion2 evaluation, as done for criterion1, and could conclude that our 

proposed algorithm still outperformed the random play mode in terms of criterion2, with 

statistical significance (p=0.04583<0.05, confidence level = 95%).  

 

  

(Wilcox.test, p=0.04591)
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4. Related Work 

Music recommendation technology is referred to with the term of music information 

retrieval (MIR)
2
 in the literature. For recommendation purpose, MIR technologies mainly rely 

on two sources of information: one is content-based information coming from the music file 

itself, by signal processing, such as loudness, tempo, rhythm, and melody. The other is 

metadata-based information, coming from the metadata of music described by human, such as 

title, artist, and user’s social review or tags [4].  

Each information source has its own pros and cons. Metadata-based information is 

nowadays not just only dependent on the metadata recorded in the music files, but also on 

social preference data. This is called collaborative filtering (CF) [5]. To discover a user’s 

preference, CF uses metadata collaboratively aggregated from music consumers, such as 

users’ metadata editing, social tags, and statistics about music consumption patterns, such as 

play counts, music chart of artists, and sales revenue. The working mechanism of CF is 

simple. Supposed that a user X likes a song A, and there is information that many other 

people who enjoyed the song A simultaneously liked a song B in their play list. If so, the 

recommender system suggests the user X listen to the song B, as well. For example, some 

representative commercial services taking advantage of the CF technology are Last.fm and 

iTunes Genius. 

However, a problem in using CF is that it relies on large data from many people, and tends 

to only recommend publicly popular music. Major songs frequently listened to by many 

people have abundant information about surveyed preference, but the minor songs not 

frequently listened to by people usually do not have sufficient information of preference. As a 

result, it is easy for a minor song to be missed in recommendation, even if the song is very 

wonderful and favorable song to a listener. This problematic situation happens,
3
 since CF 

relies on the “wisdom of crowds”.  

For that reason, content-based information is sometimes a better source of music 

recommendation, since it does not at least fall to the defect of the “wisdom of crowds”. 

However, content-based information is not enough in itself for an effective recommendation 

service, but is good for music classification, if users want to classify music in various styles, 

and pick up one at their demand [7, 8, 9].  

Our proposed algorithm uses metadata-based information for music recommendation, but 

does not adopt the popular CF approach. Rather, the proposed algorithm focuses on personal 

preference, because we believe that the preference dynamically changes, and the demand of a 

user is not always same as that of the public. In addition, some users probably do not want to 

share their preference data with the public, because of privacy reasons. 

 

5. Conclusion 

In this paper, we proposed an adaptive algorithm to search and recommend a digital music 

that listeners will be happy to enjoy, whose demand is however not well met by the 

conventional random play mode, or by means of using pre-composed play lists. To 

                                                           
2
 MIR: http://en.wikipedia.org/wiki/Music_information_retrieval 

3
 The problem is called the long-tail and cold-start problems in the literature [6] 

http://en.wikipedia.org/wiki/Music_information_retrieval
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recommend a (dis)similar song, we used the information of four distinct features, which any 

digital music files universally have, namely genre, tempo (beat per minute), artist, and lyrics. 

The source of features is from standard metadata (e.g., MP3 ID3 tags) embedded in digital 

music files, so our approach is easily applicable to any usual digital songs. Lack of the 

metadata does not matter, because there are many available helper tools automatically feeding 

the required metadata to digital music files. In addition, the proposed algorithm does not 

require any extra data about listeners’ song preference for model training purpose, as machine 

learning algorithms usually require. Nevertheless, without relying on such model training data, 

our simple algorithm substantially searches and recommends favorable songs in an adaptive 

way, in real-time. We believe our algorithm will be helpful, especially when quickly 

searching many favorable songs from a large size pool of songs, which have never even been 

listened to before. In the future, we will improve our algorithm towards location-aware, time-

aware, and user behavior-aware recommender system.   
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