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Abstract 

This thesis makes a research about the Sliding Mode Control of a new chaotic system. 

Taking advantage of PI switching manifold method, it projects a kind of sliding mode 

controller and fuzzy the switching function of sliding mode surface with membership function, 

then finally adopts the output of fuzzy controller. What’s more, this method simultaneously 

makes full use of PI control as well as SMC based on the new area control error, choosing 

the integral sliding surface equation which makes the system enter into the state of sliding 

mode from the beginning. Then it turns into the PI control on the basis of new area control 

error. Making the system output track a given goal until the elimination of tracking error in 

the main theoretically proves the global stability of this sliding mode controller, and the 

numerical simulation experiment further shows its simplicity as well as availability, besides, 

makes sure the steady availability of the whole system. 
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1. Introduction 

Chaotic motion was first discovered in 1963 by an American meteorologist Lorenz when 

he studied regional microclimate and tried to solve model equation. In 1982, Holden found 

the chaotic attracter and Moon discovered it again in physical system in 1992. Later, in 2003, 

Liu and Chen put forward a new kind of chaotic system, which revealed complexed two and 

four vortexes in simulation experiment. 

Recently, Yassen designs a linearity feedback controller and achieves the control of novel 

chaotic system equipped with the quality of particle stability; and Chang uses sliding mode 

control to realize the chaotic control of Rössler’s system. On the basis of their representative 

analysis, this thesis projects a kind of sliding mode controller and theoretically proves its 

global stability, besides, the numerical simulation experiment further shows its simplicity as 

well as availability. 

 

2. The Design of Sliding Mode Controller 

Representatively, considering the following nonlinear system 

( )  X AX BF X C
,                           (1) 

Here
1, , , : ( )n n n m n n mR R R R R m n      A B C F

, 
( )F X

is nonlinear mapping, 

AX is linear segment, ( )BF X is nonlinear segment, 
1nR X is state variety, C is a 

constant matrix. 
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Make the equilibrium point of system (1) as
 

T

1 2  nx x xX
, the error between state 

variety and equilibrium point is 

1 1 1

2 2 2

( )

( )

( )n n n

t x x

t x x

t x x

   
   


    
   
   

   

E

E
E

E

．                           (2) 

The controlled form in system (1) is 

( )   X AX BF X C U ,                          (3) 

1

2

( )

( )

( )m

u t

u t

u t

 
 
 
 
 
 

U ,                                  (4) 

Here 
1mR U is control item, m means the number of nonlinear items in system (3). 

From (2) and (3) we can conclude that the error dynamic system is 

BUFBAEXXE 
 ,                       (5) 

Here 
1mR F is the error of relevant nonlinear items in system (3). And our control 

objective is to design suitable sliding mode controller and meet the following equation 

         0limlim 21 


T

n
tt

tEtEtEt E ．               (6) 

Usually, the design of sliding mode controller consists of two parts. Firstly, it should 

choose a switching manifold and assure that 

0lim 


E
t

; 

Then examine the controller again to make the error dynamic system (5) arrive at the 

switching manifold within limited time, along which it can march towards the equilibrium 

point [1]. And the key is to select the suitable as well as stable switching manifold and to 

examine the sliding mode controller for making the system approach the switching manifold 

as soon as possible. Basing on the theory mentioned above, we can define PI switching 

manifold as 

0
( ) ( )

t

d   S CE CA CBK E ,                       (7) 

Here
 

T

1 2 ms s sS
,

,m n m nR R  C K
. Choose C and make it meet the condition 

of 0CB , that is to say, CB is nonsingular matrix. At the same time, choose K to make 

all the real parts of eigenvalue in matrix BKA  are negative numbers, so BKA is 
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steady. According to the theory of variable structure control, it should satisfy the following 

equation when error dynamic system (5) doing the sliding mode motion [2]. 

0
( ) ( ) 0

t

d    S CE CA CBK E ,                     (8) 

( ) 0   S CE CA CBK E .                        (9) 

From equation (5) and (9) 

( ) 0eq eq
         S CAE CBF CBU CAE CBKE CB U F KE ,     (10) 

As 0CB , the equivalent control of sliding mode is 

FKEU eq                             (11) 

From equation (5) and (11) 

( )eq
            E AE BF BU AE BF BKE BF AE BKE A BK E ． (12) 

From (12) it can conclude that we can choose suitable K through pole assignment method 

to make sure that all the eigenvalue of matrix BKA are negative numbers, in this way can 

ensure the steadiness of error dynamic system (5) on the switching manifold as well as 

lim 0
t

E
. 

Next, we will design a relevant control rate to assure that the error dynamic system (5) 

arrive at the switching manifold within limited time and further achieve the sliding mode 

motion [3]. 

Lemma One If the condition of arrival in the following sliding mode established, the 

sliding mode motion will go into a stable situation step by step. 

T ( ) ( ) 0t t S S ．                            (13) 

Proof: Make the function of Lyapunov as 

T1
( ) ( ) ( )

2
V t t t S S , 

The derivative of V (t) is 

T( ) ( ) ( )V t t t S S .                            (14) 

According to Lyapunov’s stability theory, if 
T ( ) ( ) 0t t S S , the origin becomes gradually 

state point, thus 
  0lim 


t

t
S

. Proof finished [4-6]. 

In order to make sure the establishment of condition in Lemma One, relevant control rate is 

given by the following equation 

1( ) ( )sign( )    U CB CB KE F S ,               (15) 

Here 1 , sign( ) is sign function, so
  1sign,0  SSif

; 
  1sign,0  SSif

; 
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  0sign,0  SSif . Then we will prove that the mentioned control rate can make the 

error dynamic system arrive at the switching manifold and finally achieve sliding mode 

motion. 

Theorem one: The control rate U given by (15) can make the arrival condition of sliding 

mode in (13) valid. 

Proof: combing (5) and (15) with 
T ( ) ( )t tS S : 

T T T[ ] [ ( )sign( ) ]       S S S CE CAE CBKE S CBF CB KE F S CBKE  

T( ) sign( ) ( )      CB KE F S S CBF CBKE S .            (16) 

As
T sign( ) S S S

, 1 , so 

T (1 )[ ( )] 0    S S CB KE F S ,                    (17) 

The arrival condition of sliding mode founded. Proof finished. 

 

3. The Description of New Chaotic System and Its Sliding Mode Control 

The new chaotic system is: 















2133

3122

3211

xxcxx

xxbxx

xxaxx







,                              (18) 

Here the controller parameter 0,0,0  cba . When 5,12,5.4  cba , system 

(18) becomes chaotic attractors with two vortexes. When 5,12,4.0  cba , system (18) 

turns into chaotic attractors with four vortexes [7-9]. Figure 1 shows the relevant chaotic 

attractors in system (18). 
 

 
(a) When 5,12,5.4  cba , the chaotic attractors with two vortexes 
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(b) When 5,12,4.0  cba , the chaotic attractors with four vortexes 

Figure 1. The chaotic attractors in system (18) 
 

Rewriting the system (18) with system (1) 

( ) X AX BF X ,                           (19) 

Here 


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x

x

x






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

















3

2

1

x

x

x

X , 

2 3

1 3

1 2

( )

x x

x x

x x

 
 


 
  

F X . 

The controlled form of system (18) 

( )  X AX BF X U ,                         (20) 

Here 

1

2

3

( )

( )

( )

u t

u t

u t

 
 


 
  

U  

is undetermined control item, error dynamic system (5) can be concretized as 

BUFBAEE  ,                         (21) 

Here 

1 1 1

2 2 2

3 3 3

( )

( )

( )

E t x x

E t x x

E t x x

   
   

  
   
      

E ,  

2 3 2 3 2 3 2 3 3 2

1 3 1 3 1 3 1 3 3 1

1 2 1 2 1 2 1 2 2 1

( )x x x x E E E x E x

x x x x E E E x E x

x x x x E E E x E x

       
        
   
        

F . 

 

In order to test the availability of controller (15), this thesis will regulate respectively the 

chaotic attractors with two or four vortexes, making them stabilize at the settled equilibrium 

point from random initial state within limited time. 
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4. Simulation Experiment 
 

4.1. The control of chaotic attractor with two vortexes 

Make controller parameter 5,12,5.4  cba , and choose 



















100

010

001

C , 

When 0CB . Use pole assignment method to choose 



















400

0100

005.7

K , 

Make sure that all the real parts of eigenvalue in matrix BKA are negative numbers. 

Then take constant 6.1  and meet the condition of 1 . 

0
( ) ( )

t

d   S CE CA CBK E

 

 

 

1 1
0

2 2
0

3 3
0

( ) 3 0 0 ( )

( ) 0 2 0 ( )

( ) 0 0 1 ( )

t

t

t

s E d

s E d

s E d

  

  

  

   



   

   








E

E

E

．    (22) 

     SFKECBCB sign
1




U

 

 

 

1 1

2 2

3 3

1.6( 7.5 0 0 )sign( )

1.6( 0 10 0 )sign( )

1.6( 0 0 4 )sign( )

u s

u s

u s

    


   


  

E F

E F

E F

      (23) 

Adopt Runge-Kutta’s method to solve system (20) and select time step 005.0 (sec). 

The equiibrium point of system (18) is
 

T

4 7.746 4.7434 7.3485X
. The initial value of 

system which stabilizes at 0X
points is

 
T

00 6 1.7 8  X
, the value at 1X and 2X  

point is
 

T

01 02 3  5  8 X X
, and the value at 3X

and 4X
point 

is
 T8530403  XX

, and then open the sliding mode controller when 5t (sec). 

Figure 2 shows the results of numerical simulation [10-12]. From Figure 2, after opening 

system (20), they respectively stabilize the points within little time, besides, the 

corresponding switching manifolds of each points soon converge to zero. 
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(a) The response curve when system(20) 

stabilizes at 0X point 

(b) The corresponding response curve of S 

when stabilizing at 0X  point 

 

 

 

 
(c) The response curve when system (20) 

stabilizes at 1X point 

(d) The corresponding response curve of S 

when stabilizing at 1X  point 

 

 

 

 
(e) The response curve when system(20) 

stabilizes at 2X point 

(f) The corresponding response curve of S 

when stabilizing at 2X point 
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(g) The response curve when system(20) 

stabilizes at 3X point 

(h) The corresponding response curve of S 

when stabilizing at 3X point 

 

 

 

 
(i) The response curve when system (20) 

stabilizes at 4X point 

(j) The corresponding response curve of S 

when stabilizing at 4X point 

 

Figure 2. The Response Curve of System When Stabilizing at Each Equilibrium 
Point and Its Corresponding Response Curve of S 

 

4.2. The control of chaotic attractors with four vortexes 

Make controller parameter 5,12,4.0  cba , and choose 
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When 0CB . Use pole assignment method to choose 
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Make sure that all the real parts of eigenvalue in matrix BKA are negative numbers. 

Then take constant 6.1  and meet the condition of 1 . 

0
( ) ( )

t

d   S CE CA CBK E

 

 

 

1 1
0

2 2
0

3 3
0

( ) 3 0 0 ( )

( ) 0 2 0 ( )

( ) 0 0 1 ( )

t

t

t

s E d

s E d

s E d

  

  

  

   



   

   








E

E

E

.       (24) 

     SFKECBCB sign
1




U

 

 

 

1 1

2 2

3 3

1.6( 3.4 0 0 )sign( )

1.6( 0 10 0 )sign( )

1.6( 0 0 4 )sign( )

u s

u s

u s

    


   


  

E F

E F

E F

.   

(25) 

Adopt Runge-Kutta’s method to solve system (20) and select time step 005.0 (sec). 

The equilibrium of system (18) is
 

T

0 0 0 0X
, 

 
T

1 7.746 1.4142 2.1909  X
, 

 
T

2 7.746 1.4142 2.1909  X
, 

 
T

3 7.746 1.4142 2.1909  X
, 

 
T

4 7.746 1.4142 2.1909X
. The initial value of system is 

T

00 01 02 03 04 [ 6 1.7 8]      X X X X X
, then open the sliding mode controller 

when 5t (sec). Figure 3 shows the results of numerical simulation. From Figure 3, after 

opening system (20), they respectively stabilize at the points 0X
, 1X , 2X , 

3X
and 4X within little time, besides, the corresponding switching manifolds S of each 

points soon converge to zero. 
 

  
(a) The response curve when system(20) 

stabilizes at 0X point 

(b) The corresponding response curve of S 

when stabilizing at 0X  point 
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(c) The response curve when system (20) 

stabilizes at 1X point 

(d) The corresponding response curve of S 

when stabilizing at 1X  point 

 

 

 

 
(e) The response curve when system (20) 

stabilizes at 2X point 

  (f) The corresponding response curve of S 

when stabilizing at 2X  point 

 

 

 

 

(g) The response curve when system (20) 

stabilizes atpoint 3X  

(h) The corresponding response curve of S 

when stabilizing at 3X  point 
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(i) The response curve when system (20) 

stabilizes atpoint 4X  

(j) The corresponding response curve of S 

when stabilizing at 4X  sw point 

 

Figure 3. The Response Curve of System When Stabilizing at Each Equilibrium 
Point and Its Corresponding Response Curve of S 

 

5. Conclusion 

This thesis makes a research about the Sliding Mode Control of a novel chaotic system. 

Taking advantage of PI switching method, it designs a kind of sliding mode controller and 

theoretically proves its global stability. The system enters into the state of sliding mode from 

the beginning so that it can ensure comparatively high robustness. The realization of Sliding 

Mode Control is extremely simple, what’s more, the design of controller and sliding mode 

surface of each area is only related to the state of area itself, not involving the state 

information of other areas, in this way can it achieve the decentralized control of system. 

Numerical simulation experiment shows that: the controlled new chaotic system can stabilize 

at the appointed equilibrium point with little time, and its corresponding switching manifold S 

converges to zero only a little while, which further proves that the availability of this kind of 

controller. 
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