
International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013), pp.19-30

http://dx.doi.org/10.14257/ijmue.2013.8.5.03

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2013 SERSC

DIVE-C: Distributed-parallel Virtual Environment on Cloud

Computing Platform

In-Yong Jung
1
, Byong-John Han

1
, Hanku Lee

2
 and Chang-Sung Jeong

1

1
Department of Electrical Engineering, Korea University, Seoul, Korea

2
Division of Internet & Multimedia Engineering, Konkuk University, Seoul, Korea

1
{dekarno, guru1013, csjeong}@korea.ac.kr,

2
hklee@konkuk.ac.kr

Abstract

In social media services and social network services, it is necessary to collect, analyze and

process their big data with low maintenance cost. Therefore, distributed-parallel data

processing on cloud platform is getting spotlight as useful solution for them. In this paper, we

present a new architecture of DIVE-C: DIstributed-parallel Virtual Environment on Cloud

computing platform for distributed parallel data processing applications which offers a

transparent virtual computing environment in order to provide a way easy to launch user’s

distributed parallel applications. It hides the complexity of the cloud, and helps users to focus

on their new applications and core services. DIVE-C uses agent-based resource management

scheme to configure VM resources and application deployment for offering various

distributed-parallel application models. VM resources are automatically provided by unified

cloud management layer. Furthermore, an easy-to-use web interface of DIVE-C offers

convenience to users. We implemented a prototype of DIVE-C, and its experiment results

show the competitive performance of DIVE-C for dynamic resource and virtual computing

environment provisioning for various data processing models.

Keywords: Cloud computing, Cloud platform, PaaS, Virtual computing environment,

Distributed- parallel computing

1. Introduction

Cloud computing as the main IT key words today is changing many traditional

paradigms of IT industry. Cloud computing integrates on-demand IT technologies that

supply adaptive resources, platforms and applications. Therefore, it is getting spotlight

as useful solution for cost reduction.

Today, various social cloud services such as social media services, social network

services (SNS) and content delivery systems are becoming key businesses in the cloud

computing. They are deployed and launched on the cloud, so internet and cloud

computing ecosystem are overflowed with big data generated by these social cloud

services. They need more sophisticated way to reduce their cost to develop or maintain

their applications which handle big data such as media contents, messages and user

records. Therefore, it is necessary to do research for cloud based software technologies

which provide scalable distributed parallel software execution services for processing

big data on cloud.

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

20 Copyright ⓒ 2013 SERSC

Cloud platform technologies are suggesting an easier way for developing and

launching their new IT services through abilities of supplying resources and services

against dynamic demand of clients. Cloud platform for distributed parallel computing

offers convenience and cost reduction of developing, testing, deploying, launching and

maintaining new social media cloud applications.

In this paper, we present a new architecture of DIVE-C (DIstributed-parallel Virtual

Environment on Cloud computing platform) for distributed parallel data processing

applications. DIVE-C has three layered architecture, and offers a transparent virtual

environment which provides a way easy to launch distributed parallel applications on

various models through automated software environment creation and adaptive virtual

resource provisioning. It hides the complexity of the cloud system, and helps users to

focus on their new applications and core services.

This paper is organized as follows: Section 2 introduces the related works in cloud

computing and distributed parallel application technologies. In Section 3, we describe

about the features and detailed architecture of DIVE-C. In Section 4, we show the

results of experiments for the performance evaluation of our system. Finally in Section

5, we summarize our work and conclude this paper.

2. Related Works

Cloud platform technologies (PaaS) offer convenience and cost reduction to users for

developing, deploying, launching and maintaining their new application service. There are

many commercially released or open-source cloud PaaS solutions. We can classify them into

a number of groups as follows [1-3]:

1) Application Platform as a Service (APaaS): This group is focused on developing,

deploying and lauching applications for the public web in automated way such as Google

App Engine, Microsoft Azure Services Platform, WSO2 Stratos and Appscale.

2) Software Infrastructure as a Service (SIaaS): This group provides a number of useful

software infrastructures which can be integrated with user applications such as Amazon

Simple Queue Service, SimpleDB and Google Apps BigTable.

3) Distributed-parallel application platform: These solutions offer unique services such as

spinning up a mapreduce platform or providing API library to launch distributed parallel

applications. Amazon Elastic Mapreduce belongs to this group.

4) Other notable platforms: This type includes various platform services with unique

functions such as offering testing and billing services such as SOASTA and Zuora.

Today, several use cases that create value through analyzing big data using mapreduce

framework have been reported [4]. Apache Hadoop [5] is getting spotlight as a solution for

big data analysis platform, because it offers distributed storage and mapreduce based

massively distributed processing framework. Therefore, most of distributed parallel

application platforms are focusing on hosting Hadoop on cloud. Amazon Elastic Mapreduce

[6] and MS Windows Azure Platform [7] offer services for spinning up a Hadoop cluster on

public cloud. There are a number of open projects to support automated deployment of

mapreduce application on VMs such as Appscale [8] and Apache Wirr [9]. GAE [10]

supports API library for mapreduce to handle big data on google’s cloud. The research for an

effective infrastructure management to exploit the cloud infrastructure is other important

issue. Cloud infrastructures interacting with cloud platforms should provide on-demand

virtual servers and storages for applications. There are various solutions for building public,

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

Copyright ⓒ 2013 SERSC 21

private and hybrid cloud such as Amazon EC2/S3 [11], Eucalyptus [12], and OpenStack [13].

These solutions can offer VM servers and extra block level storages, and support their

networking, authorization and web service APIs for users. Cloud infrastructure manager

(CIM) technology supports sophisticated way and easy-to-use interface to manage, control

and integrate these infrastructures with other software systems. There are several solutions for

CIM such as Rightscale [14], Kaavo [15] and KOALA [16] project which support automated

software deployment, monitoring, and web-based unified interfaces for heterogeneous clouds.

3. Architecture of DIVE-C

In this section, we describe several features of DIVE-C, and then its architecture in

detail. As shown in Figure 1, DIVE-C consists of three layers; Cloud PaaS Portal (CPP),

Cloud Distributed-parallel Data Processing Platform (CDDP) and Cloud Infrastructure

Management Platform (CIMP). It delivers a transparent virtual computing environment

with on-demand processing model on VM resources to user. Since the complexity of

using cloud is hidden, user can focus on their applications via DIVE-C.

3.1. Features

In the following, we describe a number of key features of our system.

1) Transparent virtual cloud computing environment: PaaS user needs to focus on the

core functions and development of their new application [17, 18]. DIVE-C provides

a transparent virtual computing environment by hiding the complexity via

automated configuration of VM resources and software environment. Users can

focus on development of their new cloud applications and core functions via DIVE-

C.

2) Agent-based processing platform for supporting various distributed-parallel

application models: DIVE-C offers an agent-based resource management scheme

for configuring its VM resources to support various distributed-parallel processing

models. Each VM resource on cloud infrastructure has its Resource Agent launched

on booting stage automatically to interact with Resource Agent Controller in CDDP.

DIVE-C can control multiple VM resources via these Resource Agent Controllers to

customize and deliver optimized virtual software environment with on-demand

distributed parallel processing model to user.

3) Automatic VM resource provisioning: DIVE-C offers adequate on-demand VM

resources optimized for user application deployment on cloud infrastructure.

Lifecycle of each VM resource is managed automatically, so users need not handle

a specific node where their application should be deployed and executed.

4) Unified cloud infrastructure management: CIMP supports unified management

through the abstraction layer for API which interacts with several cloud

infrastructures. It means that user applications can be deployed on any cloud

infrastructure. If a managed infrastructure cannot offer competitiveness or stability,

it can be replaced with the other proper infrastructure easily.

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

22 Copyright ⓒ 2013 SERSC

Figure 1. Three-layered architecture of DIVE-C with cloud infrastructure

5) Easy-to-use web interface: Cloud PaaS Portal provides automated system and

convenient graphical interface to develop, deploy and launch their applications by

offering an easy-to-use web interface for CDDP.

3.2. Cloud PaaS Portal (CPP)

CPP provides a web interface for platform users to support application deployment and

execution management. It provides graphical interfaces to organize user requests for

automated application deployment and launching. Users choose appropriate data processing

model and requirements which describe the proper software environment for user application

deployment via CPP. The information is filled by user, and documented as XML-like request

form named SLD (Service Level Description). Then, user uploads his applications and input

data via CPP to request the execution of their applications. Then, user data including SLD and

applications are submitted to the CDDP. During the execution of applications, user can

receive notifications about information such as error or job completion via CPP.

3.3. Cloud Distributed-parallel Data Processing Platform (CDDP)

This layer composes a software execution environment, and manages the execution

of user application. It requests a new resource creation to CIMP in response to a user

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

Copyright ⓒ 2013 SERSC 23

request specified by SLD received from the CPP, and configures an actual software

environment for application.

CDDP supports a number of distributed parallel process models: Message passing

model for grid applications, Mapreduce model based on Hadoop mapreduce and

Dataflow based model such as abstraction of Hadoop framework or workflow processes

which consist of various mapreduce applications.

The unit of each application execution is a process, and managed by the instance of

Process Controller. Process Manager creates a new Process Controller instance when a

user SLD is received. The Process Controller requests the creation of new resources

through Resource Requester, based on SLD information analyzed by Request Analyzer.

Submitted user data and applications are stored in Data Repository. After resource

creation, Process Controller manages Resource Agent Controllers each of which is

created and connected to a Resource Agent of each VM.

Our resource control scheme is influenced by agent-based middleware architectures

[1, 19]. Resource Agent is a demon process which offers a connection between CDDP

and each VM instance. A new VM instance containing a Resource Agent is created, and

each Resource Agent is connected to the Resource Agent Controller created by

Resource Agent Manager one by one. Pre-installed Resource Agent is automatically

started after booting up of each VM instance, and tries to access Resource Agent

Manager to build a new connection with its Resource Agent Controller instance. Then,

Process Controller can start server customizing. Process Controller lists up controllable

Resource Agent Controllers for its process. Then, it determines a role of each VM

resources, and configures application environment for each of them via the connection

between Resource Agent Controller and Resource Agent. Process Controller locates

Figure 2. Interactions between Process Controllers, Resource Agent
Controllers and Resource Agents on each VM for provisioning of virtual

Hadoop cluster

user data and applications from Data Repository, and sends them to the VM instances.

Each Resource Agent on VM instance receives them from the CDDP, stores them onto

its VM instance, and sets up a proper software environment for the execution of the

applications. After all VM instances are configured, Process Controller sends

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

24 Copyright ⓒ 2013 SERSC

commands to each Resource Agent for running user applications and collecting their

results. The utilization of VM resource and running status of application are monitored

by Resource Agent. All of these procedures are hidden, so users need not know about

its details. Figure 2 shows the interactions between Process Controllers, Resource

Agent Controllers and Resource Agents on each VM for provisioning of virtualized

Hadoop cluster with 4 VMs (1 Master and 3 Slaves) as an example.

3.4. Cloud Infrastructure Management Platform (CIMP)

This layer offers an abstraction of cloud infrastructure interface. It consists of three

main components: Cloud Manager, Cloud Infrastructure Controller and Cloud

Infrastructure Interface as shown in Figure 1.

Resource Negotiator of Cloud Resource Manager receives the detailed VM resource

requirement from Resource Requester, and finds an optimized fabric of VM resources

based on pre-defined VM types available in the cloud infrastructure. VM types of cloud

infrastructure comprise the attributes of VM including the number of processor,

memory size and disk size. Each combination of these attributes determines whether the

VM is compute-intensive (multi-core VCPU) or storage-intensive (large ephemeral

disk), high-performing or economical. Then, Resource Provider launches the creation of

a bundle of VM instances by calling a number of internal APIs supported by Cloud

Infrastructure Controller. After the creation of VM instances, each VM is controlled by

its Resource Agent. After all of these steps, a list of the VM resources created for a use

request is returned to CDDP.

Cloud Infrastructure Controller offers an abstracted client-side API library of cloud

infrastructure web services API. Various cloud management operations including

creation and termination of VMs are executed through this layer. Cloud Information

Manager gathers, and monitors the information of cloud infrastructure such as the status

of cloud/VMs and utilization factor of cloud infrastructure.

3.5. Implementation

We implemented a prototype of DIVE-C using java 6. Components such as Process

Controller and Resource Agent Controller are implemented as java threads. Cloud

Infrastructure Controller of CIMP supports an abstracted java library of Amazon EC2

API [20] compatible with various cloud infrastructures such as Eucalyptus and

OpenStack.

4. Experiments

In this section, we shall show the results of experiments for the performance

evaluation of our system.

4.1. Experimental Setup

Our DIVE-C prototype is hosted on a server with 3.33GHz 4 core processor and 4GB

memory. The server is connected to a cloud infrastructure test bed built on Ubuntu

Enterprise Cloud [21] based on Eucalyptus 1.6.2. Our cloud infrastructure test bed

consists of 1 front-end node (Cloud controller, Walrus, Cluster controller and Storage

controller) and 4 worker nodes (Node controller and KVM hypervisor). Each node has 2

Xeon E5606 2.13GHz processors and 24GB memory, and is connected to each other in

Ethernet. Resource Agent is pre-installed in the customized VM bundle image and

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

Copyright ⓒ 2013 SERSC 25

started automatically after booting of VM instance. The custom VM image is based on

Ubuntu 10.04 LTS including java 6 and cloud-init tool to collect meta-data of each VM

instance from cloud infrastructure.

4.2. Functionality Tests

We performed two kinds of experiments for the evaluation of our system. The first

experiment is on measuring provisioning time for VM resources and software

environment. Figure 3 shows the average time for provisioning virtual computing

environments including (a) creation time of VMs, (b) customizing time of VMs, (c)

startup delay for fully distributed Hadoop 0.20.2 cluster as an example scenario and (d)

Figure 3. Resource provisioning time: (a) VM creation, (b) VM customization,
(c) Hadoop startup delay, (d) total provisioning time. (d) = (a) + (b) + (c)

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

26 Copyright ⓒ 2013 SERSC

Figure 4. Performance comparison of virtual clusters on UEC testbed with

various distributed-parallel application models: (a) Terasort, (b) Distributed
grep, (c) Pi estimator, (d) MPI mandelbrot, (e) Wordcount, (f) Apache log parser

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

Copyright ⓒ 2013 SERSC 27

total provisioning time ((a)+(b)+(c)). Tested VM instance type has 2 core virtual CPU

and 2GB memory. According to Figure 3(a), creation time is related to the number of

worker nodes. Since our test bed has 4 worker nodes and resource scheduling policy is

round-robin, the creation time is almost identical for each multiple of 4 VMs. It is

significantly increased when the number of requested VMs is just over each multiple of

four. If the cloud infrastructure supports more worker nodes, the increase of creation

time can be slow down. Figure 3(b) and (c) show that as the number of VM resources

increases, customizing time and Hadoop startup delay for VMs are linearly increased

respectively. Because the startup delay composes a great proportion, the total

provisioning time is actually linear as shown in Figure 3(d). The second experiment is

about measuring performance of benchmarking applications with various processing

models on virtual cluster of our test bed: mapreduce, MPI and dataflow. Figure 4(a), (b)

and (c) show the average processing time with regard to various input size for (a)

Terasort [22] (b) Distributed grep and (c) Pi estimator as benchmark workloads for

mapreduce applications. They are launched on the virtual Hadoop 0.20.2 clusters built

on VM instances. Input data for Terasort and Distributed grep is generated by using

Teragen [22], and Pi estimator is launched with 1 billion samples. Figure 4(d) shows

the average processing time for various size of mandelbrot set with 10000 iterations as

MPI application. The performance of dataflow model applications is shown in Figure 4

(e) and (f). Figure 4(e) shows the average processing time of Wordcount written in Pig

latin, the SQL-like distributed-parallel script language for Hadoop environment. Figure

4(f) shows the average processing time of Apache log parser using Cascading library.

Cascading is the useful abstraction API set of basic Hadoop mapreduce operations and

datamodels to build an application by connecting each multiple mapreduce stages.

Tested VM instance type is identical to that of the first experiment above. Our results

show the typical improvement of performance via workload distribution. The execution

time decreases when the number of VM resources increases.

5. Conclusion and Future Works

We have presented the cloud platform architecture named DIVE-C for distributed-

parallel data processing and infrastructure management, and shown how it can be used

to provide a virtual computing environment on cloud and process data. Our system has

three layers and offers a transparent virtual environment easy to launch distributed -

parallel applications on various models. On-demand virtual computing environment for

user’s application is supported by agent-based resource management layer, and

launched on the VM resources through the unified cloud infrastructure management

layer. Furthermore, DIVE-C offers an easy-to-use web interface to support convenience

for users. It hides these features and the complexity of the cloud system, and helps users

to focus on their new applications and core services. Experiment results show the

competitive performance of DIVE-C for virtual computing environment provisioning.

We are planning to add more key features to achieve more valuable and fault -tolerant

system design, and advanced performance evaluation with practical distributed parallel

applications on heterogeneous clouds.

Acknowledgements

This research was supported by the MKE (Ministry of Knowledge Economy), Korea,

under the ITRC (Information Technology Research Center) support program supervised by

the NIPA (National IT Industry Promotion Agency) (NIPA-2013-H0301-13-3006), Next-

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

28 Copyright ⓒ 2013 SERSC

Generation Information Computing Development Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology

(2012-0006425), and Ministry of Culture, Sports and Tourism (MCST) and Korea Creative

Content Agency (KOCCA) in the Culture Technology (CT) Research & Development

Program (R2012030096).

References

[1] I. Y. Jung, D. K. Lee, B. J. Han, K. H. Kim and C. S. Jeong, Proceedings of the 3rd International Conference

on Internet, (2011) December 15-18; Sepang, Malaysia.

[2] G. Raines and L. Pizette, “Platform as a Service: A 2010 Marketplace Analysis”, MITRE (2010).

[3] Y. V. Natis, B. J. Lheureux, M. Pezzini, D. W. Cearley, E. Knipp and D. C. Plummer, “PaaS Road Map: A

Continent Emerging”, Technical Report: G00209751, Gartner Inc., (2011).

[4] D. Borthakur, K. Muthukkaruppan, K. Ranganathan, S. Rash, J. S. Sarma, N. Spiegelberg, D. Molkov, R.

Schmidt, J. Gray, H. Kuang, A. Menon and A. Aiyer, Proceedings of the 2011 international conference on

Management of data, (2011) June 12-16; Athens, Greece.

[5] Apache Hadoop, http://hadoop.apache.org.

[6] Amazon Elastic Mapreduce, http://aws.amazon.com/elasticmapreduce.

[7] Microsoft Windows Azure, http://www.windowsazure.com.

[8] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman and R. Wolski, First International Conference

on Cloud Computing, (2009) October 19-21; Munich, Germany.

[9] Apache Whirr, http://whirr.apache.org.

[10] Google App Engine, https://appengine.google.com.

[11] Amazon Web Services, http://aws.amazon.com.

[12] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff and D. Zagorodnov, Proceedings

of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, (2009) May 18-21;

Shanghai, China.

[13] OpenStack, http://www.openstack.org.

[14] RightScale, http://www.rightscale.com.

[15] Kaavo, http://www.kaavo.com/.

[16] C. Baun, M. Kunze and V. Mauch, 2011 IEEE 4th International Conference on Cloud Computing, (2011) July

4-9; Washington D.C., USA.

[17] M. Boniface, B. Nasser, J. Papay, S. C. Pillips, A. Servin, X. Yang, Z. Zlatev, S. V. Gogouvitis, G. Katsaros,

K. Konstateli, G. Kousiouris, A. Menychtas and D. Kyriazis, Fifth International Conference on Internet and

Web Applications and Services, (2010) May 9-15; Barcelona, Spain.

[18] S. Kächele, J. Domaschka and F. J. Hauck, Proceedings of the First International Workshop on Cloud

Computing Platforms, (2011) April 10; Salzburg, Austria.

[19] H. L. Kim, B. J. Han, I. Y. Jung and C. S. Jeong, KSII. T. INTERNET. INF., vol. 4, (2010), pp. 1080.

[20] Amazon EC2 API Tools, http://aws.amazon.com/developertools/Amazon-EC2/351.

[21] S. Wardley, E. Goyer and N. Barcet, “Ubuntu Enterprise Cloud Architecture”, Technical White Paper,

Canonical (2009).

[22] O. O’Malley and A. C. Murthy, “Winning a 60 Second Dash with a Yellow Elephant”, Technical Report,

Yahoo! (2009).

Authors

In-Yong Jung received a B.S. degree in Electrical Engineering from

Korea University, Seoul, South Korea, in 2008. He is currently working

toward the Ph.D. degree in Electronic and Computer Engineering at the

Korea University. His research interests include distributed and parallel

computing, cloud computing and GPGPU.

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

Copyright ⓒ 2013 SERSC 29

Byong-John Han received a B.S degree in Electrical Engineering

from Korea University, Seoul, South Korea, in 2007. He has

involved in some projects such as Intellectual Unmanned Vehicle

and Semantic Information System in Grid middleware system. He is

in the doctoral course in Electrical Engineering from Korea

University, Seoul, South Korea. His current research is Intellectual

management in Grid middleware system.

Hanku Lee is the director of the Social Media Cloud Computing

Research Center and an associate professor of the division of

Internet and Multimedia Engineering at Konkuk University, Seoul,

Korea. He received his Ph.D. degree in computer science at the

Florida State University, USA. His recent research interests are in

cloud computing, distributed real-time systems, distributed and

compilers.

Chang-Sung Jeong is a professor at the Department of Electrical

Engineering at Korea University. Before joining Korea University, he

was a professor at POSTECH during 1982-1992. He was on editorial

board for Journal of Parallel Algorithms and Application in 1992-2002.

Also, he has been working as a chairman of Computer Chapter at

Seoul Section of IEEE region 10. His research interests include

distributed concurrent computing, grid computing, and collaborative

ubiquitous computing.

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

30 Copyright ⓒ 2013 SERSC

