
International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013), pp.145-158

http://dx.doi.org/10.14257/ijmue.2013.8.5.14

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2013 SERSC

Comparative Evaluation of an Error Checking Approach for MPSoC

Tang Liu
1,2

, Huang-Zhang Qin
1
, Hou-Yi Bin

1
, Fang-Feng Cai

2
 and Zhang-Hui Bing

3

1
Embedded Software and Systems Institutes Beijing University of Technology

2Department of Physics and Electronics Engineering, Guangxi Teachers Education

University, Nanning, 530024, China
3
Department of computer science and Electronics Engineering, GuiLin University of

Electronic Technology, GuiLin, 541004, China

tangliugx@163.com, cfengcaifang@163.com zhanghuibing@guet.edu.cn

Abstract

This paper proposes a hardware error checking approach（CCRC）by using redundancy

core for multiprocessor system-on-chip (MPSoC) and describes several main error detection

methods based on Software-Implemented Hardware Fault Tolerance (SHIF) idea proposed in

literatures. The CCRC approach insert some error detection code in high level code, detect

the existing of redundancy core in MPSoC, then complete the calculation of detection code in

redundancy core. The author compares the CCRC approach with several main error

detection methods on error detection capabilities, area, memory and performance overheads

in an experiment platform. The result of comparative evaluation shows that the CCRC

approach is effective for MPSoC, taking some advantages in versatility and lower cost.

Keywords: MPSoC , hardware error, redundancy core, Comparative evaluation

1. Introduction

The increasing computational power requirements recommend development of

multi-processor system-on-a-chip (MPSoC). Unfortunately, the high integration level of

circuits may be particularly sensitive to transient faults, which may possibly cause failures

[1]. In this scenario, new techniques that are able to detect, locate, and correct the effects of

transient faults in MPSoC are fundamental [2].

At present, several error detection techniques have been proposed in the literature [3-14],

where each option has different tradeoff options in terms of energy, performance, area,

coverage, complexity, and programmer effort. Software-based techniques introduce some sort

of redundancy by adding code executed in microprocessor. Among the most important

solutions proposed in the literature, there is the Enhanced Control Flow Checking Using

Assertions (ECCA) and the Control Flow Checking by Software Signatures (CFCSS) [9, 10].

-- Other techniques harden SoCs against faults affecting the data they elaborate. An example

of such a group of techniques is given by the method proposed in [11], which is based on

instruction-level duplication and is able to achieve detection of the data faults. Another

approach, named Error Detection by Data Diversity and Duplicated Instruction (ED4I), has

been proposed in [12]. Some solutions combining hardware and software techniques have

been proposed. These solutions usually referred to as hybrid fault detection solutions [13, 14]

can achieve a better trade-off between fault coverage and area as well as performance

overheads. A hybrid approach typically introduces some reduced redundant information in the

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

146 Copyright ⓒ 2013 SERSC

application code and data, while resorting to an I-IP to perform on-the-run consistency checks

[14].

For adapting MPSoC System this paper proposes the CCRC (the calculation task of

detecting code on redundancy core) approach by using redundancy core. It inserts some error

detection code in application software, detect the existing of redundant core in MPSoC, then

move the calculation and comparison task of detection code to it. This technique suit to the

MPSoC design flow and get a better trade-off between performance and overhead with

relatively high error checking rate. This paper induces the main idea of CCRC approach and

several representative error detecting techniques mentioned above, comparatively evaluate the

CCRC approach in an FPGA-Based MPSoC system, and give the best option for a given

operating scenario and application.

The rest of the paper is organized as follows: Section 2 gives a brief related works of error

checking in SoC; Section 3 explains the CCRC and several main error detection mechanisms;

Section 4 explains the verification and comparison experiment platform and plan; Section 5

shows the experiment result analysis; Section 6 gives a conclusion.

2. Related works

There are two main hardening techniques for SoC fault tolerance: hardware-based and

software-based technique according to its placement in the system hierarchy. The

hardware-based technique main based on a design the dependability system architecture, i.e.,

design custom circuit or adding new core to achieving dependability enhancement in different

system level [3, 4, 5]. This approach has less effect in computing performance but it needs

additional hardware it needs more area overhead, lack scalability and difficult to transplant .

The software-based techniques introducing some sort of redundancy by adding code executed

in microprocessor [9-10, 12] to check the software control flow and data consistency. Those

approaches are easy to use but need high overhead in code size and decreased performance.

Except that, another class of error detection technique has been developed that relies on

software level symptoms to detect errors [6-7]. The main idea of symptom-based detection

technique: Fault injection experiments show that the underlying hardware error will spread to

the upper software system, so we only need to deal with the error can ultimately have an

impact on the system. This technique can detect transient errors and permanent faults. In

addition, those hybrid methods which combine the hardware-based and software-based

method have been proposed [13-14].

3. Introduction of Error Detection Approach

The approach described in this section based on the idea of SHIFT. It is a low cost

alternative to hardware fault because it does not require any hardware modification and can

be easily adapted to most hardware platforms. In this section, we will begin with definitions

of terminologies and then describe the main idea of these methods respectively.

A basic block is a sequence of consecutive statements in which the flow of control enters at

the beginning and leaves at the end without branching except at the end. By defining

V={v1,v2,…,vn} as the set of vertices representing basic blocks and E={(i,j)|(i,j) as a branch

from vi to vj} and the set of edges denoting possible flow of control between the basic blocks,

a program can be represented by a program graph, PG={V,E}.

As an example we consider the code fragment shown in Figure 1, where the basic blocks

are also numbered in (a) and the corresponding program graph is shown in (b).

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

Copyright ⓒ 2013 SERSC 147

(a) (b)

Figure 1. Example of source code and its corresponding program graph

3.1 Software

In software-based approaches, the reliability is generally achieved by combining data-flow

and control-flow checking techniques. Control-Flow checking is usually performed by

comparing a run-time signature with a pre-computed one. On the other hand, data-flow

checking techniques rely on redundant computation by replicating instructions. This section

describes the technique based on the introduction of additional executable assertions to check

the correct execution of the program control flow [11] and the technique based on a set of

rules for introducing redundancy in the high-level code for detecting transient error affected

data [8].

In literature [11], the proposed approach checks the control flow of programs by using a

dedicated global integer variable (call code), which contains the run-time signature associated

with the current node in the program flow graph. Every basic block is identified by a unique

signature defined at the compile time. The following assertions are introduced into each basic

block vi.

A test assertion controls the signature of the previous basic block and checks if it is

permissible, according to the Program Graph, i.e., if the entering node vj belongs to the

pried(vi)

A set assignment updates the signature, setting it to the corresponding value Bi.

During the program execution, for each basic block, the global integer variable checks if

the block is reached from a legal block (according to the Program Graph), otherwise a control

flow error is detected.

The main of this approach is in each basic block the test and set statements are introduced

at the beginning and at the end of the block. It allows the approach to cover all the single

control flow faults, including the ones not crossing the block boundaries.

In literature [8], the author proposed a method which performs control flow and data

detection by redundancy. Its basic ideas behind a set of transformation rules to get data and

code redundancy is as following:

Every variable x must be duplicated: Let x0 and x1 be the names of the two copies. Two

sets of variables are thus obtained, the former (set (v0)) holding all the variables with footer 0

and the latter (set (v1)) holding all the variables with footer 1.

Every write operation performed on a variable x must be performed on its replica x0 in v0

(using only variables belonging to v0 and its replica x1 in v1 (using only variables belonging to

v1); after each read operation on a variable x, the two replicas x0 and x1 must be checked, and

if an inconsistency is detected, an error procedure is activated.

In this paper, we combine above two methods to achieve the detection of control flow and

data consistency and compare evaluate it by experiment.

B1 i=1;

B2 While(i<10)

B3 {if（a[i]<b[i]）

B4 z[i]=a[i];

B5 i=i+1;}

B6

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

148 Copyright ⓒ 2013 SERSC

3.2 Ed
4
I

[12]

Ed
4
I is a technique that detects both permanent and temporary errors by executing two

“different” programs (with the same functionality) and comparing their outputs [12]. ED
4
I

map each number x, in the original program into a new number x’，and then transforms the

program in order to operate on the new numbers for the results can be mapped backwards for

comparison with the results of the original program.

It is the key method of Ed
4
I that the transformation algorithm transforms a program

(integer or floating point numbers) to a new program with diverse data. First of all, we show

the definitions of terminologies and then describe the transformation algorithm.

If x is k times greater than y, x is k-multiple of y. Program transformation transforms a

program P to a new Program P’ with diverse data in which all variables and constants are

k-multiples of the original values when the program P is executed. It consists of two

transformations: expression transformation and branching condition transformation. The

expression transformation changes the expressions in P to new expressions in P’ so that the

value of every variable or constant in the expression of P’ is always the k-multiple of the

corresponding value in P. The branching condition transformation adjusts the inequality

relationship in the conditional statement in P’ so that the control flow in P and P’ is identical.

A k-factor diverse program is a program with a new program graph p’G= {v’, E’ } which

is isomorphic to PG, but all the variable and constants in P’ are ok-multiples of the ones in

P.S and S’ are the sets of variables in P and P’ respectively, and n are the number of vertices

(basic blocks) executed ;

S (n): the set of values of the variable in S after n basic blocks are executed ,

S’ (n): the set of values of the variable in S’ after n basic blocks are executed

The program transformation should satisfy:

• PG and P’G are isomorphic;

• K*S (n) =S’ (n) , for ∨n>0. (Where k*S (n) is obtained by multiplying all elements in S

(n) by k).

The example of transforming a program to a diverse program is shown in figure 2.

Figure 2. The original program transform to a new program with k=-2[12]

The factor k determines how diverse the transformed program is. So it is important that

how to choose an optimal value of K that maximizes the diversity of the transformation

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

Copyright ⓒ 2013 SERSC 149

program. The literature [4] show that, for integer programs, the transformation with k=-2 was

the most desirable choice in six out of seven benchmark programs.

This technique plays an important role when hardware design is fixed (such as COTS

components or IP blocks in SoC design and cannot be modified in embedded systems that

operate in safety and mission-critical applications.

3.3 Hybrid
[14]

The contribution of the hybrid method is described in the literature [14] in the development

of a new Infrastructure IP suitable to be adopted to improve the reliability of processor-based

SoC: The goal of this I-IP is to guarantee high detection capability with respect to transient

faults affecting data and code memory, as well as the memory elements within the processor.

The hybrid integrates the solutions presented in [8] and [11], moves the computer effort to

external Infrastructure IP (I-IP) to reduce its cost and enhance its performance in terms of

fault detection capabilities. It is not only addresses faults affecting both data integrity and

control flow check, but demonstrates that cleverly combining together the previous

approaches result in higher detection capabilities with reduced overhead.

Figure 3. The architecture of the generic SoC system including the fault
detection-oriented I-IP [14]

The architecture of the system including the I-IP is reported in Figure 3. According to the

hybrid method, the code is in charge of signaling the I-IP when a new basic block is entered.

Since the I-IP is not intended to record any information about the application code, the

hardened program must send to the I-IP all the information required to check whether the new

block can be legally entered according to the list of previous blocks. The I-IP records the

current signature in an internal register. Once it is informed that a new block is entered and it

has received the list of blocks that can legally reach the new block, it checks whether the

stored signature is included in this list. If not, the ERROR signal is raised. Otherwise, the

current signature is updated with the signature of the new block.

The hybrid method can be easily adopted in the typical SoC design flow, i.e., it requires

minimal changes in the hardware (apart from the insertion of the I-IP), while the software is

simplified with respect to the purely software fault detection approach above.

3.4 The CCRC approach

The CCRC approach, inherited the idea of SHIF, insert some redundant codes in high-level

codes to check hardware error. At the same time, it takes advantage of the natural redundancy

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

150 Copyright ⓒ 2013 SERSC

characteristics of a multi - processor system, i.e., migrate the main calculation and

comparison task of redundant code to the redundancy core. The CCRC approach suits to the

MPSoC design flow without any changes in the hardware. It Combines the benefits of pure

software approach, i.e., none additional hardware cost, and the advantage of multi-core

resources to reduce the impact of the performance and get better balance between the

detection capacity and overhead.

The CCRC approach transforms the original program using the rules in literature [8] and

literature [11] and introduces some functions, i.e., RCdetect() ,flag(), RCtest() and RCset() to

complete the fault detection of MPSoC system.

Figure 4. The transformation program for MPSoC

The harden code combining data and control flow check for MPSoC is shown in Figure 4.

(Example program in Figure 1)

The roles of three high-level functions, RCdetect(), RCtest() and RCset() are as the

following:

RCdetect（）: determine whether there is a redundant core in the system

RCset（Bi）: informs the spare core that the program has just entered into basic block Bi

RCtest（Bj）: informs the spare core that block Bj belongs to the set of the predecessors of

the newly entered block.

The redundancy core contains two registers, A and B. The parameter of the function is

written in the register, thus becoming available to the redundancy core for processing. A

sequence of calls to the two functions should be inserted in the code at the beginning and at

the end of each block Bk. First, a call to RCtest(Bi) is inserted for any block Bi prev(Bk).

Then, a call to RCset(Bk) is inserted. When noticing a write operation on register A, the

redundancy core set or reset an internal flag, depending on the result of the comparison

between the function parameter and the internally stored signature. When noticing a write

operation on register B, the redundancy core verifies the value of the flag and possibly

activates the ERROR signal. Otherwise, the signature of the current block is updated using

the value written in register B.

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

Copyright ⓒ 2013 SERSC 151

For Support data checking the redundancy core need to know the addresses of the two

replicas of the same original variable belonging to the core we monitor and to understand

whether a given address corresponds to the first or second replica. Moreover, it is important

to note that the two bus cycles accessing the two replicas of the same variable are not

necessarily consecutive. In fact, the compiler often reorganizes the assembly code so that

instructions are recorded in such a way that the two instructions are interleaved with others. In

literature [14], the author assumed that the compiler never modifies the code in such a way

that the second replica of a variable is accessed before the first replica. But this solution limits

the generality of their methods. Besides that, for the technique we proposed must be identified

the access cycle belong to which core in MPSoC. For resolving the above problem, we

induced a function flag(fi,j), which send information to redundancy core before read variable

for identifying which core and replica of the variable is accessed. There are two registers C

and D in redundancy core which place the parameter of flag().When redundancy core receives

the information, it informs the other core do not to use the bus. The values of register C and D

separately represent the sign of the processor core and the collection of variable belongs to,

i.e., the first replica or the second replica collection. The redundancy core provides an ADM

memory, which is used to store the address-data copy corresponding to each variable accessed

in memory, whose replica has not been accessed yet. The redundancy core has two registers

to store the core flag of MPSoC and in charge of informing other cores not to use the bus.

The redundancy core implements the data checking algorithm as following:

1）If receiving the flag information from the checked core, the redundancy core updates the

core register C and replica flag register D, informs the other core do not use buses.

2）If a memory read is detected on the bus, the address and data values are captured.

3）If the read operation relates to the first replica of a variable, a new entry is inserted in the

ADM, containing the just captured address and data values.

4）If the read operation relates to the second replica of a variable, an access is made to the

ADM:

- If an entry with the same address is not found, the ERROR signal is raised.

- Otherwise, the data is compared with the one stored in the ADM entry and the ERROR

signal is raised in the case of a mismatch.

- The entry is removed from the ADM.

When the end of a basic block is reached, the ADM should be empty since the two replicas

of all the variables should have been accessed. If this is not the case, an error (most likely, a

control flow error) has happened: The ERROR signal is raised.

In harden code program, after the first replica variable is complier, the parameter of the

flag() is set 0, when a second replica of the variable is complied, the parameter of the flag() be

set 1. As soon as a memory access cycle is detected on the bus, the address and the value of

the accessed variable will be extracted respectively. If value of register D is 0, the first replica

of the variable is currently being accessed; otherwise, the second replica is being accessed.

The main work of redundancy core as follows:

• Communicate with the other processor core in MPSoC

• Decodes the bus cycles being executed and, in case of read or write cycles to the

memory, it samples the address (adx) and the value (data) on the bus.

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

152 Copyright ⓒ 2013 SERSC

• Calculates the address of the corresponding replica, accesses the ADM memory, and

verifies whether the searched entry exists for verifying whether any data stored in the

memory or the processor has been modified.

The proposed solution of using redundancy core to check computing can be easily adapted

to different MPSoCs and can be reworked for adapting to the bus protocol implemented

because it is one part of the MPSoC architecture. In addition, when we design a MPSoC

system considered dependability, we only need to consider how to program the function of

RCdetect(), RCtest(), RCset() and flag() respectively.

4. Experiment Environments for Verification

4.1 Architecture of experiment platform

The experiment MPsoc system platform includes fault inject function. The architecture of

the experiment MPSoC system is presented in Figure 5. We developed a prototypical

implementation of MPSoC and mapped it on a Xilinx Virtex-6 FPGA. The system consists of

multiple processing elements (PowerPC or microblaze), peripherals and PLB bus. The core of

MPSoC we proposed is connected to the PLB bus. Every processing element includes a

internal memory to store the redundancy code for checking the error. When the redundancy

core detects an error, it activates an ERROR signal, which can be sent either to the processor

or to the outside, depending on the preferred recovery scheme.

Figure 5. The architecture of the MPSoC with fault inject system

To emulate an SEU by flipping any writable bit within the processor including the general

purpose register, special purpose register and the instruction we run an interrupts service

routine (ISR) in the processor (PowerPC or Microblaze). The SW-FI responsible for

performing the necessary system to introduce an SEU(bit-flip) into the PowerPC. It can

modify any software writable register [15]. The type of injection is chosen at random by a

pseudo-random number generator.

4.2 Experiment Plan

We performed several fault-injection experiments while the system is running a program.

We repeated the injection experiments for three benchmark programs that are inspired by

those in the EEMBC automotive/industrial suite:

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

Copyright ⓒ 2013 SERSC 153

• Matrix multiplication of two 3×3 matrices: it computes the product of two 3×3 integer

matrices.

• Fifth Order Elliptical Wave Filter: It implements an elliptic filter over a set of 6

samples.

• Lempel-Ziv-Welch Data Compression Algorithm: It compresses a stream of 8

characters.

For each such benchmark, up to four different implementations have been compared:

• Plain: The plain version of the considered benchmark; no hardware or software fault

detection techniques is exploited.

• Software: the basic version of using the rule in [8] and [11]

• ED
4
I: The hardened version of the benchmark, obtained using the purely software

hardening approach described in [12].

• Hybrid: The hardened version of the benchmark, obtained using the hybrid approach

proposed in paper [14]

• CCRC: The hardened version of the benchmark, obtained using the new approach we

proposed CCRC in this paper.

To model the effects of SEUs, we exploited the transient single bit flip fault model, which

consists of the modification of the content of a single storage cell during program execution.

When performing the fault injection experiments, we classified fault effects as follows:

• Time-out: The fault modified the program execution in such a way that the processor

entered an endless loop, thus not providing final results.

• Detected: The fault modified the program execution, but some of the detection features

detected it.

• Wrong Answer: The fault modified the program execution and its output results

differed from the expected ones. These faults are the most critical ones and their

number should be minimized by the adopted fault detection mechanism.

We implemented MPsoC system by microblaze soft core on a Virtex-6 FPGA. The core

connects to other core and the local memory through the Processor Local Bus (PLB). The

processor elements (core) are working at 100Mhz. In our experiments, we injected 50 000

randomly selected SEUs in the processor’s internal and external memory elements.

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

154 Copyright ⓒ 2013 SERSC

5. Experiment Result

5.1 Fault Detection Capabilities Analysis

The result of fault injection is shown in Figure 6:

Figure 6. Fault Injection Results

As we can see, the time-out and the wrong answer fault of the Plain version is the highest,

as well as zero detected in all versions, because there is none an error checking measure with

it. For other versions, the numbers of leading effect are following:

1) Time-out: On average, the faults number of the ED
4
I method leading to time out is the

lowest. Software approach may introduce additional branches to the Program Graph to

continuously check the value of the ERROR flag. Thus, the possibility of time out of

Software detection techniques increases. Conversely, for the Hybrid and CCRC approach, no

additional branches are introduced, resulting in a lower number of faults leading to time out

situations.

2) Wrong answer: ED
4
I methods significantly reduced; when exploring the Hybrid method

and CCRC method, once the unexpected content appears in the memory which store variable

replica during data checking, evoking an error signal .Then program generally come back

normal execution flow. So, these two approaches can be further reduced the wrong answer

than Software approach.

3）Detected: Since the CCRC and Hybrid can check some fault by control and data check

mechanism make the program come back to normal execution flow, the detection capabilities

are higher than Software method. There is little difference between Hybrid and CCRC, CCRC

approach shows a little higher detection than hybrid approach.

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

Copyright ⓒ 2013 SERSC 155

5.2 Overhead analyses

The approach we proposed includes three types of overheads with respect to the

unhardened version:

• Area overhead, related to the adoption of a redundancy core;

• Memory overhead, due to the insertion in the code of the RCdetect(), RCtest(), RCset()

and flag() functions and to the duplication of variables;

• Performance overhead, as additional instructions are executed.

To quantify the memory and performance overheads, we measured the memory occupation

of the programs that were hardened according to these techniques. We also measured the area

occupation and program execution time of the original programs. Memory occupation was

measured in terms of number of bytes in the code segments, while duration was measured in

terms of the number of clock cycles for program execution. The result is shown in Figure 7.

Figure 7. Performance and Memory Overheads of considered program

Results reported in Figure 7 show that the performance overhead of the Hybrid version is,

about 50% on average of that of the one with Software version. The average block size of the

LZW programs is smaller than in the other programs LZW show a higher code overhead. The

ratio between branch and functional instructions is higher in LZW. The CCRC version’s

memory and performance overhead are little higher than Hybrid version.

5.3 Comprehensive comparison

We compare these techniques with Plain version in adapting system, error detection

capability, hardware overhead, computing performance cost and code overhead. The result is

shown in Table 1

Table 1. The comprehensive comparison of error detection methods

Fault
methods

Adapting system Error detection rate

（%）

Hardware

overhead （%）

Performance

overhead（%

）

Code size
(%)

Software Processor-based 84.5 0 3.76 3.79

Ed4I Processor-based 76.2 0 2.87 1.73

Hybrid SoC 74.3 5 1.77 1.68
CCRC MPSoC 74.2 3 2.79 2.3

As observed, The CCRC method can be used to MPSoC system, and other approaches

adapt SoC or processor-based computing system. The detection rates of Hybrid and CCRC

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

156 Copyright ⓒ 2013 SERSC

dropped 10 percent, with their impact on performance reduced by half. The Code size of

Hybrid and Ed
4
I are also reduced by half. The code size of CCRC is little more than hybrid

method, but the hardware overhead of CCRC method is lower than the hybrid method.

6. Conclusions

In this paper we proposed an error checking approach（CCRC） combined the

software-based techniques and redundant character of MPSoC. The fault detection

capabilities of this approach have been experimentally measured by performing extensive

fault-injection campaigns; the comparative evaluation result shows that the main advantages

of the CCRC approach are the following:

• It is suitable to MPSoC design since it need no changes in the system design description

• It is both versatile and scalable. It does not require a special IP core or other hardware

module design for different system because that the redundancy core is completely

independent of the code executed by the processor.

• It insures fault detection capabilities and takes advance in lower cost of hardware and

code size.

 Acknowledgements

The authors would like to thank Guangxi Natural Science Foundation

(2012GXNSFBA053171, 2013GXNSFAA019324), Guangxi Experiment Center of

Information Science（20130321），the Dean's fund of the Guangxi Key Laboratory of Trusted

Software (kx201214, kx201203)

References

[1] J. O. R. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte, S. Chakraborty, M. Engel, R. Ernst, H.

H A Rtig, L. Hedrich, A. Herkersdorf, R. U. D. Kapitza, D. Lohmann, P. Marwedel, M. Platzner, W.

Rosenstiel, U. Schlichtmann, O. Spinczyk, M. Tahoori, J. U. R. Teich, N. Wehn and H. Wunderlich, “Design

and architectures for dependable embedded systems”, in CODES+ISSS '11, (2011) New York, NY, USA.

[2] P. Bernardi, L. M. V. B. Poehls, M. Grosso and M. S. Reorda, “A Hybrid Approach for Detection and

Correction of Transient Faults in SoCs”, IEEE Trans. Dependable Sec. Comput., vol. 7, (2010), pp.

439-445.

[3] N. Hebert, G. M. Almeida, P. Benoit, G. Sassatelli and L. Torres, “A Cost-Effective Solution to Increase

System Reliability and Maintain Global Performance under Unreliable Silicon in MPSoC”, IEEE Computer

Society, (2010), pp. 346-351.

[4] H. Pham, L. Devaux and S. Pillement.Re2DA: Reliable and reconfigurable dynamic architecture.

Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC). 6th International Workshop on (2011),

pp.1-6.

[5] R. Obermaisser and O. Hoeftberger, “Fault Containment in a Reconfigurable Multi‐Processor System‐
on‐a‐Chip”, In Proceedings of 21st IEEE International Symposium on Industrial Electronics, (2011).

[6] M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve and Y. Zhou, “Understanding the propagation

of hard errors to software and implications for resilient system design”, In ASPLOS XIII, (2008), New York,

NY, USA.

[7] M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve and Y. Zhou, “SWAT: An Error Resilient

System”, (2008).

[8] P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. S. Reorda and M. Violante, “Experimentally

Evaluating an Automatic Approach for Generating Safety-Critical Software with Respect to Transient

Errors”, IEEE Transactions on Nuclear Science, vol. 47, (2000), pp. 2231-2236.

[9] Z. Alkhalifa, V. S. S. Nair, N. Krishnamurthy and J. A. Abraham, “Design and Evaluation of System-Level

Checks for On-Line Control Flow Error Detection”, IEEE Transactions on Parallel and Distributed Systems,

vol. 10, (1999), pp. 627-641.

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

Copyright ⓒ 2013 SERSC 157

[10] N. Oh, P.P. Shirvani and E.J. McCluskey, “Control-Flow Checking by Software Signatures”, IEEE Trans.

Reliability, vol. 51, no. 2, (2002).

[11] Goloubeva, O. Rebaudengo, M. Reorda, M. Sonza and M. Violante, “Soft-Error Detection Using Control

Flow Assertions”, Proceedings of IEEE Symp Defect and Fault Tolerance in VLSI Systems, (2003), pp.

581-588.

[12] N. Oh, S. Mitra and E. J. McCluskey, “ED4I: Error Detection by Diverse Data and Duplicated Instructions”,

IEEE Trans. Computers, vol. 51, no. 2, (2002), pp. 180-199.

[13] R. Gong, W. Chen, F. Liu and K. Dai, “Control Flow Checking and Recovering by Compiler Signatures and

Hardware Checking”, Journal of Computer Research and Development, vol. 46, no. 2, (2009), pp. 345-351.

[14] P. B. Bolzani, L. M. V. Rebaudengo, M. Reorda, M. S. Vargas, F. L. Violante and Massimo, “A New Hybrid

Fault Detection Technique for System-on-a-Chip”, IEEE Trans. Computers, vol. 55, no. 2, (2006), pp.

185-198.

[15] M. Bucciero, J. P. Walters and M. French, “Software fault tolerance methodology and testing for the

embedded PowerPC”, Washington, DC, USA: IEEE Computer Society, (2011), pp. 1-9.

Authors

Tang Liu was born in Guangxi, China, on August 8, 1977.She

received the B.S. Degree in applied electrical technology from

South-Central University for nationalities, Wuhan, China, in 1999, the

M.S. Degree in control theory and control engineering from Guangxi

University, Nanning, China, in 2005.

She is currently pursuing her PHD at Beijing industrial university and

is an instructor at Guangxi teachers Education University. Her research

interests include embedded software and systems, hardware and

architecture, and multiprocessor system-on-chip.

Huang Zhang-Qin (M’95) was born in Zhejiang, China, on

December 28, 1965. He received the B.S., M.S., and Ph.D. degrees in

computer science from Xi’an Jiaotong University, Xi’an, China, in 1986,

1989, and 2000, respectively, and the Postdoctoral degree from the

Technische Universiteit Eindhoven (TU/e), Eindhoven, The Netherlands,

in 2003.

He is currently the Deputy Director of the Embedded Software and

Systems Institute (ESSI), Beijing University of Technology (BJUT),

Beijing, His current research interests include co-design for embedded

software and hardware, human-computer interaction based on Internet,

mass data storage, and network information security. He has authored or

co-authored more than 50 papers.

Hou Yi-bin (M’85) was born in ShanXi, China, on April 12, 1952. He

received the B.S. Degree in electrical engineering and computer science

and the M.S. Degree fromXi’an Jiaotong University of Xi’an, Xi’an,

China, in 1975 and 1981, respectively, and the Ph.D. degree from the

Technische Universiteit Eindhoven (TU/e), Eindhoven, The Netherlands,

in 1986.

He is currently the Deputy Principal of Beijing University of

Technology (BJUT), Beijing, China, where he is also the Dean of the

School of Software Engineering as well as a Professor. He has authored

or co-authored more than 100 journal papers and 30 conference papers.

His current research interests include human–computer interacting

app:ds:control
app:ds:theory
app:ds:and
app:ds:control
app:ds:engineering

International Journal of Multimedia and Ubiquitous Engineering

Vol.8, No.5 (2013)

158 Copyright ⓒ 2013 SERSC

system, embedded software and systems, and ambient intelligence. He is

also a reviewer of the Journal of Computer and System Sciences of USA.

Dr. Hou is a member of the New York Academy of Science.

Fang Feng-Cai was born in Guangxi, China, on December 8, 1973.He

received the B.S. Degree in applied electrical technology from Guangxi

teachers Education University, Nanning, China, in 2003.

He is currently an instructor at the Guangxi Education University. Her

research interests include Single-chip microcomputer system application,

circuit design.

Zhang Huibing was born in Henan, China, on December 14, 1976.

He received the B.S. and M.S. Degrees in computer science FromGuilin

University of Electronic Technology (GUET), Guilin China, in 2000 and

2005, respectively, and the Ph.D.degree in computer science from

Beijing University of Technology (BJUT), Beijing, in 2012.

He is currently a part of the Guangxi Key Laboratory of Trusted

Software, Guilin University of Electronic Technology, Guilin. His

research interests include embedded systems, Ambient Intelligence,

Service-Oriented Computing and Trusted Computing.

