
International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

363

Simulation of Smoke Improve Computing Coordinate Performance

Yongzhe Xu
1
, Eunju Kim

1
 and Byungsoo Lee

1,
*

1
Department of Computer Engineering, University of Incheon, Korea

yongzhexu@hotmail.com, leebone28@hanmail.net, bsl@incheon.ac.kr

Abstract

Smoke simulation is an interesting topic in computer graphics these days. The realistic

rendering of smoke scene is one of the most challenging tasks in fluid dynamics of computer

graphics. Smoke simulation rendering is based on basics particle system. In this paper, our

proposed method based on FDS’s (Fire Dynamic Simulation) output the result of the Excel

file which improves DirectX for effective smoke and fire model. Using Excel file coordinates

to DirectX particle system, and changes the original particle systems coordinates value. After

computing the coordinates of particle moving location and boundary the flow simulation’s

real world smoke fluid mechanism of fluid dynamics. Recent game engine computer graphic

developers usually control resources focused on smoke visualization and fire model. In this

paper, we focused on smoke location boundary. The proposed method can change smoke

particles more accurately and efficiently than the rendering is implemented by making smoke

particles after putting the coordinates form FDS into DirectX Experiment result shows that

500 million particles have 5~8% performance improvement, and gives neutrality and reality

to user's view.

Keywords: Computer Graphics, Fire Dynamics Simulator (FDS), Smoke, Particle System,

Fluid Dynamics, Unity 3D, Fire Simulation

1. Introduction

The first particle systems in computer graphics used the generation of the explosion of a

planet for the effect of special film tricks. Over the past few years, researchers working on

simulated smoke [8] Ronald Fedkiw, Jose Stam, and Henrik Wann Jesen by using 300,000

particles. That was the first computational particle system simulation of smoke using fluid

dynamics. Now, developers use 2 to 3 million particles for simulation of smoke for 3D

Application program. Real flow of [18] 2012 particle system used more than 5 million

particles simulation smoke and fire model. From this simulation or game engine, FDS

requires a great amount of time to simulate real-world fire and smoke. Therefore,

performance is not good enough. Working with real time simulation and finding out bug from

3D fluid solver are a challenging task. Currently, Computation of fluid dynamics simulation

used for more accuracy, high interactivity possible application industrial design validation

medical simulator, games of smoke effective, firefighter simulator, virtual reality. In the

following explanation of our proposed approach, the focus is on how to skip the computing of

coordinates, but the other methods only focus on real time and visualization which looks like

more effective. Many of algorithm mused prepare time simulation fluid dynamics save

boundary data. In Section 3, The proposed method based on FDS result in smoke data, by

getting smoke boundary from FDS output excel file, after computing smoke boundary graphic

card skip complex coordinates computing time which improves the performance up. In the

Section 3.5.2 experiment result part, we perform comparative study of NVIDIA soft particle

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

364

demo and Intel fluid demo. In the Section 4, we discuss limitation part of our algorithm and

some delay problem, and last section describes further work.

2. Related Works

In computer graphics area, developers have researched on visual realistic simulation effects

such as fire, water, smoke and fog which are very challenging tasks. From 1981s until now

[11, 26], Researchers have been working on new methods for simulating fluid dynamics. The

first algorithm is the basics of the particle system. That algorithm is too complex and

demands long time for calculation. Therefore, doing simulation in real time computing is not

an easy task and results are not sufficient for live work [13]. From the figure 1 opacity

Mapping demo Particle system is the point of 3D space that is determined by the position x, y,

z, and orientation is given by three vectors x, y, z. NVIDIA smoke is based on fluid physics

mechanism [1, 2]. The approach from the 2d fluid simulation and implementation of 3D fluid

simulation by Harris [5] is difficult for real time simulation. Form formulation (1) represents

is Partial differential equations (PDEs) function

(

) . (1)

Formulation (2) the x is changed by wavelet f, which may be depended on x and t.

 n+1 = n + (n, tn). (2)

2D fluid simulation as shown by author Harris doesn’t have height coordinate z [7].

Improved NVIDIA Box of smoke demo is added function z from the formulation (3) [3]

 +

 +

 = 0. (3)

Set world space coordinate. But this function occupies all graphic card resources, so the

performance is slow.

(a) (b) (c)

Figure 1. (a) NVIDIA Opacity Mapping Demo, (b) Harris 2004 2D Fluid
Simulation, (c) NVIDIA Box of Smoke Demo

Common physically approachable Navier-Stokes Equations.

The original form of the equations of fluid motion is General Navier-Stokes equations. The

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

365

formulation is (4) [17]

 (

)

(3)

V is the flow velocity, is the fluid density, p is the pressure, T is the stress tensor, f

represents body force acting on fluid and is the del operator.

2.1. Texturing Fluid

Texturing fluid is the method for rendering approach in simulation of fluid dynamics. The

main target of texturing fluid considers special effects, animations, games, movies and

medical simulations. Texturing fluid is a novel texture synthesis algorithm for fluid flow. It

supports a simulator for 3D velocity fields and free surface of the fluid where each iteration

produce individual outputs [16].Texture fluid also supports bump, displacement and alpha

mapping. Texturing fluid handle topological changes simulated fluid merge and multiple

fluids of its volumes. Figure 2 shows a flow chart of how to texturing fluid components

interact with each other for fluid texturing. Texturing Fluid has three steps to do

(i) Fluid simulator based on velocity information computing dynamics surface.

(ii) Performing textures synthesis on the fluid surface that coherents with temporally

near surfaces

(iii) The method of transporting texture information(velocity, surface size) from

current surfaces to near surfaces

Figure 2. Texturing Fluid over View

2.1.1. Height Field Fluids

Height field’s [19] main goal is reducing dimension from 3D to 2D. Algorithm cannot

support captures of breaking wave, breaking smoke, breaking fire. The idea of algorithm is

wave equation and decreases dimensions. Height field position is column height, velocity

changes with the column height. Wave equation [22] based on Newton’s Second Law of

motion, where Formulation (5) is replaced k/m by c2 utt c2 uxx is 1D wave equation.

 . (5)

Formulation (6) shows Solution is function X c is velocity of waves travel.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

366

 x t . (6)

2.1.2. Original Smoke Simulation Algorithm Problem

Newton’s Second Law i.e. f = m × a changes to a = f ÷ m i.e. the change of velocity in per

unit time is the equal force divided by mass. Formulation (7) is m, Vt V. t) is a, (- f

means f. Simulated fluid loop is like Formulation (7)

 . . (7)

Compute force position and velocities. If we want to compute the velocity, we need “force

÷ mass × time” to calculate the position. We need “velocity × time”. Figure 3 shows using

original smoke simulation algorithm simulation particle moving like fluid dynamics. This

demo supports multi core part (OpenMP). If we want to know performance, we need to

reduce multicore parts, or add all comparative program codes to support multicore.

Figure 3. Intel Fluid Simulation for Video Game Demo

2.2. Current Research Focus

Particles based on fluids are simple and fast simulation fluid dynamics. Each particles

attribute has mass, position, velocity, external forces, life times (life cycle). Particles emitters,

particle life time, position and density are changed. Recently SPH (Smoothed Particle

Hydrodynamics) often use for real time fluids in Computer Graphics [20, 21]. Figure 4 shows

this algorithm result. Conservation of mass is Formulation (8) and (9).

 . (8)

- Navier Stokes Equation conservation of momentum

 (

) .

(9)

Evaluate the pressure in particle locations and compute pressure the ideal gas stat equation.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

367

Figure 4 NVIDIA Physic Fluid Demo (SPH)

2.3. Our Proposed Approach

Our approach is different from the existing method, here our proposed method focused on

reducing computing complexity. From Section 2.2, if we know the mass, position, velocity,

external forces, life times (life cycle) values then we can skip the computation of the same

function again. Figure 5 shows the method of our proposal system flowchart. First step is to

make Game Environment and input environment setting in FDS simulator. Second, Use game

environment in FDS (input smoke detector into detection smoke density and 3D space

coordinate). Third, after FDS simulation is done, load the output parameters (HRR, Device

detection output file). Lastly, use data rendering NVIDIA soft particle system to find out

simulator result.

Figure 5. Proposed Method System Flowchart

3. FDS

Fire Dynamics Simulator (FDS) is a computational fluid dynamics model of fluid flow.

The software based on Navier-Stokes equation which is suitable for low speed, thermally flow,

smoke and heat simulation from fires. FDS is a free software by the NIST (National Institute

of Standards and Technology of the USA Department of Commerce [24], VTT Technical

Research Center of Finland. Execute “smokeview.exe”, load “example.smv”, and

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

368

visualization of fire. The “smokeview.exe” is a companion program that reads FDS’s output

of the excel file and produces animations on the user’s screen. “smokeview.exe” has a simple

menu-driven interface. Click the mouse right button and select the menu which shows only

Smoke, HRR (Heat Release Rate) [25], Fire, or combines altogether.

3.1. FDS Simulation Environment

In Figure 6, simulation Environment mesh is x, y, z = 27 X 27 X 27 (meter). The mesh has

small room 9 X 9 X 9 (meter). Burner size is 1 X 1 X 0.1 (meter). Window size is 3 X 3 X 3

(meter). Material size is 1 X 5 X 1 (meter). Simulation time is 700 second. Mesh x, y, z cells

are 30 and all mesh cells are 531441000. Simulation time is 3days 4hour (75 hours).

Figure 6. FDS Simulation Environment

3.2. Smoke Detection Device coordinates

Figure 7 (a) shows FDS checking smoke density in the simulation. Here, we have

displayed the experiment simulation environment. Figure 7 (b) shows room and smoke

detection devices. A blue box is a burning material. Simulation programming part requires

setting smoke device coordinate position near fire burner and window. Each smoke detector

distance is 1 X 1 X 1m. Smoke detector records more than value 7 density of smoke, light

color changes from red to stable yellow color.

 (a) (b)

Figure 7. (a) Room Environment (b) Smoke Detector Coordinate (1x1x1m)

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

369

(a) (b)

Figure 8. (a) Smoke Detector Color, (b) Record Smoke Density by Times

Figure 8 (a) red areas is fire Burner simulation scenario and 1
st
 room is fire start. 2

nd
 smoke

initial and flow fluid dynamics from window to outside place. Figure 8 (b) shows 3
rd

 all

smoke boundary record in output excel file by user setting times (seconds).

3.3. FDS Result Data

Section 3.2 discusses FDS output of the excel file. One is HRR and the other is Smoke

Device detector file. Table 1 shows excel file data value with a human vision distance.

Table 1. Smoke Density Detector Relationship Field of Vision

Visible

value

Vision

distance
statement

0.1 20~30m smoke detector start alarm

0.3 5m It is very difficult for human to find out exit door

0.5 3m Human can’t find exit door when distance is more than 3 meter.

1.0 1~2m human cannot see front object

10 0.2~0.5m If the distance is more than 1 meter, human can’t find escape lampe.

30 - -

3.4. Using FDS Data Simulation Fluid Dynamics

In order to work with FDS data, particles slices of boundaries are needed. 3.5.1 Section

‘transform.position + next_position’ loads 3D space of next transform position location

coordinates. Figure 9, Life-cycle of the particles move from ‘Start’ to ‘End’, and the particles

disappear when arrives at End-position. Each space send particles to next Random Function

space coordinate. From game environment we need the first found slicing boundary. From

FDS, we need to know the start point and end point of particles of smoke, we need to

compute how many boundaries are needed to slice. Based on the rate of change curve we can

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

370

find parameter wave when have big choice. FDS output parameter had change set that time

space is slicing boundary.

Figure 9. Slicing Particle Boundary

3.5. Proposal Source Code

Source code <1> program code, ‘struct Particle Attribute’, is Particle Attribute setting part

[6, 9]. We can change ‘_position’ to change particle system to world space coordinate. The

particle’s position is parameter ‘_position’. The particle is speed emitter counts (less than

5000), the particle’s life-time follows location and boundary. Source code <2> particle in

DirectX 10 advanced particle system change boundary limit [12, 14] smoke particle initial

boundary. Source code <3> shows the change of coordinate and next coordinates values.

3.5.1. Source code <1>

struct Particle Attribute

{

 D3DXVECTOR3 _position = FDS excel data; // particle world

coordinate

 D3DXVECTOR3 _velocity; //particle speed emitter counts

 D3DXVECTOR3 _acceleration; //particle acceleration

 float _lifeTime; // particle life time

 float _age; // particle age

 D3DXCOLOR _color; // particle color

 D3DXCOLOR _colorFade; // particle color change

 bool _isAlive; // particle destroy or not

};

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

371

Source code <2>

public ParticleSystem particles;

{

 If(Vector3.Distance(lastPosition, transform.position)

>life_cycle)

 {

 Destory (particles);

 }

 Else

 {

 lastPosition = transform.position +

location_next_position

 }

}

Source code <3>

float3 GetVolumeCoords(float3 pos)

{ // input load from fds pos to this source code

 Particle.coords.x = current.pos.x + (VolumeSize/2.0);

 Particle.coords.x /= VolumeSize;

 Particle.coords.y = current.pos.z + (VolumeSize/2.0);

 Particle.coords.y /= VolumeSize;

 Particle.coords.y = 1 - coords.y;

 Particle.coords.z = current.pos.y / VolumeSize;

 Particle.coords += VolumeOffsets;

 return current.coords;

}

 // sample volume and velocity textures

 float3 coords = GetVolumeCoords(input.pos);

 float4 planeEq = g_txVolume.SampleLevel(g_samVolume, coords,

0);

 float3 worldVel = g_txVelocity.SampleLevel(g_samVolume,

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

372

coords, 0);

 //color = planeEq;

 //planeEq = float4(0,0,0,0);

 //float3 worldVel = float3(0,0,0);

 float distToPlane = dot(planeEq, pos);

 if(distToPlane != 0 && distToPlane < g_fParticleRadius)

 {

 //particle velocity in boundary

 pos.xyz += (particleRadius - distToPlane)*planeeq.xyz;

 //count how many particle in sense

 float impartVel = max(0, dot(normalize(worldVel),

planeEq.xyz));

 // if particle in initial time or destroy time input

NULL

 vel = (1-impartVel)*reflect(vel, planeEq.xyz) * 0.5;

 // else impart velocity

 vel += impartVel * (worldVel);

 }

 current.pos.xyz = current.pos.xyz + vel*elapsedTime;

 vel = vel + frameGravity*elapsedTime;

 output.pos = pos;

 output.lastpos = lastpos;

 output.vel = vel;

 output.color = color;

 output.id = input.id;

 return output;

}

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

373

3.5.2. Experiment Result

Table 2 is our experiment, we used CPU I5-2500, Samsung 4GB Memory, NVIDIA

650GTX Graphic Card, and FDS Simulation Version is 5. Figure 10 [15] shows source codes

in rendering time. Performances are different in LOD (Level of Detail). We input coordinate

boundaries in game scene to change LOD. The performance result got better than original

algorithm (real time coordinate compute).

Table 2. Environment of Experiment

Figure 10. Experiment Performance Result

Figure 11 shows the experiment result, mesh is like FDS simulation 27 X 27 X 27 smoke

particle initial 1000, Particle dumping is 5, Particle life time is 3second, Particle boundary is

grow 0.3 , and limitation is 1.0. Figure 11 shows particle boundary in a game sense. The

particle follows program code coordinates and boundaries. The left of Figure 9 shows smoke

in 3D space mesh. The center picture shows particle initial follow box-line. The right picture

shows the change of texture in life time of particle. Particle texture was changed from black

to bright.

Figure 11. Experiment Result

4. Limitations

In this approach, we have experimented 27 X 27 X 27 (meter) mesh. In a big environment

scene simulation FDS output data is very big. It is desirable particles in lifetime requires

move one location to another location. Thus particle’s lifecycle grow longer, similar original

particles life cycle. FDS simulation needs a long time to compute a simulation.

5. Conclusions and Future Work

Our proposed algorithm reduces coordinates computation to improve a performance.

Existing algorithms focus on real time simulation and fluid dynamics. The excel file based on

Hardware System Specification

CPU Intel I5-2500

Memory Samsung 4Gb

Graphic Card NVIDIA 650GTX

Simulation Version FDS 5

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

374

FDS smoke detector device coordinate computes smoke boundary coordinate. The result can

improve the performance better than other visualization smoke particle systems. Because

graphic card can skip computing of the particle coordinate not like fluid mechanism particle

system. This method is possible to be used in steam effect not only smoke particle system but

also fire. This approach is different from common simple particle system visualization as it

has more accuracy and realism. The problem of this approach is that FDS simulation part

needs a long time to simulate.

References

[1] B. Eberhardt, A. Weber and W. Strasser, “A Fast, Flexible, Particle-System Model for Cloth Draping”, IEEE,

Computer Graphics and Application, vol. 16, no. 50, (1996) September, pp. 52-59.

[2] J. Jansen and L. Bavoil, “Fast rendering of opacity-mapped particles using DirectX 11 tessellation and mixed

resolutions”, Opacity Mapping SDK White Paper NVIDIA Graphics SDK 11 document.

[3] C. Keenan, L. lamas Ignacio and T, Sarah, “Real Time Simulation and Rendering of 3D Fluids. GPU GEMS

3, (2007).

[4] M. Kevin, K. Bryan, H. Simo and F. Jason, “Fire Dynamics Simulator (version 5)”, NIST Special Publication

1019-5. NIST.

[5] J. Lander, “The Ocean Spray in Your Face. Game Developer Magazine”, (1997) July, pp. 13-20.

[6] F. Luna, “3D Game Programming with DirectX 9.0”, Plano, Texas: Wordware Publishing, (2003).

[7] J. Harris Mark, “Fast Fluid Dynamics Simulation on the GPU, GPU GEMS, chapter 38.

[8] F. Ronald, S. Jos and J. Henrik Wann, “Visual Simulation of smoke”, Proceedings of the 28th annual

conference on Computer graphics and interactive techniques ACM, (2001).

[9] W. Reeves, “Particle Systems A Technique for Modeling a Class of Fuzzy Objects”, ACM Transactions on

Computer Graphics, vol. 17, no. 3, (1983), pp. 359-376.

[10] Unity Team, Unity Manual, Particle System, positioning Game Objects.

[11] Jos Stam, Stable Fluids, In SIGGRAPH 99 Conference Proceedings, Annual Conference Series, (1999)

August, pp. 121-128 PDF.

[12] D. Wensheng, Z. Xinyan and Z. caijun, “Smoke Simulation based on particle system in Virtual

Environments”, Multimedia Communications (Mediacom), 2010 International Conference.

[13] M. Caniato Renhe, A. Oliveira, C. Esperanca and R. Marroquim, “Enhanced Target Driven Smoke

Morphing”, 2012 XXV SIBGRAPI Conference on Graphics, Patterns and Images.

[14] H. Won Byun and H. Moon Jung, “Drawing Style Capture for Cartoon Rendering”, International Journal of

Multimedia and Ubiquitous Engineering, vol. 8, no. 1, (2013) January.

[15] J.-H. Shin, S.-m. Lee and D.-J. Kim, “An Analysis in the Correlation between Frontal Lobes/Occipital Lobes

Parts’ Neural Waves in Case of 3D Syndrome Outbreak While Watching 3D Object”, International Journal of

Multimedia and Ubiquitous Engineering, vol. 7, no. 2, (2012) April.

[16] H. Yeom and U. Yoon, “ECG Artifact Removal from Surface EMG Using Adaptive filter Algorithm”,

International Journal of Multimedia and Ubiquitous Engineering, vol. 7, no. 2, (2012) April.

[17] S. Feng He, H.-C. Wong and U.-H. Wong, “An Efficient Adaptive Vortex Particle Method for Real-Time

Smoke Simulation”, IEEE 2011 12th International Conference on Computer-Aided Design and Computer

Graphics.

[18] T. Schlick, RF_toolfactory.http://thevault.realflow.com/docs/realflow_manual.pdf , realfolow, (2012).

[19] N. Thurey, M. Muller-Fischer, S. Schirm, M. Gross and J. J. Monaghan, “Smoothed particle hydrodynamics”,

Annual Review of Astronomy and Astrophysics, vol. 30, (1992), pp. 543-574.

[21] S. Premože, T. Tasdizen, J. Bigler, A. Lefohn and R. T. Whitaker, “Particle based simulation of fluids”,

Eurographics 03, pp. 401-410.

[22] B. Miklós and M. Müller, “Real-Time Fluid Simulation Using Height Fields”, eth zurich (swiss federal

institute of technology), Switzerland summer, (2004).

[23] D. Enright, S. Marschner and R. Fedkiw, “Animation and Rendering of Complex Water Surfaces”,

SIGGRAPH '02 Proceedings of the 29th annual conference on Computer graphics and interactive techniques,

(2002), pp. 736-744.

[24] M. Kevin, K. Bryan, H. Simo and F. Jason, “Fire Dynamics Simulator (version 5)”, NIST Special Publication

1019-5. NIST.

[25] G. P. Forney, “User’s Guide for Smokeview Version 5 - A Tool for Visualizing Fire Dynamics Simulation

Data”, NIST Special Publication 1017-1 CODEN: NSPUE2, Fire Research Division Building and Fire

Research Laboratory, (2007) August.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

375

[26] W. Magnus, F. Henrik, A. Chris and M. Stephen, “Capturing Thin Features in Smoke Simulations”, Siggraph

Talk, (2011).

Authors

Yongzhe Xu received his MS in Computer science and engineering

from Univesity of Incheon, Korea, in 2009.

He is currently working toward a PhD in computer science and

engineering at the same university. His research interests include

computer graphic, FDS, virtualization, and Pattern Recognization,

Machine Learning.

EunJu Kim received her MS in computer science and engineering

from University of Incheon, Korea, in 2010.

She is currently working toward a PhD in computer science and

engineering at the same university. Her research interests include

computer vision, image processing, and Artificial intelligence.

Byungsoo Lee received his MS in MBA from University of Dongguk,

Korea, 1980.

Received his Doctor of Science from University of KyongGi, Korea,

1998.

He is a Professor of Department of Computer Engineering at the

University of Incheon, Korea.

His research interests include software design, decision making system,

eCRM, RFID/USN, IT convergence.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

376

