
International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

247

Efficient Recommender System based on Graph Data for Multimedia

Application

Haesung Lee and Joonhee Kwon

Department of Computer Science, Kyonggi University

San 94-6, Yiui-dong, Suwon-si, Gyeonggi-do, Korea

{seastar0202, kwonjh}@kgu.ac.kr

Abstract

With the dawning ubiquitous computing age, increasing online-based multimedia data

presents new challenges for storing and querying large amounts of data to online

recommendation systems. Recent studies on recommendation systems show that graph data

model is more efficient than relational data model for processing complex data. This paper

proposes a new graph data storage model for the collaborative filtering-based

recommendation system. Our proposed storage model efficiently filters out vertices which

could not impact on calculating top-k recommended items in collaborative filtering algorithm.

We present our structure, mechanisms and experimental results for improving the

performance of recommender systems. For showing that proposed mechanisms are

applicable in multimedia applications, we use real data set of the online site, MovieLense in

the experiment. The result of the experiment shows that proposed approach is efficient

storage model for recommendation system.

Keywords: Graph database, graph data storage model, collaborative filtering, multimedia

recommendation system

1. Introduction

Information or multimedia overload on the Web has created enormous challenges to users

for selecting multimedia contents and online businesses attempting to identity each user’s

preferences efficiently. Users frequently experience difficulty in searching for multimedia

contents or products on the Web, while online businesses are often overwhelmed by the rich

data they have collected and find it difficult to recommend multimedia contents or products to

specific users. In addition, there are many specific types of recommender systems. For

example, Julius T proposed disability-aware e-learning recommender systems for disabled s

students [1]. So, there has been much work done both in the industry and academia on

developing new approaches to recommender systems over the last decade. But there has been

much few works about processing a lot of user’s historical data in order to improve the

performance of recommendation systems.

In CF (collaborative filtering)-based recommendation system, the rating/liking/preference

behavior of users is very importantly correlated in order to recommend the favorites of one

user to another, similar user [2]. Graph databases could be designed for lightning-fast access

to correlating data used in recommendation systems as the graph makes it possible to

intuitively represent relationship between any kinds of data [3]. However, it is recently known

that graph data model has some limitations for processing large data [4]. Moreover, there are

few works for resolving that limitation.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

248

We propose an efficient graph data storage model for recommendation systems. In CF-

based recommendation systems, the top-k recommendation algorithm identifies the k most

similar users to an active user using similarity. After the k most similar users are found, their

corresponding user-item matrices are aggregated to identify the set of items to be

recommended. Unfortunately, it is known that learning a user's preference and correlating

them with a large database can be very time consuming and expensive [5]. Our method

efficiently filters out data which could not impact on calculating top-k recommended items by

using an efficient storage model based on graph data model.

2. Related Works and Backgrounds

Recommender systems assist users in choosing appropriate multimedia contents or

products from a large set of alternatives. In such systems, personalized recommendations on

items are generated by predicting preference of users. Among methods predicting preference

of users, the collaborative filtering (CF) algorithm is the most known and widely used in

recommender systems. Collaborative filtering (CF) methods produce user specific

recommendations of items based on patterns of ratings or usage (e.g., purchase). In order to

establish recommendations, CF systems need to relate two fundamentally different entities;

items and users [6].

CF has been very successful in both research and practice. However, Sarwar et al., argued

that there remain important research questions in overcoming two fundamental challenges for

collaborative filtering recommender systems in their work [7]. The first challenge is to

improve the scalability of the collaborative filtering algorithms. These algorithms are able to

search tens of thousands neighbors in real-time. Further, existing algorithms have

performance problems with individual users for whom the site has large amounts of

information. The second challenge is to improve the quantity of the recommendations for the

users. Users need recommendation they can trust to help them find products or multimedia

contents they will like. In some ways, these two challenges are in conflict, since the less time

an algorithm spends searching for neighbors, the more scalable it will be, and the worse its

quality. For this reason, it is important to treat the two challenges simultaneously so the

solutions discovered are both useful and practical.

Figure 1. A Rating Database Example including Three Tables and Tree Indexes

Relational databases have many limitations for storing and processing complex data used

in biological system, social network or recommendation system because relational databases

have to represent all law data into tabular. On the contrary, graph databases represent data as

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

249

“things” (or vertices) and relationships between things. This comes much closer to these

complex systems.

Most works related with the graph data model only consider the domain such as chemical

informatics, bioinformatics, and pattern recognition [8-9]. Graph databases are starting to

emerge as a newly way of dealing with Web data delivered in a non-relational format, such as

rating data used in recommendation systems. However, there are few works about the storing

and processing data for recommendation system.

From the research of the recommendation systems with the graph data model, Batul J. et

al., proposes benefit of recommendation systems with the graph data model [10]. However,

their study did not consider any pruning techniques for reducing the search space which

makes the study not suitable for a large size of the graph. Figure 1 shows a simple example

where there are three tables, a user table, an item table and a rating table for CF-based

recommendation, where each table has their own index. Table 1 describes computing times

for the CF-based recommendation system over the example of the database shown in Figure 1

[11]. Like shown in Table 1, the highlighted operation (step 7) related with computing

similarity between a user and other users is the most time-consumed factor among other

operations of CF-based recommendation systems.

Table 1. Computing Times for CF-based Recommendation System

Operations Times

1. Query the rating index to find items which are rated

by the user u in the rating table.

)(log2 nO

2. Given rows returned by the rating index, get k item

IDs for these rows.

)(kO

3. Query the rating index to find other users who

valuate item ik with some rating value in the rating

table.

)log(2 nkO

4. Given rows returned by the rating index, get m user

IDs for these rows.

)(mO

5. Query the rating index to find items which are rated

by the user im .

)log(2 nmO

6. Given rows returned by the rating index, get l item

IDs and each rating value.
)(mlO

7. Computing similarity between the user u and im .)(mlO

8. Pick up top r user IDs who have higher similarities

than other users.

)(rO

9. Query the rating index to find items which are rated

by the user ir .

)log(2 nrO

10. Given rows returned by the rating index, get p item

IDs for these rows.

)(pO

11. Query the item ID index to find all item rows p in

item table.

)log(2 npO

12. Compose the recommendation list by getting

p titles for these rows.

)(pO

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

250

3. Graph Data Storage Model for CF-based Recommendation

We are mainly concerned with the rating graph which describes entities and relationships

between entities. In this graph, entities are represented by vertices and relationships by edges.

And all entities of the graph have their attributes. For the CF-based recommendation systems,

the considered graph has two types of vertices, user and item. The graph includes a type of

the edge, rated. Figure 1 shows an item-rating graph which contains two types of nodes, user

and item and a type of the edge, rated.

Figure 1. Item-rating Graph

Commonly there are two functions for founding out recommending resources with a graph

database [12]. Function f traverse to all people vertices that like the same resources as person

vertices i. Function g traverses to all the resources rated by person vertices j. In composition,

determines all those resources that are rated by those people that have similar tastes to the

person vertex i.

However, this approach has fatal limitation. If the size of the graph database is increasingly

large, the cost of traversing nodes is more and more growing. For resolving the limitation of

recommendation systems with graph database, we construct a candidate user index which

store user vertices that have the higher possibility of being chosen as top k similar user

vertices for a specific user vertex than other user vertices.

Figure 2 shows the structure of the candidate user index. The candidate user index is

represented as a B-tree with candidate lists. Candidate similar user vertices for a specific user

vertex are stored in a leaf node of the user index. We take note of that the high similarity

between user is mainly influenced with user’s common rating behavior for a resource. Based

on this fact, we select the candidate similar user vertexes, for a specific user vertex, if the

vertex has relatively many frequencies of valuating same items with similar values. In

addition, Figure 2 shows the benefit of using the candidate user index for the process of

searching candidate user vertices which have relatively high possibility of having higher

similarities than other user vertices in the rating graph database.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

251

Figure 2. The Structure of Candidate Similar user Index

As shown in Figure 2, the recommender system with the candidate similar user index

efficiently prunes the non-important vertices that have low influence on computing similarity

between a specific user and other users. That is, we efficiently reduce the number of targeted

users (m in step 7 described in Table 1) and the number of considered items (l in step 7 of

Table 1), which are main reasons that computing similarity is time-consumed operation.

Therefore, the recommender system with the candidate similar user index can more quickly

find the similar users and compose the recommendation list.

Algorithm 1. Constructing the candidate similar user index

Input: Rating graph database G, rating threshold rδ , rating frequency

threshold fδ .

Output: the candidate similar user vertices index I.

1. for each user vertex u ∈G do

2. ∪=URUR (all out rated edges from u and values of attributes of

these rated edges V);

3. RR = (tail vertices from edges UR∈);

4. end do

5. for each item vertex Rr∈ in G do

6. ∪= ERER (all rated edges head to r ∪values of attributes of these

rated edges);

7. end do

8. for each rated edge ie ∈ER do

9. if The value of subtracting URvi∈ valuerating from ie ’s v valuerating

rδ ≤

then Discard ie from ER ;

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

252

10. else FCFC = tail vertex from ie ;

11. end do

12. for each user vertex ic ∈ FC

13. if the number of ic ’s appearance frequency f ≥ δ

then ∪= II ic ;

14. end do

15. return I;

Algorithm 1 describes the construction of the candidate similar user index. It is not

needed to traverse over the whole graph database to find similar user vertices for a

specific user vertex. Our method only accesses a few candidate similar user vertices

index.

Algorithm 2 describes the search of items which are composed in a recommendation list R

with our proposed index I. The recommender system with our proposed storage model just

queries the candidate similar user index I to find similar user vertices without looking up all

user vertices in the graph database G. Then the recommender system computes similarity

between an active user and the other users who are included in the candidate user vertices

index I with the collaborative filtering function CF.

Algorithm 2. Searching recommended items

Input: graph database G, the candidate similar user index I, an active

user idu

Output: the recommended items R.

1.Get a node n with idu in user index

2.Get candidate similar user list, CR pointed by node n.

3.for each user vertex ic ∈CR do

4. ∪= RR CF(idu , ic) ;

5.end do

6. return R

4. Experiments

For the experiment, we implemented different types of recommender systems which have

their own databases, relational database, RDB, general graph database, GraphDB, and the

proposed graph database with the candidate similar user index respectively. The

recommender system with RDBMS was implemented by MySQL, a widely used RDBMS

[13]. Both recommender systems operated over the graph database implemented with Neo4j

which is the most widely known graph database [14]. All recommender systems were

experimented in Intel® Core™ is CPU at 3.4 GHz, and 8 GB RAM on Window 7 Enterprise

K.

For the experiment data set, we use the date set publically provided by MovieLense, a

movie recommendation website [15]. Based on this real dataset, we generated five rating

graphs and five rating relational databases with the different number of vertices and rating

edges like shown Table 2. In each rating graph, we conduct 10 experiments with 10 user IDs

which are randomly selected. And we take the result by averaging 10 results of each rating

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

253

graph. All recommender systems were equally implemented with a CF-based

recommendation algorithm.

Table 2. Data Set

Users Items Ratings

2,000 1,500 500 54,032

4,000 3000 1,000 84,020

6,000 4000 2,000 354,003

8,000 5000 3,000 754,004

9,940 6040 3,900 1,000,209

We evaluated the index sizes of each databases. Also, we respectively measure the time of

each recommender system for searching and composing the recommendation list in order to

evaluate the performance of query time over each type of databases. Figure 4(a) and Figure

4(b) show these experimental results.

Figure 4. Experimental Results for the Index Size (a) and Query Time (b)

Through the result shown in Figure 4(a), we found three factors. Firstly rating databases,

GraphDB and proposed GraphDB are better in storing rating data than the relational database.

Secondly, GraphDB is slightly better than proposed GraphDB with the perspective of index

size because proposed GraphDB additionally includes candidate user index. Finally, the

number of rating data has main influence on the increment of the index size.

Actually, the index size of RDB was significantly increased by increasing the graph size.

In case of the performance of querying recommended items, we found that proposed

GraphDB model significantly outperforms two recommender systems with RDB and

GraphDB respectively trough the result shown in Figure 4(b). With the result shown in Figure

4(b), it is very noticeable that the recommender system with proposed GraphDB was almost

not influenced from the increment of the graph size while the recommender system with

Graph was mainly influenced the increment of the graph size, especially in the increment of

the rating edges. The main reason of this result is that the number of targeted users and

The number

 of total data

The kind

 of data

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

254

considered items in the computation of the similarity is efficiently reduced by the candidate

similar user index.

5. Conclusions

Graph databases represent data as “things” (or vertices) and relationships between things.

This comes much closer to these complex systems. However, graph databases have the fatal

limitation of storing and processing a large amount of data. For storing and querying a large

amount of user’s online commerce data used in recommendation system, we proposed new

graph data storage model in this paper. For improving the recommendation query time over

large graph database, we index vertices which are considered as more important than other

vertices in graph database. Through experimental results, we knew that our proposed graph

data storage model is more efficient than RDBMS and existing general graph database. That

is, the proposed graph data model is efficiently suitable with and specialized in storing and

querying data treated by CF-based recommender systems.

Acknowledgements

This work was supported by the Gyonggi Regional Research Center (GRRC) and Contents

Convergence Software (CCS) research center in Korea.

References

[1] J. T. Nganji, “Designing Disability-Aware E-Learning Systems”, Disabled Students' Recommendations,

International Journal of Advanced Science and Technology (IJAST), vol. 48, (2012), pp. 61-70.

[2] B. Sarwar, G. Karypis, J. Konstan and J. Riedl, “Item-Based Collaborative Filtering Recommendation

Algorithms”, Proc. 10th Int’l WWW Conf., (2001), pp. 285-295.

[3] R. Angles and C. Gutierrez, “Survey of graph database models”, ACM Comput. Surv., vol. 40, no. 1, (2008),

pp. 1-39.

[4] J. Han, “Survey on NoSQL database, Pervasive Computing and Applications (ICPCA)”, 6th International

Conference, (2011), pp. 364-366.

[5] J. Ben Schafer, J. A. Konstan and J. Riedl, “E-Commerce Recommendation Applications”, Data Mining and

Knowledge Discovery, vol. 5, (2001), pp. 115-153.

[6] Collaborative filtering, Wikipedia, http://en.wikipedia.org/wiki/Collaborative_filtering.

[7] B. M. Sarwar, G. Karypis, J. A. Konstan and J. Riedl, “Recommender Systems for Large-Scale E-Commerce:

Scalable Neighborhood Formation Using Clustering”, Proceeding of The Fifth International Conference on

Computer and Information Technology (ICCIT), (2002).

[8] B. T. Messmer and H. Bunke, “A Decision Tree Approach to Graph and Subgraph Isomorphism Detection”,

Pattern Recognition, vol. 32, (1999), pp. 1979-1998.

[9] R. Giugno and D. Shasha, “GraphGrep: A fast and universal method for querying graphs”, Pattern

Recognition, 2002. Proceedings 16th International Conference, (2002), pp. 112-115.

[10] B. J. Mirza, B. J. Keller and N. Ramakrishnan, “Studying Recommendation Algorithms by Graph Analysis”,

Journal of Intelligent Information Systems, vol. 20, no. 2, (2003), pp. 131-160.

[11] M. A. Rodriguez and P. Neubauer, “The Graph Traversal Pattern”, chapter in Graph Data Management:

Techniques and Applications, (2011), pp. 1-18.

[12] Z. Huang, W. Chung, T.-H. Ong and H. Chen, “A graph-based recommender system for digital library”,

Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries, (2002), pp. 65-73.

[13] MySQL, http://www.mysql.com/.

[14] Neo4j, http://www.neo4j.org/.

[15] MovieLens, http://movielens.umn.edu/login.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

255

Authors

Haesung Lee is a Ph.D. candidate of Computer Science at Kyonggi

University, Korea. Her research areas include Context-aware Computing,

Social Network, Information Retrieval and Mobile Computing. She

works for software development on areas of data search in ubiquitous

environment. She received her B.S., M.S. in Computer Science from

Kyonggi University,Korea. Contact her at seastar0202@ kyonggi.ac.kr.

Joon Hee Kwon is an associate professor of Computer Science at

Kyonggi University, Korea. She was a visiting research professor at

the Computer Science Department at New Jersey Institute of

Technology. Her research areas include Context-aware Computing,

Information Retrieval, Social Network, Web 2.0 and Mobile

Database. Her research projects focus on areas of d1ata search using

social network and Web 2.0 in ubiquitous environment. She received

her B.S., M.S. and Ph.D. in Computer Science from Sookmyung

Women’ s University, Korea. Contact her at kwonjh@kyonggi.ac.kr.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

256

