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Abstract 

Transportation cyber physical systems such as automotive, aviation, and rail involve 

interactions between software controllers, communication networks, and physical devices. 

These systems are among the most complex cyber physical systems being designed by 

humans, but added time and cost constraints make their development a significant technical 

challenge. Formal specification technologies are now indispensable for quickly developing 

safe and reliable transportation systems. In this paper, we propose a formal specification 

approach for Transportation cyber physical systems. The proposed formal framework is such 

a formwork. On the one hand, it can deal with continuous-time systems based on sets of 

ordinary differential equations. On the other hand, it can deal with discrete-event systems, 

without continuous variables or differential equations. We present a combination of the 

formal methods Timed-CSP, ZimOO and differential dynamic logic (DL). Each method can 

describe certain aspects of a transportation cyber physical system: CSP can describe 

communication, concurrent and real-time requirements; ZimOO expresses complex data 

operations; differential dynamic logic (DL) model the dynamics and control (DC) parts. A 

case study of train control system illustrates the specification process for Transportation 

cyber physical systems.  

 

Keywords: Transportation Cyber Physical Systems, ZimOO; Timed-CSP; Differential 

Logic 

 

1. Introduction 

Transportation cyber physical systems [1] consist of three parts: the dynamics and control 

(DC) parts, the communication part and computation part. The DC part is that of a 

predominantly continuous-time system, which is modeled by means of differential (algebraic) 

equations, or by means of a set of trajectories. The evolution of a hybrid system in the 

continuous-time domain is considered as a set of piecewise continuous functions of time. The 

computation part is that of a predominantly discrete-event system. A well-known model is a 

(hybrid) automaton, but modeling of discrete-event systems is also based on, among others, 

Z,VDM, process algebras, Petri nets, and data flow languages. Clearly, cyber physical 

systems represent a domain where the DC, communication and computation aspects must be 

met, and we believe that a formalism that integrates the DC, communication and computation 

aspects is a valuable contribution towards integration of the DC, communication and 

computation methods, techniques, and tools [2]. 

In this paper, we provide some ideas for formal specification of transportation cyber 

physical systems and one well known case study to validate formal specification. 
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2. Formal Specification for Transportation Cyber Physical Systems 

There are three parts in Transportation cyber physical systems. First, the physical part is 

physical entities of a cyber physical system. It is simply that part of the systems that is not 

realized with computers or digital systems. It can include mechanical parts, biological or 

chemical processes, or human operators. Second, there are one or more computational 

plateforms, which consist of sensors, actuators, one or more computers, and (possible one or 

more operating systems). Third, there is a communication part, which provides the 

mechanisms for communications and physical parts to communicate. Thus, we can separate 

cyber physical systems into three parts: cyber, physical, and communication by aspect-

oriented development methods [3-5] as shown in Figure 1. 
 

 

Figure 1. Specification of Three aspects of CPS 

In this paper, we propose a formal approach that integrates CSP [6], ZIMOO [7] and 

differential dynamic logic [8] to specify cyber physical systems by aspect-oriented methods. 

The proposed approach allows us to present in a modular way the dynamic continuous, data 

changes, and timing aspects of the systems we want to verify. We use Communicating 

Sequential Processes (CSP) to specify the communication part, ZIMOO to describe the state 

space and its change, and the differential dynamic logic to model the dynamic continuous of 

transportation cyber physical systems. After the establishment of three sub-aspects models, 

then form a complete system model by integrating the three sub-aspects through aspect-

oriented method. 

Z [19] is a formal language used to define data types and to show the effect of operations 

on these types. It lacks, however, features to express the order in which the operations are 

executed. Process algebras [5], like CSP, on other hand, are suitable for showing the order of 
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the occurrence of events but lack the ability to handle complex abstract data types and 

operations. Finally, formalisms like differential dynamic logic on dynamic aspects [17].  

ZimOO is an extended subset of Object-Z [20-21]allowing descriptions of discrete and 

continuous features of a system in a common formalism ZimOO supports three different 

kinds of classes: discrete as in Object-Z, continuous and hybrid classes. Thus, the system can 

be structured better and the well-known suitable formalisms can be applied to describe, 

analyze, and refine the different parts of the system. The bridge between the continuous and 

the discrete world is built by hybrid classes. 

The differential dynamic logic (dL) is a logic for specifying and verifying hybrid systems 

[17, 15]. The logic dL can be used to specify correctness properties for hybrid systems given 

operationally as hybrid programs. The basic idea for dL formulas is to have formulas of the 

form [α]φ to specify that the hybrid system α always remains within region φ, i.e., all states 

reachable by following the transitions of hybrid system α statisfy the formula φ. Dually, the 

dL formula <α>φ expresses that the hybrid system α is able to reach region φ, i.e., there is a 

state reachable by following the transitions of hybrid system α that statisfies the formula φ. 

For instance, the following formula expresses that for the state of a train controller train, the 

property y≤m always holds true when starting in a state where v
2
≤2b(m-y) is true: v

2
≤2b(m-

y) -> [train]y≤m. 

Aspect-oriented approaches use a separation of concern strategy, in which a set of simpler 

models, each built for a specific aspect of the system, are defined and analyzed. Each aspect 

model can be constructed and evolved relatively independently from other aspect models. 

Aspect-oriented specification is made by extending TCOZ and ZIMOO notation with aspect 

notations. The schema for aspect specification in has the general form as shown in Figure 2, 

Figure 3, Figure 4, and Figure 5. 

 

AspectName [generic parameters]

Type and Constant Definitions

Inherited Aspects

PointCut State

PointCut Operations

InterType State

InterType Operations

Composite Schema

 

Figure 2. Aspects of Model Structure 

Type and Constant Definitions

ClassRef / AspectRef

Predicates

PointCutName

 

Figure 3.  PointCut Operation Schema of Structure 

http://symbolaris.com/logic/dL.html#DBLP:conf/tableaux/Platzer07#DBLP:conf/tableaux/Platzer07
http://symbolaris.com/logic/dL.html#DBLP:journals/jar/Platzer08#DBLP:journals/jar/Platzer08
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JoinPoint

Composition Rule:= JoinPoint1  ≤  

JoinPoint2 ≤ … ≤JoinPointn

Composition

$pc1, pc2:Pointcut  Ù  $ j ÎJoinpoint Ù 

bÎ BasicModel Ù  jÎpc1∩pc2 .  pc1= pc2

 Þ W(b,{pc1 , pc2 })=W(W(b,pc1),pc2 )

 

Figure 4. Composition Schema of Structure 
 

PointCut
PointName:P jionPoint

PointCut
state := TypeName:Declaration

InterType
state :=

PointCut
operation :=

PointCutName

ΩClassRef/AspectRef
Type definitions

[Insert/Replace]Predicates

InterType
operation :=

TypeName::opreationName

Type definitions

Predicates

Composition
schema :=

Composition
JointPoint
Composition rule:=
  PointName 1≤
    PointName 2≤
      ……
       PointName m

_≤_:Pointcut Name PointcutName

∃pc1,pc2:PointcutName∧∃j∈Joinpoint
∧B∈Basic 

model∧j∈pc1∩Pc2·pc1=pc2
=>W(b{pc1,pc2})=W(W,(b,pc2),pc1)

 

Figure 5. Specification of Operations and Schema 

3. Case Study: Formal Specification of Train Control Systems  

Figure 6 surveys the controller architecture we want to specify in this case study [9-12]. In 

the centre of the diagram is the train controller whose purposes are to limit the speed of the 

train, decide when it is time to switch points and secure crossings, and make sure that the 

train does not enter them too early. The odometer keeps track of the speed and position of the 

train. The position is measured by various means. The speed controller supervises the speed 

and makes sure that it does not exceed the limit set by the train controller, otherwise it 

automatically slows down the train. When the speed limit is set to zero, the train will break 

until it comes to a safe halt. The communication with crossings is done by the radio 

controller.  
 

Track Data

Radio controller

Train controller

Odometer Speed controller

 

Figure 6.  Logic Structure of Train Dispatching 
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Safety and security are very are important in our life [18, 22], we should use formal 

technique to specify train control systems. The first aspect is communication. Formal 

methods is very power to make strict specification [13]. Most of the communications are 

initiated by the train controller itself, e.g., the train controller decides when it is time to 

secure a track element. But there are also communications initiated externally, e.g., the signal 

that is sent when a crossing affirms that it is safe. These communications can be naturally 

modelled with CSP [14]. As an example we can model the loop supervising the speed in CSP 

by the following recursive equation: 







c

c

c

rainSuperviseT

rainSuperviseTsetMaxSpd

calcMaxSpdgetPosgetSpdrainSuperviseT

rainSuperviseTrainSuperviseTcomRadio









2

1

1

2|||1_

 
There are two communication operation for train (controler)part: one is to report the 

situation of current train , another is to supervise the situation of train movement. The CSP 

model is as follows:  

SuperviseerviseInfoSupervise

portreportInfoport

SuperviseportcomTrain

c

c

c







sup

ReRe

|||Re_

 

The communication model of the whole transport systems is expressed by CSP as follows: 

ocesslelOtherParalcomtraincomradiocMain Pr||_||_
 

The purpose of the train control system is to ensure that train cannot crash into other trains 

or pass open gates. Its secondary objective is to maximize throughput and velocity without 

endangering safety. Permission to move is granted dynamically by decentralized Radio Block 

Controllers (RBCs) depending on the current track situation and movement of the other 

traffic agents within the region of responsibility of the RBC as shown in Figure 7. 

We assume that an MA (movement authority) has been granted up to some track position, 

which we can call in, and the train is located at position z, heading with current speed v 

towards m. We represent the point SB as the safety distance s relative to the end m of the MA 

(i.e., m-s=SB). In this situation, differential dynamic logic (dL) [15-16] can specify the 

following crucial safety property of the train control system, which we state as a DL formula 

as shown in Figure 8. It expresses that a train always remains with its MA. 
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SBz m

RBC

s

 

Figure 7. Train Coordination Protocol 

 

).0&1',','(;0:

),:;sz-m():;s(?

m*);(





Ù





vavvzdrive

Aabazmcontrolwhere

zdirvecontrol

？  

Figure 8. Safety Property of the Train Control System 

A track element has a unique identifier id and can be either a crossing or a point. The 

associated danger position is stored in pos as shown in Figure 9. 

 

TrackElement

id:Identifier
type:Type
pos:Position

 

Figure 9. Specification of Track Element 

The track atlas contains information about track elements, current speed, current position, 

direction and the maximum speed for each track segment. It is also represented by a Z 

schema as shown in Figure 10. 

 

TrackData
id:Identifier
pos:Position
dir:Direction
cur_spd:Speed
max_spd:Speed
cur_time:Time
Elems:seq_TrackElement

 

Figure 10. Specification of Track Data 
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The train control is decomposed into different sub-aspects so that complex application is 

decomposed into simple small aspects. For train control, first, the communication channels of 

the class are declared. Every channel has a type which restricts the values that it can 

communicate. There are also local channels that are visible only inside the class and that are 

used by the CSP, ZIMOO, and differential dynamic logic (dL) parts for interaction. Second, 

the CSP part follows; it is given by a system of (recursive) process equations. Third, the Z 

part is given which itself consists of the state space, the Init schema and communication 

schemas. For each communication event a corresponding communication schema specifies in 

which way the state should be changed when the event occurs. Finally, below a horizontal 

line the differential dynamic logic (dL) part is stated. Classes can be combined into larger 

specifications by CSP operators like parallel composition, hiding and renaming. Figure 11 

gives out the model of the train control. 

 

TrainController

position:[p!:Position] chan
speed:[s?:Speed] chan
t:[t?:Time] chan
state:[state?State]chan

Init
t=Timenow
speed=0
positon=Positionnow

com_reportInfo

position!=Position
speed!=Speed

com_log

Δ(t,record)

record’=record

com_superviseInfo
Δ(t,speed,position)
speed?:Speed
position?:Position

speed’=speed|0<speed<maxSpeed
position’=Position

SuperviseerviseInfoSupervise

portreportInfoport

SuperviseportcomTrain

c

c

c







sup

ReRe

|||Re_

 

).0&1',','(;0:),:

;dposition-tiondangerPosi():;d(?

tondangerPosi*);(





Ù





vavvpositionrunAa

bapositiontiondangerPosicontrolwhere

positiondirvecontrol

？

Δ(t,maxSpeed)

com_receiveInfo

maxSpeed’=maxSpeed

[CSP part]

[DLpart]

 

Figure 11. Modeling Train Controller by the Integration of CSP, ZIMOO and 

Differential Dynamic Logic (dL) 
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The movement permissions of trains are neither known beforehand nor fixed statically. 

They are determined based on the current track situation by a Radio Block Controller (RBC). 

Trains are only allowed to move within their current movement authority (MA), which can 

be updated by the RBC using wireless communication. Hence the train controller needs to 

regulate the movement of a train locally such that it always remains within its MA. The RBC 

is modeled by CSP, ZIMOO, and differential dynamic logic (dL) as shown in Figure 12 and 

Figure 13. 

 

)'()('|:',

)(max0

##

stbrakingDisstbrakingDisssSpeedss

SpeedtbrakingDisd

speedtrainn







train:seq Position
speed:seq Speed
maxSpeed:Speed
emergencyTrain:N
d:Position
a:R
n:N
brakingDist:Speed→Position

 

Figure 12. State Space of Radio Controller 
 

RadioController

com_superviseTrain







c

c

c

rainSuperviseT

rainSuperviseTsetMaxSpd

calcMaxSpdgetPosgetSpdrainSuperviseT

rainSuperviseTrainSuperviseTcomRadio









2

1

1

2|||1_

 

train:seq Position
speed:seq Speed
maxSpeed:Speed
emergencyTrain:N  
d:Position
a:R
n:N
brakingDist:Speed→Position

)'()('|:',

)(max0

##

stbrakingDisstbrakingDisssSpeedss

SpeedtbrakingDisd

speedtrainn







Init

))(()1()(1|:

max)(0:

ispeedtbrakingDisitrainitrianitraindomi

Speedispeedspeeddomi

nrainemergencyT







NcyTrainnewEmergen

rainemergencyTspeed

:?

),(

)()(''|

0)'('

}?,min{'

?

ispeedispeedrainemergencyTiNi

rainemergencyTspeed

rainemergencyTcyTrainnewEmergenrainemergencyT

ncyTrainnewEmergen

Î







 

Figure 13. Specifiction of Radio Block Controller 
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In the schema CrossController, train represents the particular finite set of potential Trains 

embodied in the systems. All of the trains need not actually exist at any particular time, in 

this sense they are like Trains with a unique segments being reserved for all possible Train 

segments instantiations during the lifetime of the system. The importance function gives a 

user-assigned priority to each train and is chosen according to how critical thr Trains is to the 

safe and correct function of the system. The schema CrossController describes the 

information necessary to schedule processes in a running systems as shown in Figure 14. 

CrossController[X]

}{:

:

Pr:

:

:







Trainrunning

Switchswitch

iorityTrainsched

TstateTraintstate

Traintrain

)Re

|)Re(|max)((Re

Re

}{ReRe

)(tan)()(|:

)(|:

adyTrainrunning

adyTrianSchedRunningSchedadyTrian

runningadyTrain

adyTstatedomadyTrainlet

tceimportSchedfreetTstateTraint

ScheddomtfreetTstateTraint

Î

ÙÞ

Þ









Init

Swith=off

enterCrossing
Δ(switch)
readyTrain?:Train

switch=off

leaveCrossing
Δ(switch)
readyTrain?:Train

switch=on

gleaveCrosgenterCrosMain
r

sin||sin

 

Figure 14. Specification of Crossing Control 

Logs monitor system behavior. Whether you are running train control systems, whether 

each event happens, all of these have some sort of event logging inbuilt into them. Any time 

your system reacts to anything an event log is generated as shown in Figure 15. 

 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 8, No. 4, July, 2013 

 

 

166 

 

Log[X]

Add
Δ(record)
x?:X

log:seq X
record:chan

record'record

 

WriteLMain

AddxrecodXxWrite





Ù

Ù



?:

 

Figure 15. Specification of Log 

MainAspect

@{RadioController}
@{TrainController}

PC1

PonitCut PC1:{crossController}
PointCut PC2:{Log}

PC2

state’=crossController[position,speed]

record’=Log[record]

Composition

Compostion rule:=PC2≤ PC1

 

Figure 16. Composition of the System 

4. Conclusion 

In this paper we proposed to use formal specification for transportation cyber physical 

systems based on the combination of the formal methods Timed-CSP, ZimOO and 

differential dynamic logic. A case study of train control system was used to illustrate the 

specification process of formal specification for Transportation cyber physical systems.  

The further work is devoted to integrated formal specification with AADL further. 
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