
International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

127

A Hybrid Routing Algorithm for an Efficient Shortest Path Decision

in Network Routing

Taehwan Cho, Kyeongseob Kim, Wanoh Yoon and Sangbang Choi*

Department of Electronics Engineering, Inha University, Incheon, Korea

burujo@naver.com, sangbang@inha.ac.kr*

Abstract

Recently, shortest path tree construction is essential in network routing. Dijkstra algorithm,

one of the static routing algorithms, is widely used. When some links develop new weights,

dynamic routing algorithms become more efficient than static routing algorithms. This is

because dynamic routing algorithms reduce the redundancy caused by re-computing the

affected part of the network in regards to the changed links. However, dynamic routing

algorithms are not always efficient in some cases and increase the computation time when

making the shortest path tree. In this paper, we present a Hybrid Shortest Path Tree (HSPT)

algorithm which reduces the total execution time of shortest path tree computation by using

the advantages of both static and dynamic routing algorithms. Comparisons with the other

routing algorithms such as Dijkstra, Dynamic Dijkstra and RDSP show that the HSPT

algorithm provides a better performance as demonstrated by the decrease in the execution

time.

Keywords: Hybrid routing, dynamic routing, Dijkstra, shortest path, network routing

1. Introduction

Network Routing is a process which is choosing a way of sending communication data in a

certain network. Network routing process is usually performed based on a routing table that

manages various network destinations’ routes. Therefore, the routing table formation written

in a memory of the router is very important for effective routing. There are many graph

algorithm methods used in routing algorithms. In graph G=(N,L), N stands for Nodes and L

stands for a set of Nodes. Each link is composed of a pair of Nodes. In a viewpoint of

network routing, the nodes of graphs represent routers, and the links which connect these

nodes represent physical links between routers.

In today’s Internet, demands for broadband Internet Applications have grown rapidly.

Therefore, high speed routing has become more important at Open Shortest Path First (OSPF)

which is the most used intra-autonomous system routing protocols. When topological changes

occur due to an unexpected situation at the OSPF, network routing algorithms are used to

update the routing table. For example, if there is a link failure in a network, then the Shortest

Paths have to be re-computed. Normally in this case, the shortest paths computation is

performed by re-running the Dijkstra algorithm [1, 2]. However, when links acquire new

weights in a network, using the Dijkstra algorithm can increase the computation time and

cause unnecessary corrections by repeating its operation in all of the nodes where the link’s

weight does not change. Therefore, this can cause network instability, since the overall

routing table is frequently updated [3, 4].

This problem has motivated the introduction of dynamic routing algorithms used for the

shortest path computation. Dynamic routing algorithms have been studied by Frigioni,

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

128

Narvaez, and others; the Dynamic Dijkstra [5] and RDSP (Reliable Dynamic Shortest Path)

[6] methods are the result. These dynamic routing algorithms need more computation time for

one node than the static routing algorithms. However, they can reduce their total computation

time through the decrease in the number of nodes that have to be computed. That is, when

some links have new weights in a network, Dynamic routing algorithms only find the affected

nodes by the changed links when re-computing the shortest paths. Therefore they need less

computation time to determine the shortest paths than that needed by the static routing

algorithms. However, dynamic routing algorithms can require more computation time

dependant on the location of the changed links.

In this paper, we present the Hybrid Shortest Path Tree (HSPT) algorithm, which uses less

computation time by combining the advantages of the static routing algorithms and the

dynamic routing algorithms. When evaluating the proposed algorithm, we compared it to the

well-known static Dijkstra, the dynamic Dijkstra, and the RDSP algorithms.

2. Related Works

2.1. Dijkstra Algorithm

Dijkstra algorithm calculates the shortest path between a starting point and an ending

point given in a direction graph which does not have negative link value. Therefore, it

is a very effective method to find the shortest path from one point to the other point. If

we apply this method to network, we can solve the problem of the shortest path from

one point by supposing that a link’s weight is not negative but weight direction graph

G=(N,L). This algorithm which can find both the shortest path and the shortest distance

is used in application areas to find a best way to the destination such as railway

constructions, communication network design, and flight planning. Dijkstra algorithm is

used a lot in network routing design; the prominent example is OSPF, a routing

protocol in IP network.

The performance process of Dijkstra algorithm is like this. First, Dijkstra algorithm

finds the closest point from a starting point. Then, the distance to the closest point is the

shortest distance. We call the group of these closest points as S. Dijkstra algorithm

keeps finding the closest point among points is not included in group S and this new

closest point is one of the neighboring points of group S. The distance to the new

closest point is the new shortest distance, and the new closest point now belongs to

group S. Dijkstra algorithm repeats this process until it cannot find a new closest find,

which means that it repeats until all points belong to group S.

2.2. Dynamic Routing Algorithm

Protocols in AS like OSPF mainly use Dijkstra algorithm. The core of Dijkstra

algorithm is to find the shortest distance from a root node to every destination.

However, Dijkstra algorithm calculates the shortest path from the very beginning

without using the previous shortest path information in the routing tables if there is a

small change in network topology. Accordingly, the shortest path calculation performed

by Dijkstra algorithm can be a heavy burden for a router. Additionally, using entire

CPU in this process is also problematic.

The routing table does not reflect actual network topology in a gap phase until it

finishes the calculation. This is because it takes a very long time to calculate the

shortest path by Dijkstra algorithm if there is a small change in network topology. In

this case, if some important data packet moves on the route in a gap phase, loss of

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

129

packet occurs. This scenario can be happened in any time when there is some problem

of the link in network, which is very a dangerous case.

Hence, if we are able to reduce this gap phase, we can prevent the packet loss. After

all, how much we can reduce the gap phase is a matter of grave concern in network. For

this reason, a dynamic algorithm should be preferred to a static algorithm since we can

save more time for calculation by making full use of the shortest path information of

previous status.

Another reason that we should use a dynamic algorithm is that 65% of the new

shortest path after change is same as the previous shortest path even if there is some

change in part of network topology. Even 35%, the rest of the new shortest path is very

similar to the previous shortest path. Therefore, calculating the shortest path by a static

algorithm is inefficient and calculating only the changed part of topology by a dynamic

algorithm is efficient.

2.3. Problem Definition

The Dijkstra algorithm, one of the static routing algorithms, is widely used in network

routing. However, this well-studied static routing algorithm is very ineffective when the link

status changes in a network, which requires only the update of a small part of the old shortest

paths. This is because it re-computes the new shortest paths in their entirety, not using the old

shortest paths information. This is the hardest operation for a router; it occupies a great deal

of CPU resources. It takes a very long time to compute the shortest paths using the Dijkstra

algorithm; it also incurs a gap phase. In a gap phase, the routing table does not reflect the

actual network topology until it finishes its computation, thereby packet losses can occur,

which is problematic [7, 8].

For all of these reasons a dynamic routing algorithm should be preferred over a static

routing algorithm, since it reduces the computation time by culling the majority of its

information from the old routing table and only re-computing the nodes affected by updated

shortest paths list.

However, a dynamic routing algorithm needs more computation time than a static

algorithm, which depends on the location of the changed links. That is, when some links have

new weights near the root node, it takes a long computation time being that a lot of nodes are

affected by the updated shortest paths. Contrarily, near the end node, it takes a shorter

computation time due to the few nodes affected. Therefore, dynamic routing algorithms do

not get consistent results since they have wide variations for each different computation time

case. This is problematic in network routing.

3. Proposed Algorithm

In this paper, we present a hybrid routing algorithm which reduces the total SPT execution

time using the advantages gleaned from the static and dynamic routing algorithms. We call

this algorithm the Hybrid Shortest Path Tree (HSPT). In order to efficiently compute the

shortest paths using HSPT, the times when the static and dynamic algorithms are applied are

very important.

Static routing algorithms should be applied when computing the shortest paths where some

links have new weights near the root node. The reason that static routing algorithms are

applied in this situation is because there are a lot of nodes which have to be computed near

the root node. In this case, using static routing algorithms is a better method to compute the

shortest paths rather than using the dynamic routing algorithms which need more computation

time for each node.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

130

Step 1 : Find the depth of whole network

Find the network depth by DFS(Depth First Search)

Determine D as 40% depth of whole network

for All nodes do

 Find the link whose link cost is changed

 Calculate the link depth by DFS

 if the link depth < D then

 Go Step 2

 else

 Go Step 3

 endif

endfor

Step 2 : Static routing

Find shortest paths by static routing

G=(V,E) // using Dijkstra algorithm

Update the routing table

Step 3 : Dynamic routing

Find shortest paths by dynamic routing

G=(V,E) // using Dijkstra algorithm

Initialization des(e) are updated

following the sequence of DFS from node e in SPT

// all descendants of updated

Remove edges from Q which have end nodes belonging to des(e)

Update the old information in Q

Obtain a Temporary SPT

While(des(e))

{des(e), mis_inc} ← extract(M)

If v has incoming links between des(e), then

if D(i) from incoming link > D(j) from inner nodes,

 then D(i) = D(j)

endif

endif

Update the routing table

Figure 1. Pseudo Code for the Proposed HSPT

Alternatively, dynamic routing algorithms should be applied to compute the shortest paths

when some links have new weights near the end node. The reason that dynamic routing

algorithms are applied in this case is that there are only a few nodes which have to be

computed near the end node. In this case, using dynamic routing algorithms to re-compute

only the nodes affected by old shortest paths is better than using the static routing algorithms

which re-compute every node.

The hybrid routing algorithm is performed using the following procedures: First, in order

to decide which algorithms should be applied, we need to find the depth of whole network

using the Depth-First Search (DFS) method. Second, when some links have new weights of

less depth than 40% of, static routing algorithms are applied to compute the shortest paths.

Finally, when some of the links have new depth weights of more than 40% dynamic routing

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

131

algorithms are applied to compute the shortest paths. Figure 1 shows the pseudo code for the

proposed HSPT.

The criterion for applying static and dynamic algorithms is a network depth of 40%, based

on our simulations. In order to obtain the best criterion for applying the static and dynamic

algorithms, we simulated them from depths of 30% to 60%. We found that 40% of the

network depth was the best criterion for the hybrid routing algorithms. Figure 2 shows the

simulation result of criterion.

0 100 200 300

0

100

200

300

co

m
pu

ta
tio

n
tim

e

graph size

 30%

 60%

 50%

 40%

Figure 2. The Simulation Result of Criterion

4. Performance Evaluation

Table 1. The Input Parameters

Parameters Values

Number of nodes 50, 100, 150, 200, 250, 300

Changed rate of link weights (%) 100, 200, 300, 400

Deviation of link weights 5, 10, 15, 20

The performance of the HSPT has been compared to previously published algorithms: the

Dijkstra algorithm, Dynamic Dijkstra algorithm, and RDSP algorithm. The number of nodes,

the changed rate of link weights, and the deviation of link weights were used for the input

parameters in the simulations. The input parameters are restricted to the following values

presented in Table 1.

4.1. Number of Nodes

The number of nodes represents the number of nodes in the entire network, i.e. the network

size. Every simulation result was simulated in graphs which have 50 nodes, 100 nodes, 150

nodes, 200 nodes, 250 nodes and 300 nodes. Therefore, the result of a changed rate of link

weights and a deviation of link weights were compared by simulating the graphs which have

different numbers of nodes.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

132

4.2. Changed Rate of Link Weights

The changed rate for the link weights is the rate used to compare it to the old link weight.

In this paper, the case that the link weight was changed from 7 to 24 is shown. It is necessary

to compare the performance depending on the altered link weight because it could have the

different computation time for the shortest path by the altered link weight. We simulated this

by changing the link weight to 100%, 200%, 300%, and 400%.

4.3. Deviation of Link Weights

The deviation of the link weights is the difference between the link weights and the mean

value. In this study, the mean value is set to 10. At this time, we simulated by changing the

deviation as 5, 10, 15, and 20.

4.4. Simulation Results

Comparisons are done based on the total execution time. The execution time is the

computation of the shortest path in the given network. From Figure 2 to Figure 9 show the

total execution time with respect to the number of nodes. The changed rate of link weights of

Figure 2 is 100%, Figure 3 is 200%, Figure 4 is 300% and Figuer 5 is 400%. Also, the

deviation of Figures 2, 3, 4 and 5 is 10 respectively. Next, the deviation of Figure 6 is 5,

Figure 7 is 10, Figure 8 is 15 and Figure 9 is 20. Also, the changed rate of link weights of

Figures 6, 7, 8 and 9 is 200% respectively. And the mean value of all figure is 10 respectively.

As shown in the all figure, HSPT algorithm outperforms Dijkstra algorithm, Dynamic

Dijkstra algorithm and RDSP algorithm. As long as the number of nodes is increased, the

computation time for shortest paths takes longer. If the changed rate of link weights is low,

then the computation time for shortest paths becomes longer linearly. However, If the

changed rate of link weights is high, then the computation time for shortest paths becomes

longer nonlinearly.

0 100 200 300

0

100

200

300

co
m

pu
ta

tio
n

tim
e

graph size

 Dijkstra

 Dynamic Dijkstra

 RDSP

 HSPT

Figure 2. Total Computation Time with Respect to the Number of Nodes and
the Changed Rate of Link Weights 100

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

133

0 100 200 300

0

100

200

300

graph size

co
m

pu
ta

tio
n

tim
e

 Dijkstra

 Dynamic Dijkstra

 RDSP

 HSPT

Figure 3. Total Computation Time with Respect to the Number of Nodes and
the Changed Rate of Link Eeights 200

0 100 200 300

0

100

200

300

graph size

co
m

pu
ta

tio
n

tim
e

 Dijkstra

 Dynamic Dijkstra

 RDSP

 HSPT

Figure 4. Total Computation Time with Respect to the Number of Nodes and
the Changed Rate of Link Weights 300

0 100 200 300

0

100

200

300

graph size

co
m

pu
ta

tio
n

tim
e

 Dijkstra

 Dynamic Dijkstra

 RDSP

 HSPT

Figure 5. Total Computation Time with Respect to the Number of Nodes and
the Changed Rate of Link Weights 400

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

134

0 100 200 300

0

100

200

300

graph size

co
m

pu
ta

tio
n

tim
e

 Dijkstra

 Dynamic Dijkstra

 RDSP

 HSPT

Figure 6. Total Computation Time with Respect to the Number of Nodes and
the Deviation of the Link Weights 5

0 100 200 300

0

100

200

300

graph size

co
m

pu
ta

tio
n

tim
e

 Dijkstra

 Dynamic Dijkstra

 RDSP

 HSPT

Figure 7. Total Computation Time with Respect to the Number of Nodes and
the Deviation of the Link Weights 10

0 100 200 300

0

100

200

300

graph size

co
m

pu
ta

tio
n

tim
e

 Dijkstra

 Dynamic Dijkstra

 RDSP

 HSPT

Figure 8. Total Computation Time with Respect to the Number of Nodes and
the Deviation of the Link Weights 15

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

135

0 100 200 300

0

100

200

300

graph size

co
m

pu
ta

tio
n

tim
e

 Dijkstra

 Dynamic Dijkstra

 RDSP

 HSPT

Figure 9. Total Computation Time with Respect to the Number of Nodes and
the Deviation of the Link Weights 20

5. Conclusion

In this paper, we present the HSPT (Hybrid Shortest Path Tree) algorithm in order to offer

an efficient shortest paths decision used to reduce the total execution time by using the

advantages of the static and dynamic algorithms. Less total execution time leads to reduction

in packet loss. As shown in the comparison results, the proposed HSPT algorithm provides a

better performance when compared to the Dijkstra, Dynamic Dijkstra, and RDSP methods in

terms of the computation time of the shortest path.

Acknowledgements

This work was supported by Key Research Institute Program through the National

Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and

Technology(2012-0005858).

References

[1] E. Dijkstra, “A note two problems in connection with graphs”, Numerical Math, vol. 1, (1959), pp. 269-271.

[2] G. S. Cho and J. K. Ryeu, “An Efficient Method to Find a Shortest Path for a Car-Like Robot”, International

Journal of Multimedia and Ubiquitous Engineering, vol. 1, (2006), pp. 1-6.

[3] B. Xiao, J. Cao, Z. Shao and E. H. M. Sha, “An Efficient Algorithm for Dynamic Shortest Path Tree Update

in Network Routing”, Journal of Communication and Networks, vol. 9, (2007), pp. 499-510.

[4] S. Y. Ameen, A. A. Ahmed and I. A. Ibrahimi, “MANET Routing Protocols Performance Evaluation with

TCP Taho, Reno and New-Reno”, International Journal of u - and e - Service, Science and Technology, vol. 4,

(2011), pp. 37-49.

[5] E. P. F. Chan and Y. Yang, “Shortest Path Tree Computation in Dynamic Graphs”, IEEE Transactions on

Computers, vol. 58, (2009), pp. 541-557.

[6] T. H. Cho, J. W. Kim, B. J. Kim, W. O. Yoon and S. B. Choi, “A Study on Shortest Path Decision Algorithm

for Improving the Reliability of Dynamic Routing Algorithm”, Journal of the Korean Institute of Information

Scientists and Engineers, vol. 38, (2011), pp. 450-459.

[7] V. Eramo, M. Listanti and A. Cianfrani, “Design and Evaluation of a New Multi-Path Incremental Routing

Algorithm on Software Routers”, IEEE Transactions on Network and Service Management, vol. 5, (2008), pp.

188-203.

[8] S. K. Lee, J. W. Jang, S. J. Jang and J. Y. Shin, “Development and Performance Analysis of ABR-DBA

Algorithm for Improve Network Performance”, International Journal of Future Generation Communication

and Networking, vol. 1, (2008), pp. 1-6.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 4, July, 2013

136

Authors

Taehwan Cho received the B.S. degree in aerospace engineering from

Inha University, Incheon, Korea, in 2001. He is currently working toward

the Ph.D. degree in the computer architecture and networks Laboratory.

His research interests include communication and security in computer

networks, wireless mobile ad hoc and sensor networks.

Kyeongseob Kim received the B.S. degree in information

communication engineering from Hannam University, Daejeon, Korea,

in 2002, the M.S. degree in electronics engineering from Inha University.

He is currently working toward the Ph.D. degree in the computer

architecture and networks Laboratory. His research activities include

computer architecture, computer networks, and wireless mobile ad hoc

sensor networks and vehicle network system.

Wanoh Yoon received the B.S. degree in electronics engineering from

Kyonggi University, GyeongGi-Do, Korea, in 2000, the M.S. degree and

Ph. D. degree in electronics engineering from Inha University, in 2002

and 2010, respectively. He is currently working as a research professor in

Inha University, since 2010.

His research activities include distributed and parallel system,

computer architecture and ADS-B system.

Sangbang Choi earned the M.S. and Ph.D. in electrical engineering

from the University of Washington, Seattle, in 1988 and 1990,

respectively. He is currently a professor of electronic engineering at Inha

University, Incheon, Korea. His research interests include computer

architecture, computer networks, wireless communication, parallel and

distributed systems.

