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Abstract 

In recent years, clustering data streams has been actively proposed in the field of data 

mining. In real-life domains, clustering methods for data streams should effectively monitor 

the continuous change of a data stream with respect to all the dimensions of the data stream. 

In this paper, a clustering method with frequency prediction of data elements is proposed. 

The incoming statistics of data elements in the monitoring range are maintained. For the 

range of elements with high density, the range is partitioned to detect the detailed boundary 

of clusters. To identifying the recent change of a data stream quickly, the support of elements 

is carefully monitored and predicted to determine partitioned ranges to become clusters. 

Considering the change of the data stream, a threshold is adaptively controlled by a 

prediction mechanism. By predicting the change of supports, the on-going change of a data 

stream can be reflected in real-time. The proposed method is comparatively analyzed by a 

series of experiments to identify its various characteristics. 
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1. Introduction 

Data mining researches on data streams are motivated by emerging applications 

involving continuous massive data sets such as customer click streams, multimedia data 

and sensor data. A real-life data stream usually contains many dimensions and some 

dimensional values of its data elements may be missing [1]. In order to effectively 

extract the on-going change of a data stream with respect to all the subsets of the 

dimensions of the data stream, the abilities to trace its subclusters and to predict the 

change are very important. 

In [2], K-median is a partitioning-based clustering algorithm and it finds the full-

dimensional clusters of continuously generated data elements over a data stream. It 

regards a data stream as a sequence of stream chunks. A stream chunk is a set of 

consecutive data elements generated in a data stream. Whenever a new stream chunk 

containing a set of newly generated data elements is formed, the LSEARCH routine 

which is an O(1)-approximate K-medoid algorithm is performed to select K data 

elements from the data elements of the stream chunk as the local centers of the chunk.  

CluStream [3] is proposed to find the clusters of data elements generated in an 

evolving data stream. It executes the conventional K-means method to find initial q 
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pseudo clusters called micro clusters. A cluster feature vector [4] is used to represent 

the properties of a cluster. As a new data element arrives, the cluster features of the q 

micro clusters are continuously updated. The cluster feature vectors of all clusters at 

each specified timestamp are stored as a snapshot. The CluStream produces k final 

clusters called macro clusters by executing the K-means algorithm once more on the 

micro clusters of these snapshots. 

All of these clustering algorithms for data streams are not targeted for subspace 

clustering. In recent applications, identifying the change of a data stream quickly 

enables to find the gradual change of embedded information, so that it can be timely 

utilized. A typical subspace clustering algorithm for a finite data set is CLIQUE [5] 

which searches all the subspaces of a data set in a bottom-up manner. CLIQUE [5] first 

determines the dense regions of each dimension as one-dimensional subspace clusters. 

After finding all of (k-1)-dimensional subspace clusters, candidate k-dimensional 

rectangular spaces are formulated by intersecting the regions of all the (k-1) 

dimensional subspace clusters. Subsequently, a k-dimensional subspace cluster is 

identified as a set of connected dense k-dimensional rectangular spaces. This process is 

repeated until no higher-dimensional subspace cluster is found. The drawback of this 

approach is that a data set is repeatedly scanned at every step of pruning candidate 

rectangular subspaces. 

To accomplish the same objective, ENCLUS [6] uses the entropy of data elements. 

Basically, the clustering process of ENCLUS is the same as that of CLIQUE. It is 

motivated by the fact that a subspace with clusters typically has a lower entropy value 

than a subspace without any cluster. The entropy can measure the uncertainty of a 

random variable. When data points in a data set have a highly skewed probability mass 

function, their values are likely to fall within a small set of outcomes, so that the 

entropy of the data set is high. If the entropy of a subspace is smaller than a user -

defined threshold, this subspace is excluded for the further clustering process.   

FIRES [7] does an approximation technique based on the one-dimensional subspace 

clusters of each dimension. However, the common characteristic of these approaches is 

that they should scan a data set multiple times. Consequently, they can not be applied to 

an infinite on-line data stream. FIRES [7] is targeted to find subspace clusters in a high-

dimensional data space. To overcome the curse of dimensionality in subspace 

clustering, it approximates multi-dimensional subspace clusters by one-dimensional 

clusters in each dimension. Initially, the one-dimensional clusters of each dimension are 

identified by using one of well-known clustering algorithms such as DBSCAN [8,10], 

k-means[2] or STING[9]. Subsequently, the intersected rectangular spaces of these one-

dimensional clusters are prioritized based on the number of data elements. 

In this paper, the grid-based index structure is adopted for subspace clustering over a 

data stream. Given a predefined sequence of dimensions N1→N2→…→Nn, initially an 

independent grid-list for each dimension monitors its one-dimensional subclusters at the 

first level of a monitoring tree. When a grid-cell of the grid-list for the dimension 

Nk(1≤k≤n) becomes a dense unit grid-cell, a set of new grid-lists are created as the 

children of the grid-cell. In order to enumerate all the possible two-dimensional 

subspaces of the dimension Nk uniquely, only for those dimensions which are after the 

dimension Nk in the dimension sequence, new grid-cell lists are created. Consequently, 

there are (d-k) distinct grid-cell lists are created as the children of the grid-cell. A grid 

cell of a node in the k
th

 level of a monitoring tree is corresponding to a rectangular 

subspace formed by intersecting the intervals of the grid-cells in the path from the root 

to the node containing itself. Also, to reflect the change of data streams in a real-time, 
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the support of a grid-cell is monitored and predicted by measuring velocity of density 

change.  

This paper is organized as follows. In Section 2, the grid-cell structure is presented to 

maintain statistics of subspaces. In Section 3, the support prediction is introduced to 

measure when grid-cells become dense. In Section 4, various experiment results are 

comparatively analyzed to evaluate the performance of the proposed method. Finally, 

Section 5 presents conclusions. 

 

2. Monitoring Data Streams 

Given a data stream of an n-dimensional data space N=N1…Nn, the region of a k-

dimensional grid-cell (1≤k≤n) can be defined by a set of k intervals each of which lies 

in a distinct dimension. The rectangular space of a k-dimensional grid-cell defined by 

dimensions N1, N2,…,Nk is RS=I1 I2… Ik where I1 , I2,…, and Ik are intervals in the 

dimension N1, N2,…, Nk  respectively. To monitor the distribution statistics of data 

elements in the rectangular space of such a grid-cell efficiently, a monitoring tree 

defined in Definition 1 is employed.  

 

Definition 1. Structure of monitoring grid-cells  

Given a predefined sequence of dimensions N1→N2→…→Nn, a monitoring tree of order 

m is defined for the current data stream D
t
 of a n-dimensional data space N=N1 … Nn 

as follows;  

1) A node maintains the following:  

i) an entry E<min, max, G[1,…,m], next_ptr> 

ii) a child array U[1,…m][1,…,n-1] : Each of m grid-cells can have at most n-1 child 

nodes  

iii) Tdim : the dimension on which its grid-cells are defined  

2) If a node p in the j
th

 level is a child of a grid-cell q.G[i] (1≤ i≤ m) of a node q in 

the (j-1)
th

 level, 

i) the node p becomes the first entry of a new grid-cell list L and the node p is called 

as the head of the list L. 

ii) the grid-cell q.G[i] is called as the parent grid-cell of all the grid-cells in the grid-cell list S. 

iii) let Ancestor(g
j
)= {g

1
,…,g

j-1
} denote the set of its ancestor grid-cells in the path 

from the root to the node. The rectangular subspace RS(g
j
) of the grid-cell g

j
 is 

RS(g
j
)=g

1
.I g

2
.I … g

j-1
.I  g

j
.I where |g

i
. I|=λ and g

i
.c/|D

t
|≥ Spar  (1≤i≤ j-1). 

iv) let Dg
t
 denote those data elements that are in the range of the grid-cell g

j
, 

i.e.,Dg
t
={ e| e∈D

t
 and e ∈ RS(g

j
) }. The distribution statistics of data elements 

in the rectangular subspace RS(g
j
) are monitored by the grid-cell g

j
(I,c,μ,σ). In 

other words, the current number of data elements in Dg
t
 is monitored by g

j
.c

t
. In 

addition, the average and standard deviation of data elements in Dg
t
 are monitored 

by g
j
.μ and g

j
.σ respectively.

  

□ 

Given a predefined sequence of dimensions N1→…→Nn and a partitioning factor h, 

grid-cell lists L1,…, Ln are created to maintain the one-dimensional grid-cells of each 
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one-dimensional data space respectively. Initially, each grid-cell list at the first level 

maintains h initial grid-cells and a single node is created to form each grid-cell list. As 

a new object o
t
 is arrived, the previous statistics are update as follows: 

 

 

 
 

 

 

Figure 1. An example of grid-cells and data space 
 

For the continuously generated data elements of a data stream, dense grid-cells in 

each grid-cell list Lv(1≤v≤n) are recursively partitioned into h smaller grid-cells. Each 

of the child nodes is the head node of a new grid-cell list for two-dimensional grid-

cells. The grid-cell list created for the dimension Nl (v+1≤l≤n) monitors the on-going 

distribution statistics of data elements in the two-dimensional rectangular subspace 

space gp
1
.INl.  Given a grid-cell gq

2
(I,c,μ,σ) of the new grid-cell list in the second 

level, the two-dimensional rectangular subspace denoted by the grid-cell gq
2
(I,c,μ,σ) is 

gp
1
.Igq

2
.I.  

Whenever a new data element e
t
=<e1

t
,…,en

t
> is generated, according to the 

dimensional values of e
t
, the relevant paths of the monitoring tree are traversed from the 

root. Upon visiting a node in the k
th

 level of the monitoring tree, its child nodes are 

searched in a depth-first manner since several range lists can be created as the children 

of a single range. For each child node, the dimensional value of the new data element is 
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used to determine the right range among its ranges. For each identified range, the new 

element is processed by updating the distribution statistics of the range. If the size of 

the range is not a predefined minimum unit and just becomes dense (≥Spar), it is 

partitioned into h smaller ranges. 

When a grid-cell in the grid-cell list for the dimension Nl (v+1≤l≤n) in the second 

level becomes dense, it is also partitioned into smaller grid-cells. Consequently, the 

number of grid-cells in the grid-cell list is increased. Furthermore, when it becomes a 

dense unit grid-cell, (n-l) new grid-cell lists for the subsequent dimensions are created 

in the third level as the children of the dense grid-cell as well. In such a way, the 

monitoring tree grows up to the n
th

 level at most. On the other hand, when a grid-cell g 

of a node n in a monitoring tree becomes sparse, it is merged to be a grid-cell of a 

rough range. Furthermore, all of its descendent nodes are pruned since they are also 

sparse.  

 

3. Prediction of the Grid-cell Support 

For a grid-cell in a monitoring tree, its support per time changes over time. Analyzing the 

past frequency of a grid-cell can help to predict its support in the future [11, 12]. However, to 

predict the support more accurately over time, more information should be maintained each 

grid-cell entry. 

For a grid-cell, its support velocity is defined as the difference of its support. The Vcount of 

the grid-cell means its velocity in the most recent time. When the current time is t
th
 time, the 

support of (t+1)
th
 time can be predicted from Vcount.  

Vcount
t+1

 = count
t
 – count

t-1                                      
(1) 

From the velocity Vcount
t+1

, the count at (t+1)
th
 time can be predicted as follows: 

Pcount
t+1

=count
t
+Vcount

t+1    
(2) 

The support at (t+1)
th
 time can be predicted from Pcount

t+1
 as follows: 

S
t+1

=( count
t
 + Pcount

t+1 
) / ( |D

t
| + count

t+1 
) 

Let a grid-cell with the current support S
t
 would become a cluster after v times. Then, 

S
t+v

=( count
t
 + Pcount

t+v 
) / ( |D

t
| + count

t+v 
) ≥  Smin is satisfied. From equations (1) and 

(2), the support is predicted by solving the time v. 

 

4. Experiments 

In order to analyze the performance of the proposed method, a data set containing one 

million 20-dimensional data elements is generated by the data generator used in ENCLUS [6]. 

The domain size of each dimension is set to 100. Most of data elements are concentrated on 

randomly chosen 10 data regions whose sizes in each dimension are also randomly varied. 

The conditions of most experiments are Smin=0.01, λ=2, and m=4 unless they are specified 

differently. The dimension of each level of a monitoring tree is determined dynamically. In all 

experiments, data elements are looked up one by one in sequence to simulate the environment 

of an on-line data stream. 

The accuracy of the proposed method is presented in Figure 2. CLIQUE [5] is a well-

known conventional grid-based subspace clustering algorithm for a finite data set and it 

is used as a yardstick to measure the accuracy of the proposed method. Among the data 
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elements of a subcluster grouped by the proposed method, those data elements that are 

also grouped into the same subcluster by CLIQUE are defined as correctly clustered 

data elements. Figure 2(a) illustrates the accuracy of the proposed method for the four 

different values of λ. It is measured by the ratio of the number of correctly clustered 

data elements over the total number of data elements clustered by CLIQUE. When the 

value of λ for the proposed method is the same as that for CLIQUE, these two methods  

have the same accuracy. Figure 2(b) shows the variation of the accuracy as new data 

elements are generated. The accuracy of the subclusters obtained by the proposed 

method are measured relatively to the clustering result of CLIQUE when λ=2. Since lots 

of partitioning operations are occurred to find unit grid-cells in the early stage of 

subspace clustering, the accuracy of the proposed method is relatively low. However, as 

unit grid-cells are found by consecutive partitioning operations, the accuracy is 

increased gradually. Figure 2(c) shows the processing time of the proposed method. 

When the order is too small, i.e., m=2, the number of sibling entries in each sibling list 

is increased rapidly, which prolongs the processing time.  

 

 
(a) Accuracy comparison 

 

 
(b) Accuracy variation 

 

 
(c) Memory usage 

 

Figure 2. Performance evaluations 
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5. Conclusion 

As the number of dimensions for a data set is increased, subspace clustering is useful to 

analysis interesting groups in the subsets of the dimensions. However, because conventional 

subspace clustering methods need to create all the possible candidate subclusters and examine 

the data elements of a data set repeatedly for each candidate. They can not be used for an on-

line data stream. In this paper, we have proposed a subspace clustering method over a data 

stream. By maintaining grid-based structure, the current statistics of a data stream are 

carefully monitored. As the support of each grid-cell is predicted with the support velocity, 

the rapid change of a data stream can be predicted for the real-time data mining. 
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