
International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

207

Development of Dynamic Reconfigurable Integrated Management

and Monitoring System for Large Scale Weapon System

Bup-Ki Min¹, Hyeon Soo Kim¹, Seunghak Kuk², Chumsu Kim² and Woonggie Han²

1
Dept. of Computer Sc. & Eng. Chungnam National University

2
Agency for Defense Development

{bkmin, hskim401}@cnu.ac.kr, {shkuk, chskim, hahaha}@add.re.kr

Abstract

This article proposes an integrated management and monitoring system based on the in-

formation model for the large weapon system on the heterogeneous distributed environments.

Since the large weapon system is the large scale distributed system composed of a variety of

heterogeneous subsystems, it is very difficult to manage and integrate them. In order to man-

age and control consistently the subsystems that operate on the different platforms, a stand-

ardized method must be employed to maintain information about them. Also, when the con-

figuration of the subsystems is changed, information about subsystems must reflect the

changed configuration. This paper uses the information model to manage a large weapon

system on the heterogeneous environments in a consistent manner. In addition, the methods

for dynamic reconfiguration of information model are suggested to dynamically reflect the

changes in the configuration of the subsystems into the integrated management and monitor-

ing system. With these methods, we expect that the large weapon system can be managed re-

liably.

Keywords: large scale weapon system, integrated management and monitoring system,

IMMS-CMS

1. Introduction

The large scale weapon system is an automated combat system with integrated command

and armament features, designed to provide optimal combat capabilities. Today, enemy

threats have become increasingly faster and stealthy according to the trends of modern war-

fare. In response, the large scale weapon system is designed to accurately detect these threats

and mount countermeasures. It also comprehensively processes data obtained from the ship’s

sensors and externally in combat situations in which many different things occur simultane-

ously. The large scale weapon system, therefore, is made up of various subsystems as shown

in Figure 1, each of which are responsible for performing different functions, including detec-

tion, control, and combat (armament control, identification and tracking of targets, command

and control). For example, via sensor input, the system detects enemies, controls armament,

and engages in combat, each of which is implemented by a different subsystem. The overall

functionality of the system is given by the combination of the functionalities of these subsys-

tems [1].

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

208

Figure 1. Naval C4I Systems

However, subsystems of the large scale weapon system may be independently developed

by different vendors. In this case, management and monitoring of these subsystems have to be

dependent on the particular implementation. Therefore, each subsystem had to have its own

management system, different from the rest [2]. To convey events or data generated from

each of the subsystems, the administrator had to remember them or they had to be written

down in a document. As a result, it was difficult to respond in real-time and the accuracy of

data often suffered. From these limitations arose a need for a system that can manage data

from each of the subsystems and provide them in real-time. For a single environment system,

it would be easy to integrate the subsystems or manage them in an integrated way. It is, how-

ever, not easy to do so for the large scale weapon system, as it is made up of heterogeneous

subsystems. Therefore, a method is needed to effectively maintain and manage data generated

in subsystems of the large scale weapon system (made up of heterogeneous systems in a dis-

tributed environment) under a single integrated management system.

In this paper, various services are defined using information models, and architecture is de-

signed and implemented in a hierarchical way, so as to effectively deliver these services. Us-

ing the developed architecture, data generated in the large scale weapon system can be pro-

vided to the user in various forms, and effective control of subsystems is made possible.

2. Backgrounds

2.1. CIM

CIM (Common Information Model) is a system management standard proposed by DMTF

(Distributed Management Task Force) for the distributed environment [3].

In CIM, a single

model is defined for management information and service semantic system and all factors are

mapped 1:1 to the semantic system of this model. A single independent model is used for

detailed hardware information, service configuration, and software running on hardware. As a

result, data can be reused, and consistency can be maintained in expressing data between de-

veloped products in a heterogeneous distributed environment. Another advantage of CIM is

flexibility and extendibility of the model itself, for which purpose CIM provides a meta mod-

el. Using a meta model, the user can extend the model to a more detailed information model

or one specialized to one specific area.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

209

2.2. AMSM

AMSM (Application Management and System Monitoring for CMS Systems) is an inte-

grated management standard established by OMG for the navy’s naval combat system [2].

AMSM is an extended model of the common model provided by CIM. It provides infor-

mation models optimized to the naval combat management system.

2.3. Related Work

Research on a system that manages all subsystems of a large scale weapon system in an in-

tegrated way has just recently got underway. Past management systems for a large scale

weapon system managed subsystems on a subsystem by subsystem basis, which existed inde-

pendently. They could not show all subsystems in a single integrated way [2].

In the paper [5], a management system is implemented that measures network performance

and monitors network equipment. SNMP, a network management standard, is applied to the

existing management system in monitoring network equipment through the SNMP manager

and SNMP agent. To this end, network equipment management data are described by SNMP

MIBs. In the above studies, however, only the network of the naval combat system could be

managed, not the entire system. In this paper, the aim is to manage all subsystems that make

up the naval combat system in an integrated way. The paper [6] proposes a monitoring meth-

od for P2P-based distributed systems. In this paper, monitoring is done in the following way:

a system called P2PMonitor is implemented and a module called Alerters is added to each

subsystem so that events generated are delivered to P2PMonitor. Note that in this paper, mon-

itoring is done only on P2P applications that actually exist in the host. As the size of the sys-

tem gets bigger and as the number of applications that need to be managed in a single host

increase, Alerter needs to be extended. Moreover, there is not a method proposed for man-

agement or monitoring in the case that applications are added in heterogeneous environments

other than the P2P system. The paper [7] proposes an integration method and a control mech-

anism for heterogeneous distributed systems. In the paper, policies for assembling various

heterogeneous distributed systems are proposed, as well as a control delivery method called

Law-Governed Interaction. In our paper, however, a system is developed that can monitor and

control heterogeneous systems in an integrated way. Although the paper [7] focuses on sys-

tem integration, our paper places the focus on both system integration and management. To

this end, integrated management is performed that uses information models. In our paper, as

information models are used whatever the application, various systems can be managed and

monitored. In addition, various services in user-desired combinations can be provided.

3. Necessity of Integrated Management System for Large Scale Weapon

System

Combat systems installed on ships are huge and assembled on a variety of computing plat-

forms. Research on management techniques and system monitoring for deploying and con-

trolling countless applications to be used in a combat system, made up of hundreds to thou-

sands of pieces of equipment, is still in early stages. Current limitations are summarized be-

low.

 Combat systems installed on ships are huge and assembled in diverse computing platforms.

 It is difficult to appropriately deploy countless applications on multiple computing plat-

forms.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

210

 The ways of managing applications are different depending on the computing platform.

 There is no consistency even for the basics of application management, such as start-

ing/stopping.

 There are no specific ways available to control applications to ensure QoS.

 It is not easy to monitor the status of the current system.

 It is difficult to manage the overall system (requires multiple system administrators).

These limitations are placing a lot of burden on application developers, platform integra-

tors, and even system administrators. To overcome them, research on standard integrated

management and monitoring systems that spans the entire combat system is needed. To this

end, in our paper an integrated management system based on information models shown in

Figure 2 is developed for the large scale weapon system. The use of information models al-

lows collection and maintenance of data from diverse subsystems that make up the large scale

weapon system. Furthermore, the data are combined via services of various types. The ser-

vices can provide to the user data in various forms via user interfaces.

Figure 2. Integrated Management System Diagram

4. Information Model

The integrated management system for the large scale weapon system proposed in this pa-

per performs controlling and monitoring based on information models, which extract only the

independently needed data regardless of the hardware platform or the type of software. The

managed data are provided to the user as various services via the user interface of the inte-

grated management system. The information models are mapped 1:1 to the actual system

hardware and running software.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

211

Figure 3. Mapping between the Information Model and the Actual System

Figure 3 shows the mapping between the information model and the system hardware and

the running software being managed. Information models of the integrated management sys-

tem are made up of the following: Application Model, which contains information of the ac-

tually running process; Application Specification Model, which contains information of ap-

plications that are not running; Hardware Information Model, which contains hardware in-

formation; and Application Deployment Model, which contains deployment information

about on which hardware the application is running. Based on these pieces of information,

information on the entire hardware and software running on the large scale weapon system

can be maintained and managed.

5. IMMS-CMS

As the purpose of the integrated management system for the large scale weapon system

implemented in this paper is the management and monitoring of subsystems that make up the

large scale weapon system, it is called IMMS-CMS (Integrated Management and Monitoring

System for Combat Management System). In this section, the design of the architecture for

IMMS-CMS is described, as well as the design and implementation of the actual system.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

212

5.1. IMMS-CMS System Architecture

Figure 4. IMMS-CMS System Architecture

The architecture for the implementation of IMMS-CMS is proposed (see Figure 4). The ar-

chitecture was designed in a way suitable for managing multiple systems that exist in diverse

distributed environments under a single system. To this end IMMS-CMS is made up of dif-

ferent layers, each responsible for a specific kind of task. In addition, various services were

made that use information models, so that services can be provided to the user in an effective

way.

Client Layer

The client layer is where various services are provided to the user from the IMMS-CMS.

Information models being kept in the IMMS-CMS are provided to the user so that applica-

tions in distributed environments can be controlled. In addition, monitoring information is

provided to the user.

Service Layer

In the service layer, various pieces of information about diverse software and hardware are

provided to the user in the form of services. The core services provided by the service layer

are as follows:

 System Topology Querying Service: Provides query processing functions of the system

topology, which represents the deployment information of software and hardware being

managed.

 Application Control Service: This module controls applications. Specifically, it controls the

life cycle of applications being managed, including running, stopping, and deploying.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

213

 System Monitoring Service: This module monitors the system. It periodically checks the

status of the software and the hardware systems being managed, and notifies when there is

a change in status.

 Application Information Service: This module manages and provides information needed

for operation of applications being managed, or the information of the applications them-

selves.

 Configuration Service: This module performs addition, deletion, or modification of the

information model according to the changes to the configuration of the managed system.

The changes to the configuration are as follows: addition or deletion of hardware, addition

or deletion of applications, or changes of dependency information among the applications.

Currently, only the above five services are provided for the IMMS-CMS. However, more

services can be created using information models as per the user’s request. These services

then can be provided to the user in various forms via a user interface.

Management Layer

In the management layer, software and hardware systems managed by the IMMS-CMS are

managed in a substantial way. It is broadly made up of the software system management

model, hardware system management module, log management module, control management

module, monitoring management module and configuration management module.

 Software system management module: it manages the information model about applica-

tions

 Hardware system management module: it manages the information model for hosts

 Log information management module: it collects and manages information about the all

events (for instance, monitoring, network status, error, and so on) that occurs in the

course of work of IMMS-CMS

Information Model Layer

The information model layer maintains information of hardware and software systems

managed by the IMMS-CMS. It manages information models of applications and hardware of

each of the systems in the large scale weapon system. The system can be monitored and con-

trolled based on this layer.

Communication Layer

The communication layer provides communication functions with the host being managed.

Using various communication methods according to the type of the interface of the communi-

cation layer, control and monitoring data are exchanged between the IMMS-CMS and the

host. Although at present only socket communication (TCP/IP, UDP) is supported, support

for various middleware technologies is planned for the future, including DDS and COBRA.

5.2. Design and Implementation of IMMS-CMS

Design and Implementation of IMMS-CMS Information Models

In this paper, IMMS-CMS, an integrated management system for the large scale weapon

system, is implemented based on the AMSM specification. The AMSM specification, howev-

er, only describes information models for the large scale weapon system, along with envi-

ronments and ideas for the implementation, not specifying how to actually implement it in

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

214

any detail. Therefore, the actual design and implementation of the system is as shown in Fig-

ure 5.

Figure 5. Information Model Packages

There are the following information model packages: Management Package, which is the

starting point of IMMS-CMS services and which manages all running applications and hosts;

Application Package, which manages information models of applications and software sys-

tems; Application Specification Package, which contains information for modeling applica-

tions and software systems; Application Deployment Package, which contains information of

the deployment environment in which applications and software systems run; Application

Deployment Specification Package, which contains information needed for modeling the de-

ployment environment and deploying; Logging Service Package, which provides log infor-

mation in the integrated management system; Logical Hardware Package, which represents

hardware information models; Logical Hardware Specification Package, which contains

hardware environment settings; Supported Application Model Package, which supports appli-

cation and software models; Utility Package, which contains utilities needed for implementa-

tion of IMMS-CMS; Service Package, which shows application and software status infor-

mation via a user interface; Host Package, which shows the host status information via a user

interface; IMMS-CMS Side Interface Package, using which commands are sent from IMMS-

CMS to the host, and status information is received; and Host Side Interface, using which

commands are received by the host and status information is sent to IMMS-CMS.

Design and Implementation of the User Interface

The user interface provides a service environment for the user in which to monitor the sta-

tus of each host connected to the IMMS-CMS, and in which to send commands to them. It is

implemented using two tab controls so that the user has access to various services provided

by the service layer. As the service layer gets expanded, the user interface can be expanded

along with it. Currently it is made up with IMMS-CMS Service, in which applications being

managed can be controlled and monitored, and Host Management, in which information of

hosts connected to the IMMS-CMS can be monitored.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

215

IMMS-CMS Service UI

Figure 6. IMMS-CMS Service UI

1. Monitoring View: Shows all applications currently being managed by the IMMS-CMS.

2. System Control View: A single application can be selected among the ones shown in the

pane 1 to control it. It corresponds to the Application Control Service in the service layer.

In this window applications can be started and stopped. It also provides the current status

information.

3. Specification View: Detailed information is shown, including execution conditions of ap-

plications. It corresponds to the Application Information Service in the service layer.

4. Status Detailed View: Detailed information of applications managed by the IMMS-CMS is

shown, including their status information, execution host, and memory used. It corresponds

to the Application Information Service in the service layer.

5. Log View: Logs of events generated during the course of execution can be viewed.

Host Management UI

Figure 7. Host Management UI

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

216

1. Host Computer View: Shows a list of all hosts connected to the IMMS-CMS.

2. HWUtilisation View: Shows the hardware status of the host selected in the pane 1. It corre-

sponds to the System Monitoring Service in the service layer. It provides information such

as CPU load, network load, and memory usage.

3. Deploy Configuration View: Shows a list of applications running on the selected host. It

corresponds to the System Topology Querying Service in the service layer.

4. Computer Information View: Provides detailed information of the selected host including

IP address, port number, and execution information. It corresponds to the System Monitor-

ing Service in the service layer.

5. Computer Status View: Provides the CPU status of the current host, network status,

memory status, and hard disk status. It corresponds to the System Monitoring Service in

the service layer.

6. Log View: Logs of events generated during the course of execution can be viewed.

Design and Implementation of the Host Manager

Figure 8. Host Architecture of IMMS-CMS

Figure 8 shows the detailed architecture of the host manager. The host manager is respon-

sible for communications between applications running in the IMMS-CMS and hosts. It also

collects monitoring information in the host. Therefore it is made up of the following: Host

Side Interface, which is responsible for enabling communications; Status Collector, which

collects host status information and status information of the application running in the host;

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

217

and Application Executor, which runs the application in the host. Because for applications the

communication interface does not get initialized until executed, the execution must be done in

the host. Therefore, when an application execution command has been received, the control

command is directly executed by the host manager. After the execution of the application, the

following are done: receive the application status from the application and send it to the

IMMS-CMS; and send the control command to the application.

Dynamic Reconfiguration for Information Model

The purpose of dynamic reconfiguration for the information model is to match the infor-

mation model to the managed system's changed configuration without stopping management

works. This is an approach to be able to guarantee the availability and synchronization of the

integrated management/monitoring system by forwarding changes that occurred on the man-

aged system. Dynamic reconfiguration for the information model is triggered by changes to

system configuration such as addition/deletion of hardware, addition/deletion of applications,

or changes of information about applications. If it is needed to change the configuration, the

host administrator and application administrators rewrite the host's specification files and

application’s specification files, respectively. Rewritten specifications are passed to the inte-

grated management/monitoring system, in turn the configuration manager reconfigures the

information model to be synchronized the configuration of the managed system.

Hardware Configuration Information

Host administrator writes the configuration information about hardware. He/she precisely

determines the information about hardware before writing the configuration information as in

Table 1.

Table 1. Hardware Information for Dynamic Reconfiguration

Name Description

Name Host name. It must be a unique identifiable name.

Operating System Information about OS on the Host

Warning Load Warning-level load value set on the Host for load distribution

Danger Load Danger-level load vale set on the Host for load distribution

CPU Performance Score CPU performance score of the Host

Memory Performance Score Memory performance score of the Host

Application Configuration Information

Application administrator writes the application-related configuration information as in

Table 2.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

218

Table 2. Application Information for Dynamic Reconfiguration

Name Description

Name Application name. It must be a unique identifiable name.

Command Describes commands the application can perform.

Redundancy Group Application describes information about fault-tolerant group for fault tolerance.

Operating System OS information for running the application.

OS Maximum Version Information about the highest version of OS for running the application.

OS Minimum Version Information about the lowest version of OS for running the application.

Startup Dependency Information about dependency for starting up the application.

Shutdown Dependency Information about dependency for shutting down the application.

Procedures for Dynamic Reconfiguration

Followings are the dynamic reconfiguration procedures for the addition of hardware and

the addition of an application.

Algorithm – Add Hardware

In : hardware ℎ, set of application 𝐴, set of dependency 𝐷𝑒𝑝

Out : void

1 function AddHardware(ℎ, 𝐴, 𝐷𝑒𝑝){

2 𝐴𝑠𝑡𝑜𝑝 = ∅ ;

3 for each 𝑎𝑖 ∈ 𝐴 do {

4 𝐷 = ∪𝑖 (ℎ, 𝑎𝑖) ;

5 for each (𝑎𝑛, 𝑎𝑚) ∈ 𝐷𝑒𝑝 h do {

6 i𝐟 (𝑎𝑖 = 𝑎𝑛) {

7 stopRunning (𝑎𝑚) ;

8 𝐴𝑠𝑡𝑜𝑝 = 𝐴𝑠𝑡𝑜𝑝 ∪ 𝑎𝑚 ;

9 }

10 i𝐟 (𝑎𝑖 = 𝑎𝑚) {

11 stopRunning (𝑎𝑛) ;

12 𝐴𝑠𝑡𝑜𝑝 = 𝐴𝑠𝑡𝑜𝑝 ∪ 𝑎𝑛 ;

13 }

14 }

15 }

16 𝐼𝑀 = 𝐼𝑀 ∪ (ℎ, 𝐴, 𝐷, 𝐷𝑒𝑝) ;

17 startRunning(𝐴𝑠𝑡𝑜𝑝) ;

18 startRunning(ℎ) ;

19 }

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

219

Algorithm – Add Application

In : hardware ℎ, application 𝑎, set of dependency 𝐷𝑒𝑝𝑎

Out : void

1 function AddApplication(ℎ, 𝑎, 𝐷𝑒𝑝𝑎){

2 𝐴𝑠𝑡𝑜𝑝 = ∅ ;

3 for each (𝑎𝑖 , 𝑎𝑗) ∈ 𝐷𝑒𝑝 do {

4 if (𝑎 = 𝑎𝑖){

5 stopRunning(𝑎𝑗) ;

6 𝐴𝑠𝑡𝑜𝑝 = 𝐴𝑠𝑡𝑜𝑝 ∪ 𝑎𝑗 ;

7 }

8 if (𝑎 = 𝑎𝑗){

9 stopRunning(𝑎𝑖) ;

10 𝐴𝑠𝑡𝑜𝑝 = 𝐴𝑠𝑡𝑜𝑝 ∪ 𝑎𝑖 ;

11 }

12 }

13 𝐷𝑎 = (ℎ, 𝑎) ;

14 𝐼𝑀 = 𝐼𝑀 ∪ (∅, {𝑎}, 𝐷𝑎, 𝐷𝑒𝑝𝑎) ;

15 Notify(𝐴𝑠𝑡𝑜𝑝) ;

16 startRunning(𝐴𝑠𝑡𝑜𝑝) ;

17 }

 𝐼𝑀 = (, 𝐴, 𝐷, 𝐷𝑒𝑝) : information model

 : set of the information models for hardware

 𝐴: set of the information models for applications

 𝐷 𝐴: set of the deployment information models. If an application (𝑎 ∈ 𝐴) is de-

ployed on some hardware (ℎ ∈), this fact is represented by deployment information

model, (ℎ, 𝑎) ∈ 𝐷.

 𝐷𝑒𝑝 𝐴 𝐴: set of the dependency information models. If, when starting or finishing

an application (𝑎𝑖 ∈ 𝐴), it is influenced from the status of another application (𝑎𝑗 ∈ 𝐴),

the dependency relationship between them is represented as (𝑎𝑖 , 𝑎𝑗) ∈ 𝐷𝑒𝑝.

 stopRunning(): function that stops execution of hardware or application in the managed

system.

 startRunning(): function that starts execution of hardware or application in the managed

system.

 Notify(): function that informs hardware of the change of dependency. The hardware

contains applications in which some dependency relationships are changed.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

220

Execution Scenario for IMMS-CMS

Running and Monitoring Applications

Figure 9. Application Execution Method

The IMMS-CMS runs applications as shown in Figure 9.

1. The user selects a software system via the user interface and presses the execute button.

The execution control message will be sent to the application model.

2. In the application model, applications of software systems to be executed are found and an

execution command is sent to each of the hosts.

3. Each of the hosts run the application and collects status information and sends it to the ap-

plication model. Each of the application models is updated based on the collected infor-

mation and changes are notified via the user interface.

4. In the user interface, information to be shown to the user is changed using information of

updated application models.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

221

Monitoring System Error Status

Figure 10. Operation in Case of Errors

The integrated management system works as in Figure 10 in case errors are detected during

monitoring.

1. An application in operation makes an error.

2. The corresponding host gives information about the erroneous application and its 1:1 map-

ping application model.

3. The application model changes the status information and informs the user interface of the

change.

4. The user interface uses the changed information to update the application’s model. Then,

the user interface indicates the application is in error so that the user can check out the in-

formation.

6. Conclusions

As the size of the large scale weapon system gets bigger and as greater number of subsys-

tems are installed, it is increasingly becoming more important to manage each of the subsys-

tems in a an integrated way. Such a large scale weapon system is not made up of a single sys-

tem but rather of various heterogeneous subsystems. Therefore, a standardized integrated

management system is needed to effectively manage subsystems of the large scale weapon

system. In this paper, an integrated management system for the large scale weapon system is

implemented, called IMMS-CMS, which uses information models for hardware and software

being managed in the large scale weapon system. As the information models are managed in a

way independent of the actual system, they are not affected by heterogeneous environments

and an integrated management can be done for all subsystems in the large scale weapon sys-

tem.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

222

Integrated management system architecture was designed and implemented which can ef-

fectively use information models. Using the architecture, services can be formed in various

combinations and provided to the user via the user interface.

In addition, in order to solve the synchronization problems of the integrated management

and monitoring systems due to the change to the configuration of a large weapon system, a

way that reconfigures the information model dynamically is presented.

The aim of this paper was an integrated management of all subsystems of the large scale

weapon system. As the focus of the implementation was on the integrated management of

different subsystems, things such as overload or errors that may occur in any of the subsys-

tems were not taken into consideration. However, load balancing and fault tolerance are

planned to be implemented in the future. This would prevent any potential overload in the

large scale weapon system and a subsystem would be able to be replaced with another even if

an error occurred.

Acknowledgements

This research was supported by Agency for Defense Development. (Contract No.

UD090017KD).

References

[1] C. Eryigit, “A. S Uyar, Integrating Agents into Data-Centric Naval Combat Management Systems”, 23rd

International Symposium on Computer and Information Sciences, (2008), pp. 1-4.

[2] OMG, Application Management and System Monitoring for CMS Systems,

http://www.omg.org/spec/AMSM/1.1(2010).

[3] DMFT, Common Information Model, http://www.dmtf.org/standards/cim, (2011).

[4] OMG, MDA Guide Version 1.0.1, http://www.omg.org/mda, (2000).

[5] E. H. Kim, M. J. Choi, W. K James, M. S. Cho, S. E Chun and Y. O. Lee, “Design and Implementation of an

SNMP-based Integrated Management System for Efficient Management of Naval Combat System”, Journal

of the Korea Institute of Military Science and Technology, vol. 11, no. 2, (2008), pp. 32-42.

[6] S. Abiteboul, B. Marinoiu and P. Bourhis, “Distributed Monitoring of Peer-to-Peer Systems”, International

Conference on Data Engineering, (2008).

[7] N. H. Minsky and V. Ungureanu, “Law-Governed Interaction: A Coordination and Control Mechanism for

Heterogeneous Distributed System”, ACM Transactions on Software Engineering and Methodology, vol. 9,

(2000), pp. 273-305.

[8] M. Wegdam, “Dynamic Reconfiguration and Load Distribution in Component Middleware”, PhD. Thesis,

University of Twente, the Netherlands, (2003).

Authors

Bup-Ki Minis a PhD student at Chungnam National University, Korea. He is

a member of the Software Engineering and Application laboratory. His research

interests include Software Engineering, Software Testing, Software Architecture

and Smart Phone. He received the Bachelor (2009) degrees from Kongju Na-

tional University, Korea and the Master (2012) degrees from Chungnam Nation-

al University, Korea. He is a member of KIISE, KSII and KIMST.

http://www.dmtf.org/standards/cim
http://www.omg.org/mda

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

223

Hyeon Soo Kim is a professor at Chungnam National University (CNU), Ko-

rea. He works for Department of Computer Science and Engineering at CNU.

His current research areas include Software Engineering (Software Testing,

Software Architecture, Software Maintenance, Software Reengineering), Dis-

tributed Computing (J2EE/EJB, .NET, Web service, Service-Oriented Architec-

ture). He received the BS degree (1988) from Seoul National University (SNU),

Korea, and the MS (1991) and the PhD degree (1995) from Korea Advanced In-

stitute of Science and Technology (KAIST), Korea. He is a member of KIISE

and KIPS.

Seunghak Kuk is a researcher at Agency for Defense Development(ADD),

Korea. His research interests include Software Engineering, Software Testing,

Software Architecture, Service-Oriented Architecture, Web Service and Smart

Phone. He received the Bachelor (2009), the Master (2012) and the PhD degrees

from Chungnam National University, Korea. He is a member of KIISE, KIPS.

Chumsu Kim is a senior researcher at Agency for Defense Development

(ADD), Korea. He works for Naval Combat Systems PEO at ADD. His research

areas include system/software engineering and combat system development (sys-

tem architecture, analysis, design, and test). He received the BS degree (1996)

from Inha university, Korea, and the MS (1996) from Gwangju Institute of Sci-

ence Technology(GIST), Korea. He is a member of KIISE.

Woonggie Han is a senior researcher at Agency for Defense Development

(ADD), Korea. He works for Naval Combat Systems PEO at ADD. His research

areas include system/software engineering and combat system development

(weapon control, M&S, and training). He received the BS degree (1996) and the

MS (1996) from SungKyunKwan University.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

224

