
International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

151

Convergence Mobile Application Architecture on Requirement View

Haeng-Kon Kim and Yvette E. Gelogo

School of Information Technology, Catholic University of Daegu, Korea
 *

hangkon@cu.ac.kr, yvette@cu.ac.kr

Abstract

Mobile applications development challenges the modeling activities that precede the

technical design of a software system. The context of a mobile system includes a broad

spectrum of technical, physical, social and organizational aspects. Some of these aspects

need to be built into the mobile applications. Selecting the aspects that are needed is

becoming increasingly more complex with mobile systems than we have previously seen with

more traditional information systems.

In this paper, we discuss mobile application architectures. We start by describing some of

the general concepts and terms behind client-server architectures and follow this by

describing clients and servers and the connectivity between them. We then present several

interesting architectural patterns and describe why they are useful as general mobile

application architecture solutions. Finally, we discuss some of the tenets behind good

architectural design and the considerations you need to be aware of when designing mobile

applications. We also evaluate the mobile application architecture to apply an example case

as best practices.

Keywords: Mobile Applications Architecture, Architectures Requirements, Model View

1. Introduction

The mobile applications support a much wider range of activities than desktop applications

and leverage information about the user’s environment to provide novel capabilities. From a

technology perspective, mobility shifts the global computing infrastructure from static,

homogenous, powerful desktop computers to highly dynamic, heterogeneous, resource-

constrained handheld and wearable computers. This new computing context demands entirely

new software architectural paradigms that address the challenges of mobile software

development, are specialized for the nature of mobile devices and wireless networks, and take

advantage of the opportunities afforded by mobile systems. This new computing context

demands entirely new software architectural paradigms that address the challenges of mobile

software development, are specialized for the nature of mobile devices and wireless networks,

and take advantage of the opportunities afforded by mobile systems. Recent research has

rapidly advanced the state-of-the-art in architectures for mobile software and systems. A

mobile application will normally be structured as a multi-layered application consisting of

user experience, business, and data layers. When developing a mobile application, you may

choose to develop a thin mobile-based client or a rich client. If you are building a rich client,

the business and data services layers are likely to be located on the device itself. If you are

building a thin client, the business and data layers will be located on the server. Figure 1

illustrates common rich client mobile application architecture with components grouped by

areas of concern [1].

 Corresponding Author

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

152

Figure 1. Common Rich Client Mobile Application Architecture

When developing mobile applications, there are a number of key challenges where

architecture and design are fundamentally different from that of a typical enterprise

application. Careful consideration should be given to these mobile architecture issues early in

the development process in order to mitigate the downstream impact of poor architectural

decisions. While some of these best practices also make sense for the development of non-

mobile applications, many will become more readily apparent when developing on a mobile

platform. The five most important areas for consideration, which are detailed throughout this

document, include: performance, usability, data access, security, and connectivity. While

more readily apparently in the previous years of mobile development, the computing power

available on mobile devices still lags behind desktop and server counterparts and will

continue to do so for the foreseeable future due to smaller device footprints and resource

constraints. Even the most recent devices still boast only about one third to one half of the

computing resources (CPU, RAM) of a low end desktop computer. Further, the quality of

data connections available on a mobile device is often highly variable based on signal

strength and is far inferior to broadband Internet access in most cases. Often during rapid

application development, performance considerations are ignored until the end of the project

and optimized only when necessary. In mobile development, more consideration to

performance constraints of the mobile device may need to be given up front in the design

process. Each platform has different code‐level best practices for performance optimization

depending upon the programming language and frameworks available on the platform. Some

best practices, such as judicious usage of memory and limits on the number of unnecessary

objects created, however, can be applied across all platforms [2]. One commonality between

the most modern mobile platforms (iPhone, Android, Windows Phone 7) is that none of them

offer any capability to connect directly to a database–for good reason. The current mobile

architecture paradigm simply doesn’t support this scenario for modern database platforms in

their current state.

In this paper, we discuss mobile application architectures. We start by describing some of

the general concepts and terms behind client-server architectures and follow this by

describing clients and servers and the connectivity between them. We then present several

interesting architectural patterns and describe why they are useful as general mobile

application architecture solutions. We present a set of requirements for future mobile

middleware which have been derived by considering the shortcomings of existing approaches

and the needs of application developers. Key among these requirements is the need to support

coordinated action between application and system components and the resolution of conflicts

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

153

caused by the need to adapt to multiple contextual triggers. The paper concludes with the

presentation of an architectural framework within which middleware researchers can deploy

solutions to the problems identified. Finally, we discuss some of the tenets behind good

architectural design and the considerations you need to be aware of when designing mobile

applications. We also evaluate the our mobile application architecture to apply an example

case as best practices.

2. Related Work

2.1. Understanding Mobile Applications Architecture

Mobile applications architecture representing a common high-level abstraction of a system,

is a description of elements from which systems are built, interactions among those elements,

patterns that guide their composition, and constraints on these patterns[3,4]. There are three

reasons [5, 6] why software architecture is important to large, complex, software-intensive

systems.

 Architecture is the Vehicle for Stakeholder Communication. Each stakeholder in a software

system - customer, user, project manager, coder, tester, and so on - is concerned with

different characteristics of the system that are affected by its architecture. Architecture

provides a common language in which different concerns can be expressed, negotiated, and

resolved at a level that is intellectually manageable even for large, complex systems.

 Architecture Manifests the Earliest Set of Design Decisions. Software architecture

represents a system’s earliest set of design decisions. These early decisions are the most

difficult to get correct and the hardest to change, and they have the most far-reaching

effects.

 Architecture is a Transferable, Reusable Model. The earlier reuse is applied in the life

cycle of software, the greater the benefit that can be achieved. While code reuse provides a

benefit, reuse at the architectural level provides tremendous leverage for systems with

similar requirements. Not only can the code be reused but so can the requirements that led

to the architecture in the first place, as well as the experience in building the reused

architecture. When architectural decisions can be reused across multiple systems, all of the

early-decision consequences we just described are also transferred.

The Figure 2 shows the typical mobile multitier application architecture including mobile

client and server.

Figure 2. Typical Mobile Multitier Application Architecture

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

154

2.2. Software Architecture Model: The 4+1 View Model

Having good architectural documentation is crucial to the success of any architectural

evaluation method [6]. The large variance of a quality assessment based on architectural

analysis is associated with the granularity of the system description necessary to perform an

evaluation. The goals of architecture documentation are to record the architects’ decisions and

to communicate the architecture. To meet these goals, the documentation must be complete

and unambiguous. For these reasons, different views can be used to enhance the

understandability of the architecture and to focus separately on particular concerns, as

Kruchten pointed out [7]. In this respect, the 4+1 view model produces a mechanism to allow

us to separate concerns while building or analyzing an architecture. Architects capture their

design decisions in four views and use the fifth view to illustrate and validate them. The

Figure 3 shows the 4+1 view model. Each view addresses a specific set of concerns as

follows [6, 7]:

 Logical View. The logical view includes a set of abstractions necessary to depict the

functional requirements of a system at an abstract level. This view is independent of

implementation decisions and instead emphasizes interaction between entities in the

problem space.

 Process View. The process view describes the design’s concurrency and synchronization

aspects. This view takes into account some nonfunctional requirements such as

performance and system availability. It addresses concurrency and distribution, system

integrity, and fault-tolerance.

 Development View. The development view describes the software’s static organization in

its development environment. This view supports the allocation of requirements and

reasoning about software reuse, portability, and security.

 Physical View. The physical view describes the mapping of the software onto the hardware

and reflects its distributed aspect. This view takes into account the system’s nonfunctional

requirements such as system availability, reliability, performance, and scalability.

 Use case View. The use case view describes an abstraction of important requirements as

use case. This view is redundant with the other ones, but it plays two critical roles. One, it

acts as a driver to help designers discover architectural elements during the architectural

design. Two, it validates the architectural design.

Figure 3. 4+1 View Model

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

155

2.3 Existing Approaches to Software Architecture Evaluation

Several research communities have developed techniques to perform architectural

evaluation. In this section, the characteristics and limitations of some representative

approaches are briefly illustrated.

Techniques evaluating a specific quality attribute. Several research groups have

developed techniques used for the specification and assessment of their particular quality

requirements. Of those techniques, some techniques [8, 9] have adopted statistical models,

e.g., Markov Chain Model and Queuing models. On the other hand, the ADL(Architecture

Description Language) research groups have developed various kinds of languages to

represent architectural information relevant to their specific quality attributes, and they have

analyzed architecture using them [16]. But these approaches tend to require considerable

effort from the software engineer for creating specifications and making predictions. In

addition, the applicability of a particular model or an ADL is restricted to narrow limits by the

power of its representation.

Techniques using simulations or prototypes. These techniques require that the main

components of the architecture are implemented, and other components are simulated

resulting in an executable system [4]. But, these techniques require information about the

system under development that is not available during the architectural design. Additionally,

creating a detailed simulation or prototype for the purpose of evaluation is typically expensive

[7].

Scenario-based evaluation techniques. A scenario-based technique is used to attempt to

reduce the problematic nature of evaluating a high-level design with respect to software

quality attributes [4]. To assess a particular quality attribute, a set of scenarios has to be

developed to make concrete the actual meaning of the quality requirements. The technique

focuses on architectural features that will reveal design biases and flaws early in the life cycle

of the system. In these techniques, however, there are a number of uncertainties such as the

granularity of representation and how representative the scenarios are in respects to their

evaluation steps.

3. Convergence Mobile Application Architecture on Requirement View

3.1. Requirements for Mobile Applications Architecture

When getting started with mobile applications design, we suggest the key principles that

will help to create architecture that meets “best practices,” minimizes costs and maintenance

requirements, and promotes usability and extendibility. The key principles are:

• Separation of concerns. Break your application into distinct features that overlap in

functionality as little as possible.

• Single Responsibility Principle. Each component or a module should be responsible for

only a specific feature or functionality.

• Principle of least knowledge. A component or an object should not know about internal

details of other components or objects. Also known as the Law of Demeter (LoD).

• Don’t Repeat Yourself (DRY). There should be only one component providing a

specific functionality; the functionality should not be duplicated in any other component.

• Avoid doing a big design upfront. If your application requirements are unclear, or if

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

156

there is a possibility of the design evolving over time, avoid making a large design effort

prematurely.

• Prefer composition over inheritance. Wherever possible, use composition over

inheritance when reusing functionality because inheritance increases the dependency between

parent and child classes, thereby limiting the reuse of child classes.

When designing an application or system, the goal of a software architect is to minimize

the complexity by separating the design into different areas of concern. For example, the user

interface (UI), business processing, and data access all represent different areas of concern.

Within each area, the components you design should focus on that specific area and should

not mix code from other areas of concern. For example, UI processing components should not

include code that directly accesses a data source, but instead should use either business

components or data access components to retrieve data. Follow these guidelines when

designing an application:

• Avoid doing all design upfront. If you are not clear with requirements or if there is the

possibility of design evolution, it might be a good idea not to do complete design upfront.

Instead, evolve the design as you progress through the project.

• Separate the areas of concern. Break your application into distinct features that

overlap in functionality as little as possible. The main benefit of this approach is that a feature

or functionality can be optimized independently of other features or functionality. Also, if one

feature fails, it will not cause other features to fail as well, and they can run independently of

one another. This approach also helps to make the application easier to understand and design,

and facilitates management of complex interdependent systems.

• Each component or module should have a single responsibility. Each component or

module should be responsible for only one specific feature or functionality. This makes your

components cohesive and makes it easier to optimize the components if a specific feature or

functionality changes.

• A component or an object should not rely on internal details of other components

or objects. Each component or object should call a method of another object or component,

and that method should have information about how to process the request and, if needed,

route it to appropriate subcomponents or other components. This helps in developing an

application that is more maintainable and adaptable.

• Do not duplicate functionality within an application. There should be only one

component providing a specific functionality—this functionality should not be duplicated in

any other component. Duplication of functionality within an application can make it difficult

to implement changes, decrease clarity, and introduce potential inconsistencies.

• Identify the kinds of components you will need in your application. The best way to

do this is to identify patterns that match your scenario and then examine the types of

components that are used by the pattern or patterns that match your scenario. For example, a

smaller application may not need business workflow or UI processing components.

• Group different types of components into logical layers. Start by identifying different

areas of concern, and then group components associated with each area of concern into

logical layers.

• Keep design patterns consistent within each layer. Within a logical layer, the design

of components should be consistent for a particular operation. For example, if you choose to

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

157

use the Table Data Gateway pattern to create an object that acts as a gateway to tables or

views in a database, you should not include another pattern such as Repository, which uses a

different paradigm for accessing data and initializing business entities.

• Do not mix different types of components in the same logical layer. For example, the

UI layer should not contain business-processing components, but instead should contain

components used to handle user input and process user requests.

• Determine the type of layering you want to enforce. In a strict layering system,

components in layer A cannot call components in layer C; they always call components in

layer B. In a more relaxed layering system, components in a layer can call components in

other layers that are not immediately below it. In all cases, you should avoid upstream calls

and dependencies.

• Use abstraction to implement loose coupling between layers. This can be

accomplished by defining interface components such as a façade with well-known inputs and

outputs that translate requests into a format understood by components within the layer. In

addition, you can also use Interface types or abstract base classes to define a common

interface or shared abstraction (dependency inversion) that must be implemented by interface

components.

• Do not overload the functionality of a component. For example, a UI processing

component should not contain data access code. A common anti-pattern named is often found

with base classes that attempt to provide too much functionality. The object will often have

hundreds of functions and properties providing business functionality mixed with cross-

cutting functionality such as logging and exception handling. The large size is caused by

trying to handle different variations of child functionality requirements, which requires

complex initialization. The end result is a design that is very error-prone and difficult to

maintain.

• Understand how components will communicate with each other. This requires an

understanding of the deployment scenarios your application will need to support. You need to

determine if communication across physical boundaries or process boundaries should be

supported, or if all components will run within the same process.

• Prefer composition over inheritance. Wherever possible, use composition over

inheritance when reusing functionality because inheritance increases the dependency between

parent and child classes, thereby limiting the reuse of child classes. This also reduces the

inheritance hierarchies, which can become very difficult to deal with.

• Keep the data format consistent within a layer or component. Mixing data formats

will make the application more difficult to implement, extend, and maintain. Every time you

need to convert data from one format to another, you are required to implement translation

code to perform the operation.

• Keep cross-cutting code abstracted from the application business logic as much as

possible. Cross-cutting code refers to code related to security, communications, or operational

management such as logging and instrumentation. Attempting to mix this code with business

logic can lead to a design that is difficult to extend and maintain. Changes to the cross-cutting

code would require touching all of the business logic code that is mixed with the cross-cutting

code. Consider using frameworks that can help to implement the cross-cutting concerns.

• Be consistent in the naming conventions used. Check to see if naming standards have

been established by the organization. If not, you should establish common standards that will

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

158

be used for naming. This provides a consistent model that makes it easier for team members

to evaluate code they did not write, which leads to better maintainability.

• Establish the standards that should be used for exception handling. For example,

you should always catch exceptions at layer boundaries, you should not catch exceptions

within a layer unless you can handle them in that layer, and you should not use exceptions to

implement business logic. The standards should also include policies for error notification,

logging, and instrumentation when there is an exception.

3.2. Design Considerations for Mobile Applications Architecture

Mobile system development often involves using different technologies due to platform

restrictions. In the three architectures below, two use both Microsoft and Java technologies. In

both cases applications developed in these disparate technologies must communicate

seamlessly with each other. Web services, HTTP, and TCP sockets were used to bridge these

gaps. A mobile system development team must have the skill and experience to determine the

best data transfer design. If the application is being deployed on new handheld devices, there

is a good chance that some configuration will be required. After a device is cold booted, the

deployed application must be reloaded and the 802.11 wireless configuration must be restored.

Different manufacturers use proprietary methods for loading applications and configuration

settings. If the users should not have access to the OS (e.g. to play solitaire) then a top-level

menu application may be needed to run at system startup. Device scanners must be

configured with the correct barcode symbologies and symbology options. Configuration

options may need to be remotely managed as well. Beyond device configuration is software

deployment. The application or suite of applications must initially be loaded or provisioned

on the device. If there are many devices, this may be a formidable challenge. There are

software packages that manage device software and configurations. These packages rely on a

software client on the device. Proprietary packages must typically be written for the

management applications that specify the software and configuration files to load. If no

management package is used, the application should be self-updating. Having the users send

in their devices to have software reloaded is usually unrealistic.

Designing the graphical user interface (GUI) on a mobile device can be challenging

because of the small screen and difficult data entry. If the application or data is complex, the

user will need to interact with many screen objects such as entry fields, lists, and radio

buttons. Complex screens will need to be divided into separate screens or tabbed interfaces. A

wizard-like interface may be appropriate for some applications. Some applications on pen-

based devices may require that a stylus is not required and the device's physical keys must be

used instead. If a lot of free-form data entry is required then a tablet or notebook PC should

be considered. Servers and desktop computers have progressed significantly and performance

is typically not an issue anymore. Handheld computing devices are another story however.

Many are very slow by comparison. Complex user interfaces, CPU intensive algorithms, and

data processing can easily make an application user-hostile. Care must be taken during design

to avoid performance pitfalls. One pitfall in Compact Framework development is using

ADO.Net DataSets. They are very slow on most handheld devices. Although memory is

cheaper than ever, most mobile devices come with a set amount of memory and cannot be

upgraded. If systems analysis shows that data requirements include having large amounts of

data on the handheld, this may limit your hardware choices. Efficient data storage is

necessary, and low-level interfaces may be required to make the most of the memory

available. Because cold boots typically erase all non-volatile memory in the device, design

must ensure that critical data is stored in non-volatile memory. Security is a concern in many

systems and mobile systems are no different. Mobile systems introduce a few new issues

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

159

however. What if the mobile device is lost? A stranger cannot be allowed access to your

sensitive business data. Some hardware includes thumbprint scanners to authenticate users. A

user login may also be implemented so that users must present a set of credentials before

application use. Data transfer is a significant part of mobile application architecture because

of the number of 'hops' the data must make. The methods and protocols should be carefully

considered during system design.

The typical tradeoffs are-

 Security

 Ease of Implementation

 Reliability

 Cost of Ownership

Most mobile systems extend an existing business system or interface with an existing

system. There are typically three major components to a mobile architecture figure 3.

 An existing system

 A middleware application

 A handheld application

Figure 4. Three Major Components to a Mobile Architecture

The reason a middleware application is usually needed is to provide data transformation,

apply business logic, and be a central point of communication for the devices. If a new

business system is being developed or rewritten then no middleware may be necessary; the

appropriate logic can be built into the system to communicate with the devices from the start.

However most business systems are not rewritten very often and it is economically unfeasible

to rewrite them just to 'mobilize' them. Furthermore a middleware server may also serve a

configuration management server. The architectures shown here are real-world architectures

from actual projects. These mobile systems are in production in numerous locations.

Mobile application architectures are often modeled to highlight or illustrate the overall

layout of the software (e.g., application code and platform) and hardware (e.g., client, server,

and network devices). While there are many possible combinations of software and hardware,

application architectures often fall into a series of recognizable patterns. Application

architectures are commonly modeled in terms of a client-server architecture wherein one or

more client devices requests information from a server device. In this paper, we proposed the

our mobile applications development architecture as in Figure 4.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

160

Figure 5. Mobile application architecture with components in this work

Application code functionality is not necessarily uniform throughout an application.

Certain sections of application code are better suited for handling the user interface, while

other sections are developed to manage the business logic or communicate with the database

or back-end systems.

Layering describes the division of labor within the application code on a single machine.

Layers are often no more than code modules placed in different folders or directories on the

client or server. With client-side code, there are generally zero to three layers of application

code. With server-side code, there are generally one to three layers of application code. This

is partly a matter of good software design that helps code re-usability, partly a matter of

security, and partly a matter of convenience.

A client with zero code layers essentially has no custom application code. This type of

client is commonly referred to as a thin client and is possible in client-server architecture if

the server holds all the custom application code. A client with one to three layers of

application code is commonly referred to as a fat client. A server can also have one to three

layers of custom application code. However, you cannot have zero code layers on a server by

definition.

The code layer that interacts most closely with the user is often referred to as the

Presentation Layer. The second layer is often referred to as the Business Layer, as it typically

handles the business logic of the code. The third layer is often referred to as the Data Access

Layer. It typically handles communication with the database or data sourceThe use of layers

in a design allows you to separate functionality into different areas of concern. In other words,

layers represent the logical grouping of components within the design. You should also define

guidelines for communication between layers. For example, layer A can access layer B, but

layer B cannot access layer A. Consider the following guidelines when designing layers:

• Layers should represent a logical grouping of components. For example, use separate

layers for UI, business logic, and data access components.

• Components within a layer should be cohesive. In other words, the business layer

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

161

components should provide only operations related to application business logic.

• Consider using an Interface type to define the interface for each layer. This will allow

you to create different implementations of that interface to improve testability.

• For mobile applications, implement a message-based interface between the presentation

and business layers, even when the layers are not separated by a physical boundary. A

message based interface is better suited to stateless Web operations, provides a façade to the

business layer, and allows you to physically decouple the business tier from the presentation

tier if this is required by security policies or in response to a security audit.

4. Mobile Applications Architecture Evaluation

4.1. Main component of the Architecture

We suggest the mobile platforms and architecture as shown in Figure 4. The key points to

note from this figure are as follows. Firstly, mechanisms and policies for adaptation are

tightly coupled and encapsulated in both applications and supporting middleware. This is a

natural consequence of the trend towards applications being responsible for adapting to

changes in context. There is no flow of control from the middleware to the applications,

making coordinated responses to change impossible.

Figure 6. Suggested Mobile Applications Architecture

The middleware application uses a Windows service to configure the remoting

infrastructure. The web service used by the mobile application accesses the application's

business classes via remoting. The middleware is responsible for-

 Receiving and sending messages from the business system.

 Aggregating messages for a mobile device into a single message using a message

envelope.

 Receiving messages from the mobile application.

 Processing messages from the mobile application in order.

 Creating a message envelope containing all messages for delivery to a mobile device.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

162

 Storing messages from the business system for a device until that device connects.

Due to restrictions in the cellular provider's network, the middleware cannot "push"

messages to a device. A web service was chosen to receive messages from the devices for this

reason, and also because the mobile application is written in Java. Remoting was used to

allow the web service to pass the message packet from the mobile application to the business

layer. The business layer processes the message and always returns a message packet to the

device via remoting and web service.

The main components of our architecture are as follows:

Context Space: Central to our architecture is the context space. This acts as a repository and

distribution bus for information relating to QoS and context within the system. In

particular, it is responsible for storing information from the device monitors,

applications and middleware for use in determining the correct adaptation strategy

in a given situation. The space must enable information from remote sources to be

made available.

Device Monitors: Device monitors are typically simple daemon processes which monitor the

state of devices and software components and report this information to the

context space. Examples might include network device drivers and power

management systems.

Applications and Mechanisms: Applications that include mechanisms for adaptation can

register with the context space for information and control. It is the responsibility

of the application developers to make the interfaces for adaptation mechanisms

available.

Middleware and Mechanisms: In common with applications, middleware platforms can

register with the context space for information and control. This enables the

system to control and coordinate the actions of the middleware and the

applications to avoid duplication of effort or conflicting actions.

Adaptation Control and Policies: The key aspect of our architecture is the adaptation control

module. This is responsible for coordinating system responses to changes in the

environment and resolving potential conflicts when multiple attributes change.

The module is driven by a series of policies, which we envisage as being self-

contained units that specify how a system should respond in a given situation.

The most novel aspect of our architecture is that we are hypothesising that policies can be

constructed to support system wide adaptation to multiple triggers in an independent manner.

Moreover, it will be necessary for such policies to be applicable in a wide range of system

and application configurations and for the system to be able to understand and monitor the

results of the policies' actions. While breaking up application code functionality into layers

helps code re-usability, it does not automatically make the architecture scalable. In order to do

so, it is important to distribute the code over multiple machines. Tiers describes the division

of labor of application code on multiple machines. Tiering generally involves placing code

modules on different machines in a distributed server environment. If the application code is

already in layers, this makes tiering a much simpler process. The code that interacts most

closely with the user is often placed in the Presentation Tier. A second tier, which holds the

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

163

application business logic and data access logic, is often referred to as the Application Tier.

The servers that make up each tier may differ both in capability and number. For example, in

a large-scale distributed web application environment, there may be a large number of

inexpensive web servers in the Presentation Tier, a smaller number of application servers in

the Application Tier, and two expensive clustered database servers in the Database Tier. The

ability to add more servers is often referred to as horizontal scaling or scaling out. The ability

to add more powerful servers is often referred to as vertical scaling or scaling up. Tiering the

application code in such a fashion greatly facilitates the ability to scale applications.

4.2. Evaluation with example

In this section, we are planning evaluate the our proposed architecture with developing the

example following the process. The existing architecture of the mobile POS(point On Sale)

system should be presented based on the 4+1 view model with respect to all functional

requirements defined by the evaluation contract. However, we here introduce just some

significant parts useful for understanding the applicability of our approach which were

identified as architectural spots. The use case view shown in Figure 7 shows us the primary

purposes of sample POS system as use cases.

Handle Returns

Handle Che ck Paym ent

Handdle Cas h Paym en t

Handle Credit Payment

Creadit Authorization

Service

Accounting

System

Cashier

Process Sale

<<include>
<<include>>

<<include>>

Process Rental

<<include>>

<<include>> <<include>>

Tax C alculator

Figure 7. An example of use case view

Subsequently, Figure 8 shows the logical aspects of the POS system. Figure 8(a) shows a

set of key abstractions for the POS system and their logical relationships: association, usage,

and composition. Figure 8(b) also represents a partial logical structure of layers in the POS

system. In Figure 8(c), the interactions across the layers and packages are shown. Figure 8(d)

shows how the system handles various pricing strategies, and Figure 8(e) shows that the

system achieves protected variation with respect to location of services. The local cache of

ProductSpecification is always searched for before attempting remote access for a “cache

hit”.

(a) a set of key abstractions of the POS system

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

164

Presentation

Swing

Domain

Technical Services

Text

Sales Pricing

ServiceAccess Payments

Inventory POSRuleEngine

Persistence Log4J Jess SOAP

Presentation

Swing

Domain

Technical

Services

Text

Sales

POSRuleEngine

Log4JJess

Presentation

Swing

Domain

Technical Services

Text

Sales Pricing

ServiceAccess Payments

Inventory POSRuleEngine

Persistence Log4J Jess SOAP

Presentation

Swing

Domain

Technical

Services

Text

Sales

POSRuleEngine

Log4JJess

(b) partial logical structure of the POS system

:Presentation::Swing

::ProcessSaleFrame

:Domain::

Sales::Register

:Domain::Products

::ProductCatalog

s:Domain::Sales

::Sale

:Domain::POSRuleEngine

::POSRuleEngineFacade

:TechServices::Persistence::

PersistenceFacade

TechServices::Jess
 : Cas hier

enterI tem ()

getProductSpec()

getObject()

mak eLineItem ()

isI nvalid()

onPropertyEvent()

someJessCalls()

e nterI tem ()

(c) interaction across the layers

(d) behavior of pricing e) protected variation with respect to location of services

Figure 8. Examples of logical view

Finally, Figure 9 shows the POS system description in the aspects of a process view.

Figure 9(a) shows that the system provides protected variations from the varying interfaces of

external services such as external tax calculators, accounting systems, and so forth. Figure

9(b) also shows how the system solves the stale cache problem. Since product prices change

quickly, the cache contains stale data, which is always a concern when data is replicated. One

solution is to add a remote service operation that answers today’s current changes. In Figure

9(b), the LocalProducts queries it every n minutes and updates its cache accordingly.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

165

:Store : Regis ter :ServicesFactory
<<s ingleton>>

:SAPAccountingAdapter

create()

accountingAdapter:=getAccountingAdapter()

creat e ()

create()

:Store : Regis ter :ServicesFactory
<<s ingleton>>

:SAPAccountingAdapter

create()

accountingAdapter:=getAccountingAdapter()

creat e ()

create()

: Regis ter accountingAdapter:

SAPAccountingAdapte r

:Paym ent

cr eate ()

postSale ()

m ak ePaym e nt()

: Regis ter accountingAdapter:

SAPAccountingAdapte r

:Paym ent

cr eate ()

postSale ()

m ak ePaym e nt()

 (a) Protected variation from the varying interfaces of external services

pc:ProductCatalog :ServicesFactory

<<singleton>>
externalService:

DBProductsAdapter

{active} psa:

LocalProducts

getProducts Adapter()

create()

create(externalService)

run()

getProductUpdates()

* [forever]

init ial ize()

pc:ProductCatalog :ServicesFactory
<<singleton>>

externalService:

DBProductsAdapter

{active} psa:

LocalProducts

getProducts Adapter()

create()

create(externalService)

run()

getProductUpdates()

* [forever]

init ial ize()

(b) stale data caching

Figure 9. Examples of process view

In our example, some architectural design decisions were identified. The architectural

design decisions are presented with their rationale. Here, we illustrate only an example of the

architectural design decisions shown in Figure 7 through 9. We evaluate a question, “How the

layers can be connected?”, could be raised in relation to the logical inter-connection

mechanism represented in logical view. According to the question, a design issue, ‘inter-layer

connection mechanism’, was determined as a decision variable. The decision value as a

solution, ‘using façade’, was identified from architectural spots.

6. Conclusion and Further Works

These architectural requirements have then been used to develop a high-level architectural

framework for supporting adaptive mobile systems. We hope that these requirements and the

associated architectural framework will provide input into existing and future research efforts

in the field of adaptive mobile systems. In particular, we hope that future middleware will

provide better support for developers of applications which need to adapt to multiple

contextual triggers in a cooperative environment. This architecture addresses these high-level

requirements-

 High reliability.

 Easy installation and administration.

 Complex pricing rules must be implemented.

 The handheld application must be a web application; there should be no code on the

handheld device.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 3, May, 2013

166

 The system must be asynchronous, i.e. users can scan a barcode to activate a price

and not have to wait to scan another item.

 The system must operate in near real-time, i.e. price changes must be seen at the

registers immediately.

In this paper, we discuss mobile application architectures. We start by describing some of

the general concepts and terms behind client-server architectures and follow this by

describing clients and servers and the connectivity between them. We then present several

interesting architectural patterns and describe why they are useful as general mobile

application architecture solutions. We present a set of requirements for future mobile

middleware which have been derived by considering the shortcomings of existing approaches

and the needs of application developers. Key among these requirements is the need to support

coordinated action between application and system components and the resolution of conflicts

caused by the need to adapt to multiple contextual triggers. The paper concludes with the

presentation of an architectural framework within which middleware researchers can deploy

solutions to the problems identified. Finally, we discuss some of the tenets behind good

architectural design and the considerations you need to be aware of when designing mobile

applications. We also evaluate the our mobile application architecture to apply an example

case as best practices.

References

[1] http://robtiffany.com/wp-ontent/uploads/2012/08/mobile_architecture_guide_v1.1.pdf.

[2] John Sprunger, “Mobile Architecture Best Practices for Mobile Application Design and Development”, West

Monroe Partners white paper.

[3] L. Bass, P. Clements and R. Kazman, “Software Architecture in Practice”, Addison-Wesley, (1998).

[4] J. Bosch, “Design and Use of Software Architectures”, Addison-Wesley, (2000).

[5] P. Clements, R. Kazman and M. Klein, “Evaluating Software Architectures”, Addison-Wesley, (2002).

[6] R. Kazman, “Experience with Performing Architecture Tradeoff Analysis”, Proceedings of the 21st

International Conference on Software Engineering, (1999) May, pp. 54-63.

[7] P. Kruchten, “The 4+1 View Model of Software Architecture”, IEEE Software, vol. 12, no. 6, (1995)

November, pp. 42-50.

[8] H. Eriksson and M. Penker, “UML Toolkit”, Addison-Wesley, (1998).

[9] M. Klein and R. Kazman, “Attribute-Based Architectural Styles”, CMU/SEI-99-TR-022, Carnegie Mellon

University, (1999) October.

[10] P. Inverardi, C. Mangano, F. Russo and S. Balsamo, “Performance Evaluation of a Software Architecture: A

Case Study”, Proceedings of the 9th International Workshop on Software Specification and Design, (1998)

April, pp. 116-125.

[11] K. M. Cho, “Framework of Content Distribution in Mobile Network Environment”, in Proc. the 2003

International Conference on Internet Computing (IC '03), (2003), pp. 429-434.

[12] C. Mascolo, L. Capra, S. Zachariadis and W. Emmerich, “2002. XMIDDLE: a data-sharing middleware for

mobile computing”, International Journal on Personal and Wireless Communications,

[13] N. Medvidovic and G. Edwards, “Software architecture and mobility: A roadmap” The Journal of Systems

and Software, vol. 83, (2010), pp. 885–898.

