
International Journal of Multimedia and Ubiquitous Engineering  

Vol. 8, No. 2, March, 2013 

 

 

213 

 

Towards Efficient Design and Implementation of a Hadoop-based 

Distributed Video Transcoding System in Cloud Computing 

Environment 
 

 

Myoungjin Kim
1
, Yun Cui

1
, Seungho Han

1
 and Hanku Lee

1,2,*
 

1
Department of Internet and Multimedia Engineering, Konkuk University,  

Seoul 143-701, Korea 
2
Center for Social Media Cloud Computing, Konkuk University,  

Seoul 143-701, Korea 

{tough105, ilycy, shhan87, hlee}@konkuk.ac.kr 
*
Corresponding Author: Hanku Lee (hlee@konkuk.ac.kr) 

Abstract 

In this paper, we propose a Hadoop-based Distributed Video Transcoding System in a 

cloud computing environment that transcodes various video codec formats into the MPEG-4 

video format. This system provides various types of video content to heterogeneous devices 

such as smart phones, personal computers, television, and pads. We design and implement 

the system using the MapReduce framework, which runs on a Hadoop Distributed File System 

platform, and the media processing library Xuggler. Thus, the encoding time to transcode 

large amounts of video content is exponentially reduced, facilitating a transcoding function. 

For performance evaluation, we focus on measuring the total time to transcode a data set into 

a target data set for three sets of experiments. We also analyze the experimental results, 

providing optimal Hadoop Distributed File System and MapReduce options suitable for video 

transcoding. Based on the experiments performed on a 28-node cluster, the proposed 

distributed video transcoding system provides excellent performance in terms of speed and 

quality. 

 

Keywords: Video Transcoding, MapReduce, Hadoop, Cloud Computing, Distributed 

Processing, Cloud Platform 

 

1. Introduction 

Owing to the explosive growth of mobile devices and improvements in mobile device 

communication technologies, media streaming services and applications based on video 

content have gained remarkable popularity and interest from users. Therefore, video 

transcoding techniques [3, 7, 11] are required for delivering large amounts of video data in 

multiple formats to heterogeneous mobile devices.  

The video transcoding process for sharing video content imposes a heavy burden on the 

existing Internet infrastructure and computing resources. Recent video files have changed 

from low capacity and definition to high capacity and definition; hence, massive storage 

servers are required for the storage of such files. In addition, all video transcoding processes 

necessarily consist of three intensive sub-processes: decoding, resizing and encoding. 

Therefore, immense computation power from the CPU resource and efficient approaches for 

transcoding are needed. 

 To overcome these limitations, researchers have focused on distributed and cluster-based 

video transcoding approaches [2, 6, 9, 10] that reduce processing time and maintenance costs 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 8, No. 2, March, 2013 

 

 

214 

 

of building and expanding computing resources. However, these approaches focus on 

procuring computing resources for a video transcoding process by simply increasing the 

number of cluster machines in a parallel and distributed computing environment. In addition, 

they do not consider load balancing, fault tolerance and a data replication method to ensure 

data protection and expedite recovery. Furthermore, there has been limited progress in 

research related to splitting and merging policies that are considered significant in distributed 

transcoding. 

In this paper, we propose a Hadoop-based Distributed Video Transcoding System 

(HDVTS) in a cloud computing environment that can transcode a variety of video coding 

formats into the MPEG-4 video format. Improvements in quality and speed are achieved by 

adopting Hadoop Distributed File System (HDFS) [1]
 
for storing large amounts of video data 

created by numerous users, MapReduce [1]
 
for distributed and parallel processing of video 

data, and Xuggler [4] for transcoding based on open source. In addition, our system improves 

the distributed processing capabilities and simplifies system design and implementation by 

incorporating data replication, fault tolerance, load balancing, file splitting and merging 

policies provided by Hadoop. Furthermore, our system provides Infrastructure as a Service 

(IaaS) aimed at deploying logical computing resources, and offering automatic installation 

and configuration of HDFS and MapReduce customized for distributed transcoding 

processing. 

In the experiments section, we measured the total transcoding time for three sets of 

experiments, and experimentally verified the excellent performance of our system in video 

transcoding processing using distributed techniques. Based on the experimental results, we 

also provide optimal Hadoop options for video transcoding in our cloud-based cluster server. 

The remainder of this paper is organized as follows: Related works are presented in Section 

2. In Section 3, the proposed overall system architecture and the implementation strategy are 

described. Section 4 consists of the details of the experimental environment, including 

hardware specification, data sets and the experimental method for measurement of video 

transcoding time. In Section 5, the results of several experiments performed on our cloud 

cluster are discussed. Section 6 comprises the conclusion and potential future research. 

 

2. Related Work 

Owing to the increasing popularity of mobile media services, the development of 

distributed video transcoding approaches that exponentially reduce transcoding time 

and ensure video quality has become a challenge. The efforts in the investigation of 

such approaches have thus increased. In this paper, our system that utilizes HDFS, 

MapReduce framework, and Xuggler based on a cloud server is presented. Therefore, in 

this section, we describe HDFS and MapReduce framework. 

Hadoop, inspired by Google’s MapReduce and Google File System [5], is a software 

framework that supports data-intensive distributed applications handling thousands of nodes 

and petabytes of data [1, 8]. It can perform scalable and timely analytical processing of large 

data sets to extract useful information. Hadoop consists of two important frameworks: 1) 

Hadoop Distributed File System (HDFS), like GFS, is a distributed, scalable and portable file 

system written in Java. 2) MapReduce is the first framework developed by Google for 

processing large data sets. 

The MapReduce framework provides a specific programming model and a run-time system 

for processing and creating large data sets amenable to various real-world tasks [9]. This 

framework also handles automatic scheduling, communication, and synchronization for 

processing huge datasets and it has fault tolerance capability. The MapReduce programming 



International Journal of Multimedia and Ubiquitous Engineering  

Vol. 8, No. 2, March, 2013 

 

 

215 

 

model is executed in two main steps called mapping and reducing. Mapping and reducing are 

defined by mapper and reducer functions. Each phase has a list of key and value pairs as 

input and output. In the mapping step, MapReduce receives input data sets and then feeds 

each data element to the mapper in the form of key and value pairs. In the reducing step, all 

the outputs from the mapper are processed, and the final result is generated by the reducer 

using the merging process. Figure 1 shows the example of word counting using MapReduce 

framework. 

 

 
 

 Figure 1. An Example of Word Counting using MapReduce 
 

3. Proposed System Architecture 

 
3.1 Characteristics of HDVTS 

In this section, we describe our proposed system architecture. The characteristics of our 

HDVTS are as follows: (1) It consists of a codec transcoding function and a function with a 

configurable display size, codec method, and container format. (2) It focuses mainly on the 

batch processing of large video files collected over a fixed period of time rather than the 

processing of small video files collected in real time. (3) HDFS is used in our system in order 

to avoid the high cost of communication of the video file during data transfer for distributed 

processing. HDFS is also used owing to the large chunk size (64 MB) policy suitable for 

processing video files, and the user-level distributed system. (4) Our system incorporates load 

balancing, fault tolerance, and merging and splitting policies provided by MapReduce for 

distributed processing. 

 
3.2 Overall System Architecture 

HDVTS is mainly divided into four domains: Video Data Collection Domain (VDCD), 

HDFS-based Splitting and Merging Domain (HbSMD), MapReduce-based Transcoding 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 8, No. 2, March, 2013 

 

 

216 

 

Domain (MbTD) and Cloud-based Infrastructure Service Domain (CbISD). Figure 2 shows 

the system architecture. 

 

Figure 2. The Overall Architecture of HDVTS 

 

First, the main contribution of VDCD is the collection of different types of original 

encoded video files created by media creators such as SNS providers, media sharing services, 

and personal users, and the storage of these files on our local file system. It also collects 

transcoded video data sets converted to a target format file through a transcoding processing 

step based on MapReduce in MbTD, and stores them on the local file system. The period for 

collecting original encoded video data sets can be set by administrators and users according to 

a data set size and acquisition time.  

Second, the main role of HbSMD, which runs on HDFS, is to split collected original video 

data sets into blocks of a configured size, and to automatically distribute all blocks over the 

cluster. In HbSMD, the default block size is set to 64 MB, but it is changed by administrators 

and users to various other values, such as 16 MB, 32 MB, 128 MB, 256 MB, etc. When a 

block is distributed, it is replicated at three data nodes according to the Hadoop distribution 

policy, thus complying with the entire distributed processing procedure and enabling recovery 

from a system failure caused by data loss. The other role of HbSMD is to merge blocks 

transcoded by transcoders in MbTD into target video files, and to transmit the video files to 

VDCD. The number of block replicas is set to 1, 2, 4, 5, etc.  

Third, MbTD performs several tasks that transcode distributed blocks in each data node by 

using a MapReduce-based transcoding module with Xuggler. A data node 1 and a transcoder 

1 are located in the same physical machine. First, the transcoders implement the decoding 



International Journal of Multimedia and Ubiquitous Engineering  

Vol. 8, No. 2, March, 2013 

 

 

217 

 

step. Next, the resizing step is implemented if the users and administrators require a change in 

the resolution of a video file. If such a change is not required, the transcoders skip this step. 

Finally, the transcoders encode the decoded blocks into a target file based on the 

requirements of the user. The details will be presented in Section 3.3. Last, CbISD offers 

infrastructure services in a cloud computing environment via server, storage, CPU, and 

network virtualization techniques. Because of the massive storage space and enormous 

computing resource requirements of such systems, small service vendors are unable to afford 

the cost of building them. When users require logical computing resources to build and 

implement this system, CbISD automatically deploys a virtualized cluster environment. 

CbISD allows users to select a specific configuration of memory, CPU, storage, and the 

number of clusters. In addition, it provides the easy installation and configuration 

environment of HDFS and MapReduce without much effort from the user. In this paper, we 

present the idea and concept of CbISD; its implementation is not considered. 

 
3.3 Prototype of HDVTS 

Figure 3 shows our first prototype of an HDVTS. In this prototype, users and 

administrators can select video transcoding options such as format, codec, bitrate, width, 

and height, and audio transcoding options such as codec, bitrate, and sample rate. 

Further, the summary information of the system including the available storage capacity 

of HDFS, the activation state of data nodes, and the progress status report for 

MapReduce job are monitored. 

 

 

Figure 3. Prototype of a Hadoop-based Distributed Video Transcoding System 
 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 8, No. 2, March, 2013 

 

 

218 

 

4. Experimental Environment 

In this section, we provide the hardware specification of our cloud cluster, data sets 

and the experimental methods for measuring video transcoding time. Performance 

evaluation is conducted on a 28-node HDFS cluster consisting of 1 master node and 27 

slave nodes (data nodes). Each node running on the Linux OS (CentOS 5.5) is equipped 

with two Intel Xeon 4 core 2.13 GHz processors with 4 GB registered ECC DDR 

memory and 1 TB SATA-2. All nodes are interconnected by a 100 Mbps Ethernet 

adapter. We also use Java 1.6.0_23, Hadoop-0.20.2, and Xuggler 3.4. 

In addition, to verify the performance evaluation for encoding very large sizes of video 

files into target files, we create and use six types of video data sets (Table 1), including 

several 200 MB original video files, according to their volume sizes. Table 2 lists the 

parameters for each original and target transcoded video file. 
 

Table 1. Video Data Sets for Performance Evaluation 

Size of file 1GB 2GB 4GB 8GB 10GB 50GB 

Number of video 

files 
5 10 20 40 50 250 

 

 

Table 2. Parameters for Each Original and Transcoded Video File 

Parameter Original video file Transcoded video file 

Codec XviD MPEG-4 

Container AVI MP4 

Size 200 MB 60MB 

Duration 3 min 19 s 3 min 19 s 

Resolution 1280 × 720 320 × 240 

Frame rate 29.97 fps 29.97 fps 

 

5. Performance Evaluation 

In this section, we discuss and analyze the experimental results, presenting optimal 

Hadoop options for processing video files. We focus on measuring the total time to 

transcode the original data set (Table 1) into the target data set (Table 1) for three sets 

of experiments. 1) Change in cluster size for speedup performance 2) Different 

MapReduce options for block size (default: 64 MB) 3) Different Hadoop options for 

block replication factor (default: 3). 

 

5.1 Changing Cluster Size for Speedup Performance 

The objective of the first set of experiments is to measure the total transcoding time 

and speedup for various cluster sizes, such as 1, 4, 8, 12, 16, 20, 24 and 28 nodes with 



International Journal of Multimedia and Ubiquitous Engineering  

Vol. 8, No. 2, March, 2013 

 

 

219 

 

Hadoop default options. Speedup is used to evaluate the effect of parallelism. It is 

defined as:  Speedup (n) = transcoding time on 1 node / transcoding time on n nodes.  

Table 3 lists the total transcoding time for various cluster sizes. Table 4 and Figure 4 show 

the calculated speedup results. 

 

Table 3. Total Transcoding Time for Various Cluster Sizes (s) 

Nodes 
Video Data Set Size 

1GB 2GB 4GB 8GB 10GB 50GB 

1 916 1712 3465 6934 8727 43183 

4 278 516 950 1810 2268 11040 

8 183 276 512 967 1188 5615 

12 170 196 364 677 793 3747 

16 166 188 282 517 620 2824 

20 170 171 247 412 498 2240 

24 161 168 203 363 421 1841 

28 124 169 207 311 375 1623 

 

 

Table 4. Speedup Results for Various Cluster Sizes 

Nodes 
Video Data Set Size 

1GB 2GB 4GB 8GB 10GB 50GB 

1 1 1 1 1 1 1 

4 3.29 3.32 3.65 3.83 3.85 3.91 

8 5.01 6.20 6.77 7.17 7.35 7.69 

12 5.39 8.73 9.52 10.25 11.01 11.52 

16 5.52 9.11 12.29 13.41 14.08 15.29 

20 5.39 10.01 14.03 16.83 17.52 19.28 

24 5.69 10.19 17.07 19.10 20.73 23.46 

28 7.39 10.13 16.74 22.30 23.27 26.61 

 

 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 8, No. 2, March, 2013 

 

 

220 

 

 

Figure 4. Speedup Results for Various Cluster Sizes 
 

According to Table 3, our system provides excellent transcoding time for very large sizes 

of video files. For example, our system takes approximately 1600 s (about 27 min) to 

complete the transcoding process for a 50 GB video data set with the default Hadoop options. 

From the speedup results, it can be observed that: 1) Our system has excellent performance 

in terms of its parallel and distributed characteristic. 2) Speedup performances for 10 and 50 

GB data sets are better compared to the speedup performances for 1, 2, 4, 8 GB datasets, 

implying that our system exhibits good performance when the size of the data set increases. 

 

5.2 Changing Block Size and Block Replication Factor 

In the second and third sets of experiments, we measure the total time to transcode 

each data set with the different MapReduce options for block size (default: 64 MB) and 

block replication factor (default: 3). 5 block size options, 32, 64, 128, 256 and 512 MB 

are used in the experiments. 5 values of block replication factor, 1,  2, 3, 4 and 5 are 

used. Table 5 and Figure 5 show the measured transcoding times in seconds for 

different block size. Table 6 and Figure 6 show the total transcoding times in seconds 

for different replication factor values. 

In this experiment, it is clearly observed that our system performs best when the block size 

is set to 256 MB and 512 MB, or when the block replication factor is set to three. Hence, it 

can be concluded that to ensure the best distributed video transcoding performance in our 

system, the block size option should be set to a value closer to the original file size. 

Furthermore, the block replication factor should be set to three. This value provides the best 

performance and makes the distributed systems that process massive media files reliable and 

robust in terms of recovery from system failure when data loss occurs and one node fails. 

 

 



International Journal of Multimedia and Ubiquitous Engineering  

Vol. 8, No. 2, March, 2013 

 

 

221 

 

Table 5. Total Transcoding Time for Various Values of Block Size (s) 

Block Size 
Video Data Set Size 

1GB 2GB 4GB 8GB 10GB 50GB 

32 MB 173 226 335 532 666 2837 

64MB 124 169 207 311 375 1623 

128MB 103 108 120 199 209 820 

256MB 102 103 106 106 116 443 

512MB 102 105 105 111 109 444 

 

 

 

Figure 5. Total Transcoding Time According to Changes in the Block Size 
 

 

Table 6. Total Transcoding Time for Various Values of Block Replication  
Factor (s) 

Block 

Replication 

Video Data Set Size 

1GB 2GB 4GB 8GB 10GB 50GB 

32 MB 173 226 335 532 666 2837 

64MB 124 169 207 311 375 1623 

128MB 103 108 120 199 209 820 

256MB 102 103 106 106 116 443 

512MB 102 105 105 111 109 444 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 8, No. 2, March, 2013 

 

 

222 

 

 

Figure 6. Total Transcoding Time According to Changes in the Block 
Replication 

 

6. Conclusion and Future Work 

We proposed a Hadoop-based Distributed Video Transcoding System (HDVTS) in a 

cloud computing environment that transcodes various video codec formats into the 

MPEG-4 video format. Our system ensures uniform transcoded video quality and a fast 

transcoding process by applying HDFS and MapReduce, the core techniques in cloud 

computing enabling technologies. Moreover, our system overcomes the difficulties 

related to emerging & merging policies in distributed video processing as well as fault 

tolerance and load balancing management in large-scale distributed systems by obeying 

Hadoop policies. In the experiments section, we measured the total transcoding time for 

three sets of experiments, and experimentally verified the excellent performance of our 

system in video transcoding processing using distributed techniques. Based on the 

experimental results, we also suggest optimal Hadoop options for video transcoding in 

our cloud-based cluster server. 

We will leverage this HDVTS to implement Cloud-based Infrastructure Service Domain 

(CbISD) and to improve strategies for load balancing, advanced splitting & merging policies 

for media processing, and quality of service for delivering mobile media service. We also 

plan to add distributed video streaming services optimized for the cloud computing 

environment to our system. 

 

Acknowledgements 

This work was supported by the Konkuk University 

 

References 
 
[1] Wikipedia, http://en.wikipedia.org/wiki/Apache_Hadoop, (2012). 

[2] Z. Tian, J. Xue, W. Hu, T. Xu and N. Zheng, “High performance cluster-based transcoder”, Proceedings of 

2010 International Conference on Computer Application and System Modeling, (2010) October 22-24; 

Shanxi, China. 



International Journal of Multimedia and Ubiquitous Engineering  

Vol. 8, No. 2, March, 2013 

 

 

223 

 

[3] I. Ahmad, X. Wei, Y. Sun and Y.-Q. Zhang, IEEE Transactions on Multimedia, vol. 7, no. 5, (2005). 

[4] Xuggler Java library, http://www.xuggle.com/xuggler/. 

[5] S. Ghemawat, H. Gobioff and S. -T. Leung, “The Google file system”, Proceedings of the nineteenth ACM 

symposium on Operating Systems principles, (2003) December, New York, USA. 

[6] Y. Sambe, S. Watanabe, D. Yu, T. Nakamura and N. Wakamiya, IEICE Transactions on Information and 

Systems, vol. E88-D, no. 8, (2005). 

[7] S. Moiron, M. Ghanbari, P. Assuncao and S. Faria, Studies in Computational Intelligence, vol. 231, (2009). 

[8] S. N. Srirama, P. Jakovits and E. Vainikko, Journal of Future Generation Computer Systems, vol. 28, no. 1, 

(2012). 

[9] D. Seo, J. Kim and I. Jung, “Load distribution algorithm based on transcoding time estimation for distributed 

transcoding servers”, Proceedings of 2010 International Conference in Information Science and Applications, 

(2010) April 21-23, Seoul, Korea. 

[10] H. Sanson, L. Loyola and D. Pereira, “Scalable distributed architecture for media transcoding”, Proceedings 

of 12th International Conference on Algorithms and Architectures for Parallel Processing, (2012) September 

4-7, Fukuoka, Japan. 

[11]  C. Lee, Journal of Supercomputing, (2012), pp. 1-20. 

 

Authors 
 

Myoungjin Kim 

Myoungjin Kim received B.S. degree in computer science from 

Daejin University in 2007 and M.S. degree from Konkuk University, 

Seoul, Korea, in 2009. Currently, He is a Ph.D. student in the 

department of Internet and Multimedia Engineering at the same 

university and also assistant researcher at the Social Media Cloud 

Computing Research Center. His research interest includes                                                             

distributed computing, real-time programming, MapReduce, Hadoop, 

Media transcoding and cloud computing 

 

Yun Cui 

Yun Cui received M.S degree in the division of Internet and 

Multimedia Engineering at Konkuk University, Korea and currently 

he is Ph.D. student His current research interests are cloud 

computing, social network service, home network service and 

distributed computing systems. 

 

 

Seungho Han 

Seungho Han is a M.S course student in the department of Internet 

and Multimedia Engineering at University of Konkuk. He is also and 

also assistant researcher at the Social Media Cloud Computing 

Research Center. He is current research interests are UPnP, cloud 

computing system, Hadoop. 

 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 8, No. 2, March, 2013 

 

 

224 

 

Hanku Lee 

Hanku Lee is the director of the Social Media Cloud Computing 

Research Center and an associate professor of the division of 

Internet and Multimedia Engineering at Konkuk University, Seoul, 

Korea. He received his Ph.D. degree in computer science at the 

Florida State University, USA. His recent research interests are in 

cloud computing, distributed real-time systems, distributed and 

compilers. 

 

 


