
International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

71

Search Query Ranking Using Online User Profile ART1 Classifier

and Genetic Algorithm

Mahdi Bazarganigilani

Charles Sturt University, Australia

Mahdi62b@yahoo.com

Abstract

Today, getting an exact result from the huge raw data on the internet is not an easy task.

Utilizing search engines is a good way, but still there is a need for a tool for personalization

and having the adaptive capability according to the users’ interests. In this paper, we propose

a new algorithm which uses the positive and negative feedback from the user for filtering the

information. We will use ART1 classifier to generate the dynamic profile of the users and

utilize the genetic algorithm to make the most suitable query to give a better result according

to user’s criteria search.

Keywords: Information Filtering, ART1 classifier, Dynamic User Profile, Genetic

Algorithm

1. Introduction

Finding the relevant data from huge information on the internet is a difficult task. Users

use different ways like surfing the web or using the search engines, however, the search

engines do not cover all the internet, and therefore, there should be a way for finding the

information according to the similarity to the users’ interests, retrieving the relevant

information from huge unstructured and dynamic data stored according to the user profile,

called Information Filtering [1]. Agents are the components which have some level of

autonomy and adaptation and intelligent behaviors [2]. In our proposed method we combine

these two techniques for filtering the huge information on the web and delivering the relevant

information to the user according to his/her profile. Our method uses the feedbacks of the

users to make a dynamic profile according to positive or negative relevancies of the pages

they traverse.

Finally, we make such a profile to produce the most proper query. In our previous work [3],

we used a meta search to determine the fitness of each testing query. It is obviously not an

efficient method. In our paper, we use an optimized semantic similarity algorithm to

determine the similarity between the query and the user’s profile.

2. User Profile Modeling

In our method every user has his/her own profile. Every profile consists in three sections:

the first section is the information the user is interested in, the second one contains the

information which doesn’t satisfy the user, and in the third section we have a long descriptor

which reflects the interesting rate of the long term of users’ interests and represents the

interest of the profile. In this model, every descriptor has its own weight representing the

intensity of that descriptor. Since the users’ interests may change in time, we use a long term

descriptor to represent the long term changing interests. In Figure 1, we have shown the

structure of our profile. Every profile has different categories and every category has three

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

72

descriptors. Every descriptor has the vector of words representing the occurrence of the

words: ik
 represent the thi' word in the pattern and iw

 represents the occurrence of it in the

document to feed to our classifier. pw
 and nw

 represent the total weight of the positive and

negative categories, respectively, according to the learning rate of the algorithm and ltw

represents the long term weight of descriptor [4].

Figure 1. 3-Descriptor User Profile

3. Adaptive Response Theory Neural networks (ART1)

ART1 is a network which is classified into unsupervised learning networks therefore it is

called self-organizing network. As shown in the Figure 2, this network consists of two layers,

comparison layer (F1) and recognition layer (F2), with the inputs in binary format. Every

node in F1 represents a cluster of the technologic property. Every two layers are connected

strongly and there are two kinds of connections: one is up-down and the reverse down-up.

ART1 also has three other modules: Gain1, Gain2, and Reset, in which it performs the actions

for comparison and classification. The algorithm tries to reconcile the input vector with other

clusters according to the similarity degree, which is gained according to a parameter named

vigilance parameter. If the algorithm can not find any cluster, it creates a new one.

Figure 2. ART1 Neural Network

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

73

In this paper we use ART because of the following reasons [5]:

 Binary Input Vector: this network can process input vectors in binary format

 Consistency and Scalability: this network has a good capability to save the

previous learning patterns and also to adopt new patterns as a new cluster.

 Unsupervised Learning: in this learning there is no feedback from the environment

and the network determines the clusters according the input vectors.

 Fast Learning: in this network a pattern fit in the most similar cluster otherwise a

new cluster created.

Another parameter to mention is the Vigilance parameter. In our implementations we set

the Vigilance Parameter as high since we need the most accurate classification due to the long

input vectors.

4. Information Filtering

Firstly we give an opportunity to the user to search the internet. According to its first query,

which denotes to the best result, the first one would be feeded to our pre-process algorithm.

The pattern for ART1 classifier consists of 150 words, mostly used in the document.

Certainly, the pre-process method eliminates the trivial words and also HTML tags. The

pattern is sorted according to the number of occurrences of the keywords. The consequent

documents would be listed to the user to select them if he/she is interested to them or not. The

input document would be feeded to our pre-process algorithm and the output is keyword

according to our pattern, the input vectors
 mkkkK ,...,, 21

 would be feeded to ART1

classifier. Every input vector would be in interesting subset or its opposition. Accordingly, we

compute the weights of descriptors and ART1 gives us the categories. For updating the

weights, we consider two methods of learning: Explicit learning and Implicit learning.

5. Explicit and Implicit Learning

Since the profile changes according to the user’s interests, we have two types of

learnings: Explicit learning which reflects the short – term interests of the user and has

the high rate of learning. On the other hand, the implicit learning occurs during the

long-term and reflects the long term interest of the user or the reluctances. Our

approach updates the weight vectors by considering these two situations, As described

before every profile consists of different descriptors, the negative would be in range

 0,1 . While the positive one is in the range  1,0 and the long descriptor is between

 1,1 . Every positive or negative vector adding to any category according to ART1

classifier will update those values to reflect any changes in short and long term periods.

The interest weight of the long descriptor updates as follow [4].

 
   
   














feedbacknegativeforwff

feedbackpositiveforwff
w

c

oldlt

c

oldltc

newlt



1

1

f is bipolar sigmoid logistic function, and  is the learning rate.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

74

  1
exp1

2





x
xf

Furthermore, the positive and negative descriptors updated as follow,

      
       feedbacknegativeforwww

feedbackpositiveforwww
c

oldp

c

oldn

c

newn

c

oldp

c

oldp

c

newp





*1

*1





While we update the interest values accordingly, we should reduce the opposite

interest’s weight to have exact opposition among two positive and negative descriptors.

For doing this, we compute the similarity of the input vector and positive vectors and

accordingly, reduce the negative vector’s effect. We apply this technique reversely for

negative vectors.

      
       feedbacknegativeforkdsimww

feedbackpositiveforkdsimww

i

c

p

c

oldp

c

newp

i

c

n

c

oldn

c

newn

,*1*

,*1*









In the above formula, sim could be any similarity function like cosine similarity

function [6] and ik
 is the input vector.

c

pd
,

c

nd
 are the average vectors of the positive

and negative vectors. Moreover, we also consider Implicit learning to reflect the

changing interests and long-term tracing of the user’s interests. In this case we trace the

activities of the users in a sessions, if in any session there is no vector from interested

level, the penalty applies for that category. Otherwise if any page visited the explicit

learning with a very little learning rate would be applied. The penalty rate is as follow.

For tracing the user on a session, we consider a variable like flag [3] which is zero, if

it is not visited.

 
 

 



 


otherwisew

flagifw
w

c

oldp

c

oldpc

newp

0*

 
 

 



 


otherwisew

flagifw
w

c

oldn

c

oldnc

newn

0*

 
 

 



 


otherwisew

flagifw
w

c

oldlt

c

oldltc

newlt

0*

 is the penalty factor which is near to 1. In this case if after enough numbers of

sessions there is no visit from the interested descriptor, the three descriptors would be

decreased. Consequently, after a long period, the weights become zero and the category

will be eliminated from the profile.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

75

6. Using Genetic Algorithm For Producing Efficient Queries

The next phase in our algorithm is to generate the best query according to the profile.

We use the keywords from the categories and utilize the genetic algorithm [7 , 8]. Every

individual represents a query which should be ranked according to the fitness function.

The fitness function computed using the similarity of the query with the catalogue of

the user. We use an optimized Latent Semantic Analysis [9] to compute the similarity

of the produces query. The genetic algorithm process is as follow [10]:

1. Initializing the population: For each category, we consider some keywords from

interested list, while others from uninterested list, in which we negate them. For every

profile we make r queries.

2. Evaluation: By using the fitness function as stated above, each query evaluated.

3. Selection: We select the m best queries, according to the fitness functions.

4. Performing the genetic operations:

a. Cross-Over: the key words simply crossed using one-point cross over,

consider the query,
876

'

5

4

'

3211

2 TORTORTANDTQ

TORTORTANDTQ





 if the cross

over applied on point 2 the reproduction is as

follow,
4

'

36

'

54

87213

TORTORTANDTQ

TORTORTANDTQ





b. Mutation: This operation can be applied on terms which another key-word

would be selected randomly from category.

5. After a fixed number of iterations the generation would be stabilized and algorithm

has been finished.

7. Latent Semantic Analysis

To determine similarity between two documents we use LSA algorithm. Considering

a set of distinct terms as D. A term-document matrix, nmX , , where m is the number of

terms and n is the number of documents in dataset D .The singular value decomposition

(SVD) decomposes the term-document matrix, into three matrices , where U and V are left

and right singular vectors respectively and S is a diagonal matrix of singular values ordered

in decreasing magnitude.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

76

TUSVX 

 SVD can optimally approximate matrix X with a smaller sample of matrices by selecting

k largest singular values and setting the rest of the values to zero. Matrix kU
 of size

km consists of matrix kV
 of size kn along with kk  singular value matrix kS

 .

T

kkknm VSUX 


,

 Matrix



nmX , is known to be the matrix of rank k which is closest in the least squares sense

to X . Matrix kU
 becomes the latent semantic kernel matrix. To compute the content

similarity between query q and document d , we use below formula.

 
qPdP

qPPd
qdcontSim

T

x

T

TT

x

x ,

 Where matrix P is matrix kU
, and P is used as a mapping function to transform the

document and query into concept space to determine the semantic association of document

contents [11].

8. Optimized LSA

In this section, we delineate the optimization of our LSA algorithm. Such method could

have overhead to the recital of the complete system. However, it effects in more very fruitful

construction of the LSA matrixes. This is valued in large datasets and stores. The computation

time for building SVD of a matrix is [12].
 Hofmann [13] recommended the probabilistic latent semantic indexing (pLSI) which is

utilised for written material modelling. In pLSI, a generative type for the documents and their

remark occurrences is ushered in as follows. For a document-word pair (d,w). In pLSI, the

latent variable z interpreted as the topics for words identifies the connection prospect of a

bestowed document-word pair. Let us presume the number of written material N and remarks

M are both fastened, hence z have a Multinomial dissemination with dimension N ×M. When

we fix this latent variable to be K-dimensional disseminated, the latent variable truly

acknowledges a clustering process in the connection space of written material and words. In

[13] Hofmann z correspond to projection space for words.

 Bose [13] introduced a novel process to diminish the complexity of makeup document/term

matrix by adhesive binding and merging the documents. In this way, we don’t loss any terms

since we exercise all the term for makeup the kernel matrix .There are couple ways to decide

the document to fit in the bins. Random selection process decides the document steadily and

left them illogically in this bins. While, support based approach decide the bulk noteworthy

records steadily for the bins. It escapes the bias caused by illogical selection of the

documents .If the training dataset contains .Let document has

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

77

the maximum of unique terms .While later stemming and removing stop-

words the frequencies are as pursue .the total frequency of term is as

follow . We afterward compute the importance of each document. This process

leads smaller amount of documents to fit in every bin. This greatly diminishes the term-

document matrix size. We dispense the documents steadily according to their importance and

merge all the records in each bin. In lead to compute the document importance, we estimate

couple factors, Support of term and the weight. Support of term defines the relative

importance of the term in the whole corpus. Weight defines the importance of the term in the

document. In this manner, we do not have any bias toward the documents with frequent terms

[14].

The weigh of term ijt
 is computed as follow.





n

j

ji

ji

j

f

f
W

1

,

,

.t

The size of dataset, F , is total frequencies of terms in dataset .


 


n

j

ji

m

i

fF
1

,

1

Let
 nSSSS ,...,, 21

 is the support of every term in corpus. The support shows the

relative importance of each document among total corpus. It is computed as follow [14].





 


n

j

ji

m

i

ji

m

ij

j

f

f

F

F
S

1

,

1

,

1





n

j

jji SWDI
1

 Let be the accumulation of bins, ,containing the same number of

written documents from dataset in the bins. Let be a accumulation of number of

documents where is the joining documents after the

dissemination algorithms in .After augmenting the frequency of merged terms in

documents ,term with small number of frequencies (less than 5) or very high figures (above

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

78

5000) deliberated outliers. Such redundant term eliminated from term document matrix .In

random selection, we select equal number of documents for each bin at random. While for

support based, we select the equal number of document according to their r importance. In

this way, we have similar important documents in each bin. Such method avoids any bias

caused by random selection and boosts the accuracy of kernel. We use Bose’s algorithm for

selection of documents for bins as follow [14].

// K is term-document matrix

// P is Latent Semantic Kernel

//Calculate the document importance

1. for each DDi  .

a. 



n

j

jji SWDI
1

2. end for

3. Sort DI in ascending order.

4. //Bin documents

5. for 0i to q

a. 0iB

b. for 0j to qm /

i. iqjii DBB  *

c. end for

6. end for

7. //Merge the documents

8. for each BBq 

a. emptyBDq 

b. for each qi BD 

i. iqq DBDBD 

c. end for

9. end for

10. //Initialize the term-document matrix

11. for each 0x to jT

a. for each 0y to iD

i.    0yxK

b. end for

12. end for

13. for each BDBDq 

a. for each qj BDT 

i.       jqjqj SBDTKBDTK 

b. End for

14. end for

15. perform SVD on K

16. kUP 

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

79

It is inferred that pLSI is not a well-defined type, since it delights each document as

an index and hence is not generalizable to new documents. Another obstacle of pLSI is

that longer documents get higher weights in the type, which in addition suggests that

the documents are not alone sampled. Moreover, pLSI uses a probabilistic method such

as Naïve bayes algorithm to compute the probability of each topic. This implementation

is obviously less efficient comparing to method proposed by Bose.

9. TF-IDF Vector Representation

One of key issues in content similarity, is to properly score the best words for

classification algorithms [14].In this algorithm, we use idftf  to update our kernel

resulted from previous section. In this algorithm, the term specific weights in the

document vectors are products of local and global parameters. The model is known as

term frequency-inverse document frequency model. The weight vector for document d

is
 TdNddd wwwV ,,2,1 ,...,,

 ,where
 dtDd

D
tfw dtdt


 log.,,

 and dttf , is term

frequency of term t in document d .

 dtDd

D


log

is inverse document frequency ,
D

 is the total number of documents in

the document set and
 dtDd 

is the number of documents containing the term t.

10. Fitness Function

To compute the fitness of each query produces by genetic algorithm, we add the

similarity gained by Optimized LSA for each positive document in the catalogue.

Moreover, we subtract them with negative feedbacks and divide it by the number of

catalogue feedbacks.

 
n

cqOpLSAcqOpLSA

qFitness
Np CcCc








),(),(

where),(cqOpLSA computer the semantic similarity of the query q and document c . pC

represents the positive feedbacks in positive feedback of the profile and NC
 denote the

negative feedback in the user ‘s profile.

11. Evaluation Results

In this section, we explain the properties of our algorithm, Firstly; we want to know

about the learning rate of the algorithm. We use the following steps to do our

experiments [4].

1- Consider 50 WebPages related to same categories from the internet.

http://en.wikipedia.org/wiki/Tf-idf

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

80

2-Generate a random profile with equal probability with positive and negative

feedback.

3- Rank all the pages and select the last ranked page D .

4- Give the page a positive feed back.

5- Use the new profile to rank all the pages again and compute the changing

percentage of the selected page D .

6- Repeat the above steps for 20 different learning rates.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
h

an
ge

 P
e

rc
e

n
ta

ge

Learnig Rate

Figure 3. The Effect of Learning Rate on Changing the Page Ranks

We repeat our experiments 10 times for different datasets and got their average to

have a better accuracy. As seen from the Figure 3, the values less than 0.2 has little

effect on page rank’s changes. Therefore, we select 0.2 for our implicit learning

algorithm, while, the values above 0.7 has strong effect on page rank’s changes [3].

Another experiment we can show is the vigilance parameter of our ART1 Network.

To see its effect on the number of classifications on our data sample, we made use them

in text classification. The results show the amount bellow 90 % resulted in poor

categorizations, mostly, because the network put them in one category. We used 100

documents from five different categories from some news agency. We applied different

values, 90 %, 95 %, and 99 %. The results are shown in the following table.

Table 1. Sensitivity of Number of Categories to Vigilant Parameter

 90.0

95.0

99.0

Technology 6 7 14

Finance 8 11 14

Health 1 12 17

Entertainme

nt

2 7 13

Science 2 8 13

The results show for better accuracy, we should use 99% for vigilance parameter.

To construct our kernel, we used Wikipedia datasets, available from the INEX 2006

Document Mining Challenge [15]. We used about 3000 document in 60 categories. To

determine best method for semantic similarity, we used different approaches described

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

81

in this paper. We used a simple idftf  algorithm .the second and third methods were

to use idftf  representation along with random selection and support based selection

merging algorithm.

For evaluating the accuracy of classifications, we use precision and recall

measurement metrics stated in [17].

Table 2. Evaluating Parameters

Assigned to ic Not assigned to ic

Belonging to ic tp
 fn

Not Belonging to ic fp

tn

ic
 represents the clusters. The Precision shows the accuracy of the algorithm while

the recall represents the integrity of suggestion algorithm.

fptp

tp
ecision


Pr

fntp

tp
call


Re

There maybe instances which the classifier does not categorize them. Therefore, it

reduces the Recall. We also use another parameter ScoreF  can be computed as

follow.

callecision

callecision
F

RePr

RePr2






To test the accuracy of the classification, we used 200 documents from 20 categories

and determined the similarity of each using Bi-Section KMeans clustering method [18].

We clustered the pair-wise document similarity matrix produced from our clustering

approach and gained the accuracy of each method.

Table 3. Results of Different Aproches

Methods Merging

Algorithm

F (%)

Latent Semantic Kernel Support
Based

84.56 %

Latent Semantic Kernel

Random 79..37 %

tf*idf - 74.41%

In the next section, we show the results of our genetic algorithm, after feeding back

100 pages in profile for searching the word “Germany”.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

82

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fu

n
ct

io
n

 P
o

in
t

Iteration Number

Genetic Algorithm Convergence

Figure 4. GA Convergence

As we see after 15 iterations the Function Point 91 fixed in our experiments and

gives the best query.

12. Conclusion

In this paper we presented an algorithm for classifying the search results, by the help

of ART1 network. This is a fast and real forwarded approach, comparing to other

similar methods. Since using ART1 doesn’t need a supervised method, it is suitable for

on-line tracings and classifications. Moreover, we used an optimized LSA to get the

similarity of the queries produced with the profile of the users. We concluded the

promising way is using idftf  representation along with support based binning

algorithm which enhanced LSA.

References

[1] N. J. Belkin and W. B. Croft, “Information Filtering and Information Retrieval: Two Sides of the Same

Coin?”, In Communications of the ACM, December 1992, vol. 35, no. 12, (1992), pp. 29-38.

[2] Agent Working Group, “Agent Technology Green Paper”. OMG Document agent/00-09-01 Version 1.0,

(2000).

[3] M. Bazarganigilani, “Online Information Filtering using User Profile ART1 Classifier and Genetic

Algorithm”, 2nd IEEE International Conference on Software Technology and Engineering, ICSTE 2010, San

Juan, Puerto Rico, USA (2010).

[4] D. H. Widyantoro, “Learning User Profile In Personalized News Agent”, Master Thesis, Department of

Computer Science, Texas A&M University, (2006).

[5] Y. -J. Chen, Y. -M. Chen, H. -C. Chu, C. -B. Wang, D. -C. Tsaih and H. -M. Yang, “Integrated Clustering

Approach to Developing Technology for Functional Feature and Engineering Specification-based Reference

Design Retrieval”,Concurrent Engineering, vol. 13, (2005), pp. 257.

[6] R. Baeza-Yates and B. Ribeiro-Neto, “Modern Information Retrieval”, ACM Press, Addison-Wesley,

Reading, MA, (1999).

[7] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning”, Addison-Wesley,

(1989).

[8] J. H. Holland, “Adaptation in Natural and Artificial Systems”, The University of Michigan Press, (1975).

[9] T. Landauer, P. W. Foltz and D. Laham, "Introduction to Latent Semantic Analysis", (PDF) Discourse

Processes, vol. 25, (1998), pp. 259–284.

[10] M. Kalantar, “Adaptive Web Information Filtering System Using Genetic Algorithms”, Master Thesis,

Ferdowsi University, (2003).

[11] T. Tran, R. Nayak and P. D. Bruza, “Combining structure and content similarities for XML document

clustering”, In: 7th Australasian Data Mining Conference, Glenelg, South Australia, (2008) November 27-28.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5608766
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5608766
http://en.wikipedia.org/wiki/Thomas_Landauer
http://lsa.colorado.edu/papers/dp1.LSAintro.pdf

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

83

[12] D. Widdows and K. Ferraro, “Semantic vectors: A scalable open source package and online technology

management application”, In: Proceedings of the sixth international conference on Language Resources and

Evaluation (LREC 2008), Marrakesh, Morroco, (2008).

[13] T. Hofmann, “Probabilistic Latent Semantic Indexing”, In Proceedings of the 22nd Annual ACM SIGIR

Conference, Berkeley, California, (1999) August, pp. 50–57.

[14] A. Bose, “Effective web service discovery using a combination of a semantic model and a data mining

technique”, master thesis, Faculty of Information technology, Brisbane, Qeesland , Australia, (2008).

[15] G. Salton, A. Wong and C. S. Yang, "A Vector Space Model for Automatic Indexing", Communications of

the ACM, vol. 18, no. 11, (1975), pp. 613–620.

[16] L. Denoyer, P. Gallinari and A. -M. Vercoustre, “Report on the xml mining track at inex 2005 and inex 2006”,

in `INEX 2006', Dagstuhl Castle, Germany, (2006), pp. 432-443.

[17] C. W. Cleverdon and J. Mills, “The testing of index language devices”, Aslib Proceeding, vol. 15, no. 4,

(1963), pp. 106–130.

[18] A. Hotho, A. Maedche and S. Staab, “Ontology-based text clustering”, In Proceedings of the IJCAI-2001

Workshop Text, (2001).

http://en.wikipedia.org/wiki/Gerard_Salton
http://www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_papers/p613-salton.pdf

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

84

