
International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

41

A Unified Architecture for Implementation of the Entire Transforms

in the H.264/AVC Encoder

Sedighe Ghorbani
1
 and Farzad Zargari

2*

1
 Department of Computer Engineering, Science and Research Branch,

Islamic Azad University, Tehran, Iran
2
IT Department of Research Institute for ICT (formerly Iran Telecom Research Center

(ITRC)), Tehran, Iran

s.ghorbani@srbiau.ac.ir, zargari@itrc.ac.ir

Abstract

Integer Discrete Cosine Transform (DCT) is among the techniques used to improve the

performance of the H.264/AVC Standard. All the profiles in the H.264/AVC standard support

4×4 integer DCT and the high profiles of this standard support 8×8 integer DCT as well as

the 4×4 integer DCT. Various hardware realizations have been proposed for forward and

inverse integer DCT in the literature because they are among the computational intensive

units in the H.264/AVC standard. In this paper we propose a unified pipelined architecture to

realize of the entire forward and inverse DCTs as well as the Hadamard transforms in the

H.264/AVC encoder. The synthesis results indicate that our architecture achieves higher

clock rate and relatively lower gate count compared to the other published architectures that

realize only a number of the transforms in the H.264/AVC encoder.

Keywords: H.264 encoder, Discreet Cosine Transform (DCT), Integer DCT, Hadmard

Transform, Hardware Implementation

1. Introduction

The H.264/AVC standard [1] achieves remarkable higher compression performance than

the previous MPEG and H.26X standards. The higher performance in H.264/AVC is due to

various modifications in different coding stages and most of these modifications impose high

computational load to the H.264/AVC codec. As a consequence, hardware realization of the

computationally intensive parts in the H.264/AVC standard attracted great deal of attention

and there are several proposals for the hardware realization of these parts in the literature [2-

7]. One of the computationally intensive units in the MPEG and H.26X video coding families

is the Discrete Cosine Transform (DCT). Hence, the hardware realization of this unit is even

attractive for the pre-H.264/AVC standards and there are proposals for hardware architectures

to realize this unit from a long time ago [8, 9] and it is still continuing [10-13].

The H.264/AVC standard employs integer DCT instead of real DCT, which is used in the

previous video coding standards. This eliminates any mismatch issue between the encoder

and decoder in the inverse transformation [14]. The initial version of H.264/AVC standard

supported only 4×4 integer DCT. In order to achieve higher compression performance the

amendment called Fidelity Range Extensions (FRExt) was added to the H.264/AVC standard,

which adaptively employs both 4×4 and 8×8 transforms in the high profiles [15]. In this way

roughly 10% bit-rate reduction can be achieved for various coding parameters [16]. This led

*
 Corresponding author: Zargari@itrc.ac.ir

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

42

to additional complexity of the initial version of the H.264/AVC encoder, which had

substantially high computational load. The number of operations for computation of an 8×8

or 4×4 Integer DCT is not very high but since in high profiles theses transforms should be

applied to the entire 8×8 or 4×4 blocks in a frame, it will result in a huge computational load

and makes the integer discrete cosine transform among main computationally intensive stages

in the H.264 encoder [10, 11]. Consequently, the hardware implementation of the integer

DCT transform attracted more attention and a number of solutions have been published for

hardware implementation of Integer DCT in the H.264/AVC standard [16-19].

In this paper, which is an extended and more detailed version of our previous work [20],

we introduce a unified pipelined architecture to realize the entire forward and inverse integer

DCTs and Hadamard transforms in the H.264/AVC standard. Since the encoding loop of the

H.264/AVC standard requires carrying out all the forward and inverse transforms, the

proposed unified architecture is a very powerful accelerator for the H.264/AVC encoder. The

proposed architecture is completely in accordance with the reference software of the

H.264/AVC standard and the synthesis results indicate that our architecture achieves higher

clock rate and has relatively lower hardware cost compared to the previous architectures,

which have implemented only a number of the transforms in the H.264/AVC standard.

The rest of the paper is organized as follows. In Section 2 we provide a brief overview of

the transforms in the H.264/AVC standard and discuss their existing hardware

implementations. The proposed architecture for implementation of the entire transforms in the

H.264/AVC standard is explained in Section 3. The synthesis results for the given

architecture and comparison with the other exiting implementations are presented in Section 4

followed by concluding remarks given in Section 5.

2. Background

In the H.264/AVC standard the forward and the inverse integer DCT are defined

respectively in (1) and (2) as:

Y=AXA
T

 => Y= CfXCf
T
  Ef (1)

X=A
T
YA => X=Ci

T
(Y Ei)Ci (2)

The CfXCf
T
 and Ci

T
WCi parts in the above equations are called ‘core’ transforms [21].

‘Core’ transform is a two dimensional transform, which can be decomposed into two one

dimensional transforms. The first one dimensional transform is applied to the rows of the

input pixels and the second one dimensional transform is applied to the columns of the one

dimensional transform coefficients of the first stage (Figure 1).

Transpose

Unit

1D Transform

Unit

1D Transform

Unit

Figure 1. Decomposing 2D Integer DCT into two 1D Integer DCT

The Cf and Ci matrices given in (3) indicate the ‘core’ transform matrix of the forward and

inverse 4×4 integer DCT in the H.264/AVC standard, respectively.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

43


























1221

1111

2112

1111

C f


































2

1
111

11
2

1
1

11
2

1
1

2

1
111

iC

(3)

Figure 2 shows a fast hardware realization for 4×4 forward integer transform using adders

and shifters and Figure 3 indicates a fast hardware realization for 4×4 inverse integer

transform, both given in [14].

-

-

-

-2

2

x0

x1

x2

x3

y0

y2

y1

y3

-

-

-1/2

-

x0

x2

x1

x3

y0

y1

y2

y3

1/2

Figure 2. Fast Realization for Forward
4×4 Integer DCT

Figure 3. Fast Realization for Inverse
4×4 Integer DCT

The Hadamard transform is another 2D transform which is used in the H.264/AVC

standard and its ‘core’ transform matrix is:


























1111

1111

1111

1111

4×4H

(4)

Authors in [22] employed the butterfly architecture for fast hardware implementation of the

Hadamard transform (Figure 4).

-

-

-

-

x0

x1

x2

x3

y0

y2

y1

y3

Figure 4. Fast Realization for 4×4 Hadamard Transform

Since H
T

4×4= H4×4, the hardware implementation given in Figure 4 can be used for both

forward and inverse Hadamard transforms. The H.264/AVC standard uses 2×2 Hadamard

transform as well. The ‘core’ transform matrix for 2×2 Hadamard transform is as:













11

11
2×2H

(5)

Since the hardware implementation of 4×4 Hadamard transform can also be employed for

2×2 Hadamard transform, a dedicated hardware implementation for 2×2 Hadamard transform

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

44

is not required. The authors in [22] unified all the aforementioned fast schemes and

introduced a unified circuit for realization of the entire 4×4 and 2×2 transforms in

H.264/AVC (Figure 5).

-

-

+,-

-

-1,1/2

-2,-1

2,1

1,1/2

x0

x1

x2

x3

y0

y2

y1

y3

Figure 5. Fast Multipurpose Architecture for all 4×4 Transforms in H.264/AVC

The FRExt of H.264/AVC standard uses both 4×4 and 8×8 integer DCT transforms

adaptively for high resolution video applications. The ‘core’ transform matrix for 8×8 integer

DCT is:

C=























































8

3

4

3

4

5

2

3

2

3

4

5

4

3

8

3
2

1
11

2

1

2

1
11

2

1
4

3

2

3

8

3

4

3

4

3

8

3

2

3

4

3
11111111
4

5

8

3

2

3

4

3

4

3

2

3

8

3

4

5

1
2

1

2

1
11

2

1

2

1
1

2

3

4

5

4

3

8

3

8

3

4

3

4

5

2

3
11111111

(6)

Authors in [17] have given an architecture for implementing the forward 8×8 integer DCT

based on the 8×8 DCT algorithm at the H.264/AVC reference software. The architecture in

[17] uses five stages of adders, which either reduce the achievable highest frequency in non-

pipelined realization or increase the number of pipeline stages in the pipelined realization. In

[18] a hardware implementation has been introduced for the forward 8×8 integer DCT. It

requires all the 8×8 elements of the block simultaneously and as a negative result, it also

needs high amount of hardware resources. A flexible architecture is given in [19] for realizing

all inverse transforms in H.264/AVC standard, but the proposed architecture does not support

forward transforms.

The architecture in [23] unifies 2D 4×4 and 2×2 with 8×8 1D transforms based on matrix

manipulations but the resulted unified architecture is not compliant with the H.264/AVC

reference because as we will show in the next section it is very important to consider the way

that reference software has been used to implement matrix multiplications. Moreover the

proposed method in [23] suffers from high number of processing elements including 44

adders or subtractors. In this paper we introduce a unified architecture for the implementation

of the entire transforms in H.264/AVC standard which is completely compliant with the

H.264/AVC reference software. The proposed architecture requires only 32 adders or

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

45

subtractors and synthesis results indicate that it needs lower area compared to the other

reported synthesized architecture that implement only a number of the transforms in the

H.264/AVC standard. Meanwhile, it achieves higher maximum frequency and throughput

compared to the existing architectures.

In the following section we introduce a flexible architecture for implementation of

forward and inverse 8×8 integer DCT of the H.264/AVC standard. The proposed

flexible architecture is then expanded to realize the 4×4 and 2×2 transforms in the

H.264/AVC standard too.

3. Proposed Architecture

Using the proposed method in [24] multiplication by the 8×8 integer DCT matrix given in

(6), can be decomposed into multiplication by two 4×4 matrices as given in (7).


































2

1
11

2

1

1111

1
2

1

2

1
1

1111

1_fA


































2

3

4

5

4

3

8

3
4

5

8

3

2

3

4

3
4

3

2

3

8

3

4

5
8

3

4

3

4

5

2

3

2_fA

(7)

Af-1 and Af-2 can be used to produce the 1D 8×8 integer DCT coefficients as given in (8):








































































)4()3(

)5()2(

)6()1(

)7()0(

2

1
11

2

1
1111

1
2

1

2

1
1

1111

)6(

)4(

)2(

)0(

xx

xx

xx

xx

y

y

y

y

 (8-a)















































































)4()3(

)5()2(

)6()1(

)7()0(

2

3

4

5

4

3

8

3
4

5

8

3

2

3

4

3
4

3

2

3

8

3

4

5
8

3

4

3

4

5

2

3

)7(

)5(

)3(

)1(

xx

xx

xx

xx

y

y

y

y

 (8-b)

Multiplication by Af-1 can be further decomposed to multiplication by two 2× 2 matrices as:

































21

30

)4(

)0(

11

11

xx

xx

y

y









































21

30

)6(

)2(

1
2

1
2

1
1

xx

xx

y

y
(9)

Considering the decomposition for Af-1 given in (9), we propose to employ the butterfly

architecture of Figure 6 to implement the multiplication by Af-1. In order to compute the

second matrix multiplication of the 1D forward 8×8 Integer DCT transform, we introduce the

architecture of Figure 7 to realize multiplication by Af-2.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

46

-

1/2

-

-

1/2

-

x0

x1

x2

x3

y(0)

y(4)

y(2)

y(6)

x1

y(1)

x0

x0

x1

x2

x2

x2

x0

x3

x1

x1

x0

x1

x3

x3

-

-x3

-x2

y(3)

y(5)

y(7)

x0

x2

x3

m0

m1

m2

m3

-

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

1/2

1/2

1/2

1/2

1
/4

1/
4

-1/4

1
/4

_

Figure 6. Fast Realization for
Multiplication by Af-1

Figure 7. The Proposed Architecture
for Multiplication by Af-2

The 8×8 inverse integer DCT matrix in the H.264/AVC standard can be decomposed to

multiplication by two 4×4 matrices as given in (10).


































2

1
111

11
2

1
1

11
2

1
1

2

1
111

1_iA


































2

3

4

5

4

3

8

3
4

5

8

3

2

3

4

3
4

3

2

3

8

3

4

5
8

3

4

3

4

5

2

3

2_iA

(10)

Ai-1 and Ai-2 can be used to perform inverse 8×8 integer DCT transform as:

























































































































)7(

)5(

)3(

)1(

2

3

4

5

4

3

8

3
4

5

8

3

2

3

4

3
4

3

2

3

8

3

4

5
8

3

4

3

4

5

2

3

)6(

)4(

)2(

)0(

2

1
111

11
2

1
1

11
2

1
1

2

1
111

)3(

)2(

)1(

)0(

y

y

y

y

y

y

y

y

x

x

x

x

(11.a)

























































































































)7(

)5(

)3(

)1(

2

3

4

5

4

3

8

3
4

5

8

3

2

3

4

3
4

3

2

3

8

3

4

5
8

3

4

3

4

5

2

3

)6(

)4(

)2(

)0(

2

1
111

11
2

1
1

11
2

1
1

2

1
111

)4(

)5(

)6(

)7(

y

y

y

y

y

y

y

y

x

x

x

x

(11.b)

The matrix Ai-1 is identical with 4×4 inverse integer DCT matrix Ci. Hence, the scheme in

Figure 3 can be used to implement Ai-1. We have proposed in Figure 5 and Figure 6 to merge

the schemes to give the combined architecture of Figure 8 to implement the entire 4×4

transforms in the H.264/AVC standard and also the transforms by matrices Af-1 and Ai-1.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

47

-

-

-1,1,1/2

-

-1,1/2

-2,-1

2,1

1,1/2

1,1/2

x0

x1

x2

x3

y0

y2

y1

y3

Figure 8. Fast Realization for Multiplication by Af-1 ,Ai-1 and all 4×4 Transform
Matrices in H.264/AVC

Considering (5) we infer that the output of the adders in the first stage of Figure 8 can be

used to implement 2×2 Hadamard transform. Hence, we propose the architecture in Figure 9,

referred to as Ext_1D_Transform hereafter, to implement multiplication by matrices Af-1 and

Ai-1 and the entire 4×4 and 2× 2 transforms in the H.264/AVC standard. The total

computational complexity in Figure 8 is 3 adders, 3 subtractors, 2 adder/subtractors and 6

shifters.

X0 y0

y2

y3

y1

s1

s1

s1

m0

m1

m2

m3

m3

m1

m2

m2

m3

m2

m3

m0

m1

m1

m2

m0

m2

-

1/2

s1

s1

s2

s1

1/2

2

-
-

-2

-

X3

X2

-

1/2

-
-

-
1/2

X1

X0

X2

X2

X1

X1

X2

X3

X0

X1

X3

X3

s1

s2

s2

s1

s1

s2

s2

m2

m0

m1

m3

s2

s2

s2

s2

X0

X1

X2

X3

0

select-a

1

select-b
1

1

0

0

X3

Figure 9. Fast Realization for Multiplication by Af-1 ,Ai-1 and all 4×4 and 2×2
Transforms in H.264/AVC (Ext_1D_Transform)

In order to perform 8×8 inverse integer DCT transform, realization of multiplication by Ai-2

is necessary. Even though Ai-2 is identical with Af-2, the way its multiplication is implemented

in the H.264/AVC reference software differs from that of Af-2. As an example to compute the

first element of output vector resulted from multiplication by Af-2, the reference software first

computes two intermediate variables m0(f) and m3(f) as:

m0(f)= x1+ x2 + ((x0>>1)+ x0) (12-a)

m3(f)= x1– x2 + ((x3>>1)+ x3) (12-b)

and then calculates the first element of the vector resulted from multiplication by Af-2:

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

48

 y0(f)= m0(f) + (m3(f)>>2) (13)

On the other hand to perform the inverse transform, the reference software generates m0(i) and

m3(i) intermediate variables:

 m0(i)= x1 + x2 + x0+(x0>>1) (14-a)

 m3(i)= -x1 + x2 –x3–(x3>>1) (14-b)

and the first element of multiplication by Ai-2 is computed as:

 y0(i) = m0(i) - (m3(i)>>2) (15)

It is worth noting that arithmetic right shift results in different rounding effects on positive

and negative numbers e.g. positive numbers approach zero by arithmetic right shift, while the

two’s complement representation of negative numbers approach -1. Due to this fact the results

for y0(f) and y0(i) may be different, though they are realizing the same matrix multiplication. As

an example for the input matrix (x0, x1, x2, x3)
T
 = (0, 1, -2, 0)

T
 the first element of the output

matrix resulted from multiplication by Af-2 and Ai-2 will be: y0(f) = -1 ≠ y0(i) = 0. In fact

performing matrix multiplications by identical matrices does not guarantee compliance with

the H.264/AVC standard. It means that the methods such as [23] which only consider matrix

multiplication by using arbitrary mathematical manipulations will not guarantee compliance

with the H.264/AVC standard. Hence, we should use different architectures to carry out

multiplication by matrices Ai-2 and Af-2 in order to keep consistency with the H.264/AVC

reference software. We merged the two different architectures for implementation of

multiplication by matrices Ai-2 and Af-2 in the forward and inverse 8×8 integer DCT to propose

the unified architecture in Figure10. The architecture performs multiplication by matrices Af-2

or Ai-2 when the selection signal Ś ́is 0 or 1, respectively.

x1

x0

x0

x1

x2

x2

x2

x0

x3

x1

x1

x0

x1

x3

x3

-

-
x3

x2

x0

x2

x3

m0

m1

m2

m3

-

-

x3

x0

-x2

x1

-

-

S

S

S

S

S

S

S

S

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-

S

-
S

1/2

1/2

1/2

1/2

1
/4

1/
4

1
/4

1/4

f1(f) /f1(I)

f2(f) /f2(I)

f3(f) /f3(I)

f0(f) /f0(I)

Figure 10. The Proposed Architecture for Multiplication by Matrices Ai-2 and
Af-2 in Forward and Inverse 8×8 Integer DCT

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

49

Since we also want to use the architecture in Figure 10 to perform the 4×4 and 2×2

transforms of the H.264/AVC standard, we proposed the architecture in Figure 11. The

architecture in Figure 11, referred to as the New_1D_transform hereafter, can realize

multiplication by matrices Ai-2 and Af-2 and the entire multiplications required for the 4×4 and

2×2 transforms. The total computational complexity of the architecture in Figure 11 is 7

adders, 3 subtractors, 6 adder/subtractors and 12 shifters.

>>1

x0

x1

x2

x3

+

x0

x0

x1

x2

x3

x2

x2

x0

x3

x1

x1

x0

x1

x2

x3

x3

>
>

2

-

-

>>1

>>1 -

y2

y3

x0

x3

x2

x3

x0

x2

x1

y0

-

m1

m3

-

m2

2m3

m2

m3

m0

m1

m2

m3

m1

m0

m2

m1

-

-

-

m3
-

-2

-

-

m2

m0

m2

x0

x1

-x2

x1 1/2

x3

x2
-

-

-

x0

x1

x3

-

1/2

>>1

+

+

s1

+
+

+

+

+

+

+

+

+

+

s1

s1

-

+

+

+

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s1

s2

s1

s2

s2

s2

s2

s2

s2

s3

>
>

2

>
>

2

>
>

2

m0

s1

y1
m3

s1

m1

s1

m2

s1

0

0

1

0

0

0

1

0

0

Cary-m1

1

Cary-m3

Cary-f0

Cary-f0

Cary-f3

Cary-f3

Figure 11. The Proposed Architecture for Realizing Multiplication by the
Matrices Ai-2 , Af-2 and all the 4×4 and 2×2 Transforms in H.264/AVC

(New_1D_transform)

International Journal of Multimedia and Ubiquitous Engineering

Vol. 8, No. 1, January, 2013

50

We used the Ext_1D_Transform along with the New_1D_transform to derive a unified

architecture for the realization of 1D transform part of the entire 2D transforms in the

H.264/AVC standard (Figure 12). As (8) and (11) indicate, besides multiplication by Af-1, Af-2,

Ai-1 and Ai-2 an extra stage of adders is required in the input and output of the matrix

multipliers for the forward and inverse 8×8 transforms, respectively. The adders in stage 1 of

Figure 12 perform the additions in (8), while the adders in stage 5 of Figure 12 carry out the

additions in (11).

It is worth noting that when the NEW_1D_Transform is used to perform 8×8 transforms it

has one more pipeline stage than the Ext_1d_Transform. Hence, in order to use these two

units in the same pipelined architecture, we added one more register stage to the

Ext_1D_Transform at the architecture in Figure 12. The added registers are used only during

8×8 transforms and are bypassed otherwise.

1
,1

/2

-1
,1

,1
/2

2,
1

-2
,-
1

-

1
,1

/2

1
,-

1
,1

/2

In0 In1 In2
In3 In4 In5 In6 In7

y0 y1 y2 y3

1/21/2 1/2 1/2

In4
In6,

In7

In4,

In5 In6 In5
In6,

In7

In4,

In5
In7

1,1/2 -

-1,1/2-1

+
,-

+,-
+,-

+,-

+
,-

1,1/4,-1/4

+
,-

1,2

+
,-

1,-1,1/4,-1/4

+
,-

-1,-2
1,1/4

y4 y5 y6 y7
F

o
rw

ar
d
 8

×
8

In
v
er

se
 8

×
8

4
×

4
 a

n
d
 2

×
2
 T

ra
n
sf

o
rm

s

In0 In7 In1 In6 In3 In4 In0 In7 In1 In2 In5 In3 In4

y4 y5 y6 y7 y3y2y1y0

- -

2

3

4

5

In2 In5 In6

s1s1s1s1 s1 s1 s1 s1

s2s2s2s2 s2 s2 s2 s2

s3s3s3s3

-1
,1

/2
1,

1/
4

1

Figure 12. 1D Transform Architecture for all Transforms in H.264/AVC

Since the eight adders in stage 1 of Figure 12 are used only in the forward 8×8 integer DCT

and the eight adders in stage 5 are applied only in inverse 8×8 integer DCT, we employed an

array of eight adders for both stages and switch them between first and last stages in forward

and inverse 8×8 transforms, respectively. Figure 13 indicates the final unified 1D transform

architecture for the entire transforms in H.264/AVC.

International Journal of xxxxxx

Vol. x, No. x, xxxxx, 20xx

51

Ext_1D_Transform

m0 m1 m2 m3

In0 In1 In In3

s1 s1 s1 s1

s2 s2 s2 s2

m0

m7

In0

In7

4
 A0

A3

A0

A1

A1

A2

A2 A3

A0

m4 m5 m6 m7

In4 In5 In6 In7

s1 s1 s1 s1

s2 s2 s2 s2

A7

A4

A5

A5

A6

A6 A7

A4

New_1D_Transform
m 3

m7

In3

In4

A7

s3

s3

2

s3

s3

A
rra

y
 o

f

a
d

d
e
rs

0

A
rr

a
y

 o
f
 4

a
d

d
e
rs

1

Figure 13. Final unified 1D transform architecture for all transforms in
H.264/AVC

Two 1D transform modules of Figure 13 are used along with the transposing architecture

are used to give architecture for implementation of the entire 2D transforms in the

H.264/AVC standard (Figure 14). The total computational complexities in each 1D part of

Figure 15 are 14 adders, 10 subtractors, 8 adder/subtractors and 18 shifters. When the pipeline

is full, the proposed architecture requires eight clock cycles to perform an 8×8 transform or

four clock cycles to perform two 4×4 or eight 2×2 transforms.

out-0

out-1

out-2

out-3

out-4

out-5

out-6

out-7

Ext_1D_Transform New_1D_Transform

E
x

t_
1

D
_

T
ran

sfo
rm

N
ew

_
1

D
_

T
ran

sfo
rm

In-0

m-0

m-7

m0

In-1 In-2 In-3 In-4 In-5 In-6 In-7
In-0

In-7
A

rra
y
 o

f 8
 a

d
d

e
rs

m1 m2 m3 m4 m5 m6 m7

+

+
A0

A0 A1 A2 A3 A4 A5 A6 A7

A4

A5

A6

A7

A0

A1

A2

A3

Mux

Reg
Load-r

Load-up

Load

Load-up

Figure 14. The Proposed Architecture for Computation of all 2D Transforms in
H.264/AVC Standard

International Journal of xxxxxx

Vol. x, No. x, xxxxx, 20xx

52

4. Synthesis Results and Comparison

We used VHDL to describe the proposed pipelined architecture and it was

functionally tested by comparing the outputs with those of H.264/AVC reference

software in the coding of various image sequences. The TSMC 0.18 μm and 0.09 μm

standard cell libraries are used to synthesize our hardware. Furthermore, we employed

the Prime Power
TM

 EDA tool to estimate the dynamic and static power consumption.

Table 1 lists synthesis and power analyses results.

Table 1. Synthesis Results for the Proposed Architecture

Technology Gate count
Critical path

(ns)
Power(mW)

0.18µm 33,000 6.46 161.672@ 125 MHz

0.09µm 41,445 1.41 23.727@ 500 MHz

Table 1 indicates that the pipelined architecture can achieve to a maximum speed of

higher than 150 MHz or700MHz using 0.18 μm or 0.09 μm libraries, respectively.

Table 2 lists the synthesis results using 0.18 μm library for our proposed

architecture and a number of other fast architectures for realizing a number of the 2D

transforms in the H.264/AVC standard. The synthesis results given in Table 2 indicate

that our unified architecture with carry ripple adders achieves higher maximum clock

rate, higher throughput and lower gate count compared to the previous fast

architectures that implemented a number of 2D transforms in the H.264/AVC

standard. It is worth noting that, even though the authors in [19] reported higher

maximum frequency, each stage of the pipeline architecture in [19] includes two

stages of adders while in our pipelined architecture requires only one stage of adders.

It means that the higher maximum speed in [19] is not due to its architecture but it is

because of employing faster implementation for adders. To give an example for

employing fast adders in the proposed architecture, we synthesized the proposed

architecture using CLAs and the simulation results given in Table 2 indicate about

30% increase in the maximum frequency compared to the carry ripple adder

implementation.

Table 2. Synthesis Results for Different Architectures
(using 0.18 micron library)

Ref function Gate count
Max. Speed

(MHz)

Power

(mW)

Pixels/

cycle

[22]

redesigned by

[25]

f & inv 4,Had 4 6274 100 N.A. 4

[25] f & inv 4,Had 4 6482 100 N.A. 8

[19] inv 8,4,2 18500 125 N.A. 8

[26] inv 4,8 AVC and inv 8 AVS ,Had 2,4 34335 100 34.266@62.5MHz
2,4,8 at 2×2,

4×4,8×8mode

ours f & inv 4,8 ,Had 4,2 31263 118 78@62.5MHz 8

ours
(using CLAs)

f & inv 4,8 ,Had 4,2 33000 154 82.748@62.5MHz 8

5. Conclusion

In this paper a unified architecture with minimum redundancy for realization of 2D

transforms in H.264/AVC is proposed. It exploits the similarities among the fast architectures

for 4×4 and 2×2 integer DCT matrices and decomposition matrices of the 8× 8 forward and

International Journal of xxxxxx

Vol. x, No. x, xxxxx, 20xx

53

inverse integer DCT. The devised unified architecture complies with the H.264/AVC

reference software. Synthesis results indicate that our architecture, which realizes the entire

transforms in the H.264/AVC standard, can process higher number of pixels per clock at

higher clock frequency compared to the other published architectures, which implement a

number of the transforms in H.264/AVC. Moreover, by comparing the gate count of our

architecture with others we conclude that it requires relatively smaller cheap area than that of

the individual and separate realizations. Hence, the unified architecture is a fast and resource

efficient implementation for the entire transforms in the H.264/AVC standard and can be used

in high speed real time H.264/AVC encoding applications.

References

[1] ITU-T Rec. H.264 / ISO/IEC 11496-10, “Advanced video coding for generic audiovisual services”, (2005)

March.

[2] L. Li, Y. Song, S. Li, T. Ikenaga and S. Goto, “A Hardware Architecture of CABAC Encoding and Decoding

with Dynamic Pipeline for H.264/AVC”, Journal of Signal Processing Systems, vol. 50, no. 1, (2008), pp. 81-

95.

[3] Y. H. Chen, T. C. Chen, S. Y. Chien, Y. W. Huang and L. G. Chen, “VLSI Architecture Design of Fractional

Motion Estimation for H.264/AVC”, Journal of Signal Processing Systems, vol. 53, no. 3, (2008), pp. 335-

347.

[4] C. L. Hsu and Y. S. Huang, “A Fast-Deblocking Boundary-strength Based Architecture Design of

Deblocking Filter in H.264/AVC Applications”, Journal of Signal Processing Systems, vol. 52, no. 3, (2008),

pp. 211-229.

[5] M. Kthiri, H. N. Loukil, A. Atitallah, P. Kadionik and D. Dallet, et al., “FPGA architecture of the LDPS

Motion Estimation for H.264/AVC Video Coding”, Journal of Signal Processing Systems, Online First™,

(2011) August 10.

[6] G. A. Ruiz and J. A. Michell, “An Efficient VLSI Architecture of Fractional Motion Estimation in H.264 for

HDTV”, Journal of Signal Processing Systems, vol. 62, no. 3, (2011), pp. 443-457.

[7] M. S. Sayed, W. Badawy and G. Jullien, “Interpolation-Free Fractional-Pixel Motion Estimation Algorithms

with Efficient Hardware Implementation”, Journal of Signal Processing Systems, Online First™, 5 October

(2010).

[8] W. Liebsch, “Parallel architecture for VLSI implementation of a 2-dimensional discrete cosine transform for

image coding”, Third International Conference on Image Processing and its Applications, (1989), pp. 609–

612.

[9] W. K. Cham, C. S. O. Choy and W. K. Lam, “A 2-D integer cosine transform chip set and its applications”,

IEEE Trans. Consum. Electron., vol. 38, no.2, (1992) May, pp. 43–47.

[10] R. A. Arce-Nazario and D. Rodríguez, “Mapping of Discrete Cosine Transforms onto Distributed Hardware

Architectures”, Journal of Signal Processing Systems, vol. 53, no. 3, (2008), pp. 367-382.

[11] J. Park and K. Roy, “A Low Complexity Reconfigurable DCT Architecture to Trade off Image Quality for

Power Consumption, Journal of Signal Processing Systems, vol. 53, no. 3, (2008), , pp. 399-410.

[12] S. C. Wang, “Recursive algorithm, architectures and FPGA implementation of the two-dimensional discrete

cosine transform”, IET Image Process., vol. 2, no. 6, (2008), pp. 286–294.

[13] Z. Wu, J. Sha, Z. Wang, L. Li and M. Gao, “An Improved Scaled DCT Architecture”, IEEE Transactions on

Consumer Electronics, vol. 55, no.2, (2009) May, pp. 685-689.

[14] H. Malvar, A. Hallapuro, M. Karczewicz and L. Kerofsky “Low-complexity transform and quantization in

H.264/AVC”, IEEE Trans. Circuit syst. Video Techno, vol. 3, no. 7, (2003) July, pp. 598-603.

[15] G. Sullivan P. Topiwala and A. Luthra, “The H.264/AVC Advanced Video Coding Standard: Overview and

Introduction to the Fidelity Range Extensions”, Proc. SPIE Conference on Applications of Digital Image

Processing XXVII, Special Session on Advances in the New Emerging Standard: H.264/AVC I, Denver, CO,

(2004) August, pp. 454–474.

[16] J. S. Park and T. Ogunfunmi “A New Hardware Implementation of The H.264 8×8 Transform and

Quantization”, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing,

(2009), pp. 585-588.

[17] R. Korah and J. R. P. Perinbam, “FPGA Implementation of Integer Transform and Quantizer for H.264

Encoder”, Journal of Signal Processing Systems, vol. 53, no. 3, (2008), pp. 261-269.

http://www.springerlink.com/content/?Author=Lingfeng+Li
http://www.springerlink.com/content/?Author=Yang+Song
http://www.springerlink.com/content/?Author=Shen+Li
http://www.springerlink.com/content/?Author=Takeshi+Ikenaga
http://www.springerlink.com/content/?Author=Satoshi+Goto
http://www.springerlink.com/content/?Author=Yi-Hau+Chen
http://www.springerlink.com/content/?Author=Tung-Chien+Chen
http://www.springerlink.com/content/?Author=Shao-Yi+Chien
http://www.springerlink.com/content/?Author=Yu-Wen+Huang
http://www.springerlink.com/content/?Author=Liang-Gee+Chen
http://www.springerlink.com/content/u341046327128tr5/
http://www.springerlink.com/content/u341046327128tr5/
http://www.springerlink.com/content/?Author=Chun-Lung+Hsu
http://www.springerlink.com/content/?Author=Yu-Sheng+Huang
http://www.springerlink.com/content/9166h11577504544/
http://www.springerlink.com/content/9166h11577504544/
http://www.springerlink.com/content/?Author=Moez+Kthiri
http://www.springerlink.com/content/?Author=Hassen+Loukil
http://www.springerlink.com/content/?Author=Ahmed+Ben+Atitallah
http://www.springerlink.com/content/?Author=Patrice+Kadionik
http://www.springerlink.com/content/?Author=Dominique+Dallet
http://www.springerlink.com/content/c388151wv2156453/
http://www.springerlink.com/content/c388151wv2156453/
http://www.springerlink.com/content/?Author=G.+A.+Ruiz
http://www.springerlink.com/content/?Author=J.+A.+Michell
http://www.springerlink.com/content/?Author=Mohammed+S.+Sayed
http://www.springerlink.com/content/?Author=Wael+Badawy
http://www.springerlink.com/content/?Author=Graham+Jullien
http://www.springerlink.com/content/58201j863j153p81/
http://www.springerlink.com/content/58201j863j153p81/
http://www.springerlink.com/content/?Author=Rafael+A.+Arce-Nazario
http://www.springerlink.com/content/?Author=Domingo+Rodr%c3%adguez
http://www.springerlink.com/content/?Author=Jongsun+Park
http://www.springerlink.com/content/?Author=Kaushik+Roy
http://www.springerlink.com/content/?Author=Reeba+Korah
http://www.springerlink.com/content/?Author=J.+Raja+Paul+Perinbam
http://www.springerlink.com/content/q73705v033308282/
http://www.springerlink.com/content/q73705v033308282/

International Journal of xxxxxx

Vol. x, No. x, xxxxx, 20xx

54

[18] I. Amer, W. Badawy and G. Jullien, “A High Performance Hardware Implementation of the H.264 Simplified

8x8 Transformation and Quantization”, Proceedings of IEEE International Conference on Acoustics, Speech,

and Signal Processing, vol.2, (2005) March, pp. 1137-1140.

[19] Y. C. Chao, H. H. Tsai, Y. H. Lin, J. F. Yang and B. D. Liu, “A Novel Design for Computation of all

Transforms in H.264/AVC Decoders”, Proc. of IEEE International Conference on Multimedia and Expo,

(2007) July, pp. 1914-1917.

[20] F. Zargari and S. Ghorbani, “A Hardware Sharing Architecture for Implementing the entire Transforms in

H.264/AVC Video Coding Standard”, 15th IEEE International Symposium on Consumer Electronics

(ISCE2011), (2011) June, pp. 14-17.

[21] I. E. G. Richardson, “H.264 and MPEG-4 Video Compression: Video Coding for Next-generation”, Wiley,

(2003).

[22] T. C. Wang, Y. W. Huang, H. C. fang and L. G. Chen, “Parallel 4×4 2_D Transform and Inverse Transform

Architecture for Mpeg-4 AVC/H.264”, Proc. of IEEE int. Symp. on Circuits and System (ISCAS’03), (2003),

pp. 800-803.

[23] P. -H. Chen, H. -M. Chen, M. -C. Shie, J. -C. Chen and J. -M. Chang, “An Unified Architecture of All

Transforms for H.264/AVC Codec”, in Proc. IEEE 3CA, (2010) May, pp. 476-479.

[24] A. Madisetti and A. N. Willson, “A 100 MHz 2-D 8×8 DCT/IDCT processor for HDTV applications”, IEEE

Trans. Circuits Syst. Video Technol., vol. 5, no. 2, (1995) April, pp. 158–165.

[25] K. H. Chen, J. L. Guo and J. S. Wang “A High-Performance Direct 2-Dtransform Coding IP Design for

MPEG-4 AVC/H.264”, IEEE Transaction on circuits and system for video technology, vol. 16, no. 4, (2006)

April, pp. 472-483.

[26] G. A. Su and C. P. Fan “Low-Cost Hardware-Sharing Architecture of Fast 1-D Inverse Transforms for

H.264/AVC and AVS Applications”, IEEE Transaction on Circuits and system-II, vol. 55, no. 12, (2008)

December, pp. 1249-1253.

Authors

Sedighe Ghorbani

She received her B.Sc. degree in computer engineering from Iran

Shahed University, Tehran, Iran. She is currently M.Sc. student in the

computer engineering department of Iran Islamic Azad University,

Science and Research Campus, Tehran, Iran. Her research interests

include hardware implementation of image and video coding standards.

Farzad Zargari

He received his B.Sc. degree in Electrical Engineering from Sharif

University of Technology and his M.Sc. and Ph.D. degrees in Electrical

Engineering from University of Tehran, all in Tehran, Iran.

He is currently a research associate at the information technology

department of research institute for ICT, formerly known as Iran Telecom

Research Center (ITRC), Ministry of Telecommunications and

Information Technology of Iran. He is also a teaching academic staff in

the computer engineering department of Science and Research branch of

Islamic Azad University. His research interests include multimedia

systems, image and video signal processing algorithms, and hardware

implementation of image and video coding standards.

