
International Journal of Multimedia and Ubiquitous Engineering  

Vol. 8, No. 1, January, 2013 

 

 

41 

 

A Unified Architecture for Implementation of the Entire Transforms 

in the H.264/AVC Encoder 
 

 

Sedighe Ghorbani
1
 and Farzad Zargari

2*
 

1
 Department of Computer Engineering, Science and Research Branch,  

Islamic Azad University, Tehran, Iran  
2
IT Department of Research Institute for ICT (formerly Iran Telecom Research Center 

(ITRC)), Tehran, Iran  

s.ghorbani@srbiau.ac.ir, zargari@itrc.ac.ir   

Abstract 

Integer Discrete Cosine Transform (DCT) is among the techniques used to improve the 

performance of the H.264/AVC Standard. All the profiles in the H.264/AVC standard support 

4×4 integer DCT and the high profiles of this standard support 8×8 integer DCT as well as 

the 4×4 integer DCT. Various hardware realizations have been proposed for forward and 

inverse integer DCT in the literature because they are among the computational intensive 

units in the H.264/AVC standard. In this paper we propose a unified pipelined architecture to 

realize of the entire forward and inverse DCTs as well as the Hadamard transforms in the 

H.264/AVC encoder. The synthesis results indicate that our architecture achieves higher 

clock rate and relatively lower gate count compared to the other published architectures that 

realize only a number of the transforms in the H.264/AVC encoder.  
 

Keywords: H.264 encoder, Discreet Cosine Transform (DCT), Integer DCT, Hadmard 
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1. Introduction 

The H.264/AVC standard [1] achieves remarkable higher compression performance than 

the previous MPEG and H.26X standards. The higher performance in H.264/AVC is due to 

various modifications in different coding stages and most of these modifications impose high 

computational load to the H.264/AVC codec. As a consequence, hardware realization of the 

computationally intensive parts in the H.264/AVC standard attracted great deal of attention 

and there are several proposals for the hardware realization of these parts in the literature [2-

7]. One of the computationally intensive units in the MPEG and H.26X video coding families 

is the Discrete Cosine Transform (DCT). Hence, the hardware realization of this unit is even 

attractive for the pre-H.264/AVC standards and there are proposals for hardware architectures 

to realize this unit from a long time ago [8, 9] and it is still continuing [10-13]. 

The H.264/AVC standard employs integer DCT instead of real DCT, which is used in the 

previous video coding standards. This eliminates any mismatch issue between the encoder 

and decoder in the inverse transformation [14]. The initial version of H.264/AVC standard 

supported only 4×4 integer DCT. In order to achieve higher compression performance the 

amendment called Fidelity Range Extensions (FRExt) was added to the H.264/AVC standard, 

which adaptively employs both 4×4 and 8×8 transforms in the high profiles [15]. In this way 

roughly 10% bit-rate reduction can be achieved for various coding parameters [16]. This led 
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to additional complexity of the initial version of the H.264/AVC encoder, which had 

substantially high computational load. The number of operations for computation of an 8×8 

or 4×4 Integer DCT is not very high but since in high profiles theses transforms should be 

applied to the entire 8×8 or 4×4 blocks in a frame, it will result in a huge computational load 

and makes the integer discrete cosine transform among main computationally intensive stages 

in the H.264 encoder [10, 11].  Consequently, the hardware implementation of the integer 

DCT transform attracted more attention and a number of solutions have been published for 

hardware implementation of Integer DCT in the H.264/AVC standard [16-19].  

In this paper, which is an extended and more detailed version of our previous work [20], 

we introduce a unified pipelined architecture to realize the entire forward and inverse integer 

DCTs and Hadamard transforms in the H.264/AVC standard. Since the encoding loop of the 

H.264/AVC standard requires carrying out all the forward and inverse transforms, the 

proposed unified architecture is a very powerful accelerator for the H.264/AVC encoder. The 

proposed architecture is completely in accordance with the reference software of the 

H.264/AVC standard and the synthesis results indicate that our architecture achieves higher 

clock rate and has relatively lower hardware cost compared to the previous architectures, 

which have implemented only a number of the transforms in the H.264/AVC standard.  

The rest of the paper is organized as follows. In Section 2 we provide a brief overview of 

the transforms in the H.264/AVC standard and discuss their existing hardware 

implementations. The proposed architecture for implementation of the entire transforms in the 

H.264/AVC standard is explained in Section 3. The synthesis results for the given 

architecture and comparison with the other exiting implementations are presented in Section 4 

followed by concluding remarks given in Section 5. 
 

2. Background 

In the H.264/AVC standard the forward and the inverse integer DCT are defined 

respectively in (1) and (2) as:  

Y=AXA
T 

        =>        Y= CfXCf
T
  Ef       (1)  

X=A
T
YA     =>          X=Ci

T
(Y Ei)Ci   (2)    

The CfXCf
T
 and Ci

T
WCi parts in the above equations are called ‘core’ transforms [21]. 

‘Core’ transform is a two dimensional transform, which can be decomposed into two one 

dimensional transforms. The first one dimensional transform is applied to the rows of the 

input pixels and the second one dimensional transform is applied to the columns of the one 

dimensional transform coefficients of the first stage (Figure 1).  

 

Transpose

Unit

1D Transform

Unit 

1D Transform

Unit 

 

Figure 1. Decomposing 2D Integer DCT into two 1D Integer DCT 
 

The Cf and Ci  matrices given in (3) indicate the ‘core’ transform matrix of the forward and 

inverse 4×4 integer DCT in the H.264/AVC standard, respectively. 
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(3) 

 

Figure 2 shows a fast hardware realization for 4×4 forward integer transform using adders 

and shifters and Figure 3 indicates a fast hardware realization for 4×4 inverse integer 

transform, both given in [14]. 
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Figure 2.  Fast Realization for Forward 
4×4 Integer DCT 

Figure 3.  Fast Realization for Inverse 
4×4 Integer DCT 

 

The Hadamard transform is another 2D transform which is used in the H.264/AVC 

standard and its ‘core’ transform matrix is: 


























1111

1111

1111

1111

4×4H

 

(4) 

Authors in [22] employed the butterfly architecture for fast hardware implementation of the 

Hadamard transform (Figure 4). 
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Figure 4. Fast Realization for 4×4 Hadamard Transform 
 

Since H
T

4×4= H4×4, the hardware implementation given in Figure 4 can be used for both 

forward and inverse Hadamard transforms. The H.264/AVC standard uses 2×2 Hadamard 

transform as well. The ‘core’ transform matrix for 2×2 Hadamard transform is as: 
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(5) 

Since the hardware implementation of 4×4 Hadamard transform can also be employed for 

2×2 Hadamard transform, a dedicated hardware implementation for 2×2 Hadamard transform 
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is not required. The authors in [22] unified all the aforementioned fast schemes and 

introduced a unified circuit for realization of the entire 4×4 and 2×2 transforms in 

H.264/AVC (Figure 5). 
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Figure 5.  Fast Multipurpose Architecture for all 4×4 Transforms in H.264/AVC 

The FRExt of H.264/AVC standard uses both 4×4 and 8×8 integer DCT transforms 

adaptively for high resolution video applications.  The ‘core’ transform matrix for 8×8 integer 

DCT is: 

C= 
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(6) 

 

Authors in [17] have given an architecture for implementing the forward 8×8 integer DCT 

based on the 8×8 DCT algorithm at the H.264/AVC reference software. The architecture in 

[17] uses five stages of adders, which either reduce the achievable highest frequency in non-

pipelined realization or increase the number of pipeline stages in the pipelined realization. In 

[18] a hardware implementation has been introduced for the forward 8×8 integer DCT. It 

requires all the 8×8 elements of the block simultaneously and as a negative result, it also 

needs high amount of hardware resources. A flexible architecture is given in [19] for realizing 

all inverse transforms in H.264/AVC standard, but the proposed architecture does not support 

forward transforms.  

The architecture in [23] unifies 2D 4×4 and 2×2 with 8×8 1D transforms based on matrix 

manipulations but the resulted unified architecture is not compliant with the H.264/AVC 

reference because as we will show in the next section it is very important to consider the way 

that reference software has been used to implement matrix multiplications. Moreover the 

proposed method in [23] suffers from high number of processing elements including 44 

adders or subtractors.  In this paper we introduce a unified architecture for the implementation 

of the entire transforms in H.264/AVC standard which is completely compliant with the 

H.264/AVC reference software. The proposed architecture requires only 32 adders or 



International Journal of Multimedia and Ubiquitous Engineering  

Vol. 8, No. 1, January, 2013 

 

 

45 

 

subtractors and synthesis results indicate that it needs lower area compared to the other 

reported synthesized architecture that implement only a number of the transforms in the 

H.264/AVC standard. Meanwhile, it achieves higher maximum frequency and throughput 

compared to the existing architectures. 

In the following section we introduce a flexible architecture for implementation of 

forward and inverse 8×8 integer DCT of the H.264/AVC standard. The proposed 

flexible architecture is then expanded to realize the 4×4 and 2×2 transforms in the 

H.264/AVC standard too. 

 

3. Proposed Architecture 

Using the proposed method in [24]  multiplication by the 8×8 integer DCT matrix given in 

(6), can be decomposed into multiplication by two 4×4 matrices as given in (7). 
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(7) 

 

Af-1 and Af-2 can be used to produce the 1D 8×8 integer DCT coefficients as given in (8): 
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Multiplication by Af-1 can be further decomposed to multiplication by two 2× 2 matrices as: 
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Considering the decomposition for Af-1 given in (9), we propose to employ the butterfly 

architecture of Figure 6 to implement the multiplication by Af-1. In order to compute the 

second matrix multiplication of the 1D forward 8×8 Integer DCT transform, we introduce the 

architecture of Figure 7 to realize multiplication by Af-2.  
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Figure 6.  Fast Realization for 
Multiplication by Af-1 

 

 

Figure 7.  The Proposed Architecture 
for Multiplication by Af-2 

The 8×8 inverse integer DCT matrix in the H.264/AVC standard can be decomposed to 

multiplication by two 4×4 matrices as given in (10).  
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(10) 

 

Ai-1 and Ai-2 can be used to perform inverse 8×8 integer DCT transform as: 
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The matrix Ai-1 is identical with 4×4 inverse integer DCT matrix Ci. Hence, the scheme in 

Figure 3 can be used to implement Ai-1. We have proposed in Figure 5 and Figure 6 to merge 

the schemes to give the combined architecture of Figure 8 to implement the entire 4×4 

transforms in the H.264/AVC standard and also the transforms by matrices Af-1 and Ai-1. 
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Figure 8. Fast Realization for Multiplication by Af-1 ,Ai-1  and all 4×4 Transform 
Matrices in H.264/AVC 

 

Considering (5) we infer that the output of the adders in the first stage of Figure 8 can be 

used to implement 2×2 Hadamard transform. Hence, we propose the architecture in Figure 9, 

referred to as Ext_1D_Transform hereafter, to implement multiplication by matrices Af-1 and 

Ai-1 and the entire 4×4 and 2× 2 transforms in the H.264/AVC standard. The total 

computational complexity in Figure 8 is 3 adders, 3 subtractors, 2 adder/subtractors and 6 

shifters. 
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Figure 9.  Fast Realization for Multiplication by Af-1 ,Ai-1  and all 4×4 and 2×2 
Transforms in H.264/AVC (Ext_1D_Transform) 

 

In order to perform 8×8 inverse integer DCT transform, realization of multiplication by Ai-2 

is necessary. Even though Ai-2 is identical with Af-2, the way its multiplication is implemented 

in the H.264/AVC reference software differs from that of Af-2. As an example to compute the 

first element of output vector resulted from multiplication by Af-2, the reference software first 

computes two intermediate variables m0(f) and m3(f) as: 

m0(f)= x1+ x2 + ((x0>>1)+ x0)                                                                         (12-a) 

m3(f)= x1– x2 + ((x3>>1)+ x3)                                                                          (12-b) 

and then calculates the first element of the vector resulted from multiplication by Af-2: 
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                                                            y0(f)=  m0(f) + (m3(f)>>2)  (13) 

On the other hand to perform the inverse transform, the reference software generates m0(i) and 

m3(i) intermediate variables: 

                       m0(i)=  x1 + x2 + x0+(x0>>1) (14-a) 

                       m3(i)= -x1 + x2 –x3–( x3>>1) (14-b) 

and the first element of multiplication by Ai-2 is computed as: 

                     y0(i) =  m0(i) - (m3(i)>>2) (15) 

It is worth noting that arithmetic right shift results in different rounding effects on positive 

and negative numbers e.g. positive numbers approach zero by arithmetic right shift, while the 

two’s complement representation of negative numbers approach -1. Due to this fact the results 

for y0(f) and y0(i) may be different, though they are realizing the same matrix multiplication. As 

an example for the input matrix (x0, x1, x2, x3)
T
 = (0, 1, -2, 0)

T
 the first element of the output 

matrix resulted from multiplication by Af-2 and Ai-2 will be: y0(f) = -1 ≠ y0(i) = 0. In fact 

performing matrix multiplications by identical matrices does not guarantee compliance with 

the H.264/AVC standard. It means that the methods such as [23] which only consider matrix 

multiplication by using arbitrary mathematical manipulations will not guarantee compliance 

with the H.264/AVC standard. Hence, we should use different architectures to carry out 

multiplication by matrices Ai-2 and Af-2 in order to keep consistency with the H.264/AVC 

reference software.  We merged the two different architectures for implementation of 

multiplication by matrices Ai-2 and Af-2 in the forward and inverse 8×8 integer DCT to propose 

the unified architecture in Figure10.  The architecture performs multiplication by matrices Af-2 

or Ai-2 when the selection signal Ś  ́is 0 or 1, respectively. 
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Figure 10.  The Proposed Architecture for Multiplication by Matrices  Ai-2 and  
Af-2 in Forward and Inverse 8×8 Integer DCT 
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Since we also want to use the architecture in Figure 10 to perform the 4×4 and 2×2 

transforms of the H.264/AVC standard, we proposed the architecture in Figure 11. The 

architecture in Figure 11, referred to as the New_1D_transform hereafter, can realize 

multiplication by matrices Ai-2 and Af-2 and the entire multiplications required for the 4×4 and 

2×2 transforms. The total computational complexity of the architecture in Figure 11 is 7 

adders, 3 subtractors, 6 adder/subtractors and 12 shifters.  
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Figure 11. The Proposed Architecture for Realizing Multiplication by the 
Matrices Ai-2 , Af-2 and all the 4×4 and 2×2 Transforms in H.264/AVC 

(New_1D_transform) 
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We used the Ext_1D_Transform along with the New_1D_transform to derive a unified 

architecture for the realization of 1D transform part of the entire 2D transforms in the 

H.264/AVC standard (Figure 12). As (8) and (11) indicate, besides multiplication by Af-1, Af-2, 

Ai-1 and Ai-2 an extra stage of adders is required in the input and output of the matrix 

multipliers for the forward and inverse 8×8 transforms, respectively. The adders in stage 1 of 

Figure 12 perform the additions in (8), while the adders in stage 5 of Figure 12 carry out the 

additions in (11).   

It is worth noting that when the NEW_1D_Transform is used to perform 8×8 transforms it 

has one more pipeline stage than the Ext_1d_Transform. Hence, in order to use these two 

units in the same pipelined architecture, we added one more register stage to the 

Ext_1D_Transform at the architecture in Figure 12. The added registers are used only during 

8×8 transforms and are bypassed otherwise.  
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Figure 12. 1D Transform Architecture for all Transforms in H.264/AVC 
 

Since the eight adders in stage 1 of Figure 12 are used only in the forward 8×8 integer DCT 

and the eight adders in stage 5 are applied only in inverse 8×8 integer DCT, we employed an 

array of eight adders for both stages and switch them between first and last stages in forward 

and inverse 8×8 transforms, respectively. Figure 13 indicates the final unified 1D transform 

architecture for the entire transforms in H.264/AVC.  
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Figure 13. Final unified 1D transform architecture for all transforms in 
H.264/AVC 

 
Two 1D transform modules of Figure 13 are used along with the transposing architecture 

are used to give architecture for implementation of the entire 2D transforms in the 

H.264/AVC standard (Figure 14). The total computational complexities in each 1D part of 

Figure 15 are 14 adders, 10 subtractors, 8 adder/subtractors and 18 shifters. When the pipeline 

is full, the proposed architecture requires eight clock cycles to perform an 8×8 transform or 

four clock cycles to perform two 4×4 or eight 2×2 transforms.  
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Figure 14. The Proposed Architecture for Computation of all 2D Transforms in 
H.264/AVC Standard 
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4. Synthesis Results and Comparison 

We used VHDL to describe the proposed pipelined architecture and it was 

functionally tested by comparing the outputs with those of H.264/AVC reference 

software in the coding of various image sequences. The TSMC 0.18 μm and 0.09 μm 

standard cell libraries are used to synthesize our hardware. Furthermore, we employed 

the Prime Power
TM

 EDA tool to estimate the dynamic and static power consumption. 

Table 1 lists synthesis and power analyses results. 
 

Table 1. Synthesis Results for the Proposed Architecture 

Technology Gate count 
Critical path 

(ns) 
Power(mW) 

0.18µm 33,000 6.46 161.672@ 125 MHz 

0.09µm 41,445 1.41 23.727@ 500  MHz 

 

Table 1 indicates that the pipelined architecture can achieve to a maximum speed of 

higher than 150 MHz or700MHz using 0.18 μm or 0.09 μm libraries, respectively.  

Table 2 lists the synthesis results using 0.18 μm library for our proposed 

architecture and a number of other fast architectures for realizing a number of the 2D 

transforms in the H.264/AVC standard. The synthesis results given in Table 2 indicate 

that our unified architecture with carry ripple adders achieves higher maximum clock 

rate, higher throughput and lower gate count compared to the previous fast 

architectures that implemented a number of 2D transforms in the H.264/AVC 

standard. It is worth noting that, even though the authors in [19] reported higher 

maximum frequency, each stage of the pipeline architecture in [19] includes two 

stages of adders while in our pipelined architecture requires only one stage of adders. 

It means that the higher maximum speed in [19] is not due to its architecture but it is 

because of employing faster implementation for adders. To give an example for 

employing fast adders in the proposed architecture, we synthesized the proposed 

architecture using CLAs and the simulation results given in Table 2 indicate about 

30% increase in the maximum frequency compared to the carry ripple adder 

implementation.  
 

Table 2.  Synthesis Results for Different Architectures  
(using 0.18 micron library) 

Ref function Gate count 
Max. Speed 

(MHz) 

Power 

(mW) 

Pixels/ 

cycle 

[22] 

redesigned by 

[25] 

f & inv 4,Had 4 6274 100 N.A. 4 

[25] f & inv 4,Had 4 6482 100 N.A. 8 

[19] inv 8,4,2 18500 125 N.A. 8 

[26] inv 4,8 AVC and inv 8 AVS ,Had 2,4 34335 100 34.266@62.5MHz 
2,4,8 at 2×2, 

4×4,8×8mode 

ours f & inv 4,8 ,Had 4,2 31263 118 78@62.5MHz 8 

ours 
(using CLAs) 

f & inv 4,8 ,Had 4,2 33000 154 82.748@62.5MHz 8 

 

5. Conclusion 

In this paper a unified architecture with minimum redundancy for realization of 2D 

transforms in H.264/AVC is proposed. It exploits the similarities among the fast architectures 

for 4×4 and 2×2 integer DCT matrices and decomposition matrices of the 8× 8 forward and 
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inverse integer DCT. The devised unified architecture complies with the H.264/AVC 

reference software. Synthesis results indicate that our architecture, which realizes the entire 

transforms in the H.264/AVC standard, can process higher number of pixels per clock at 

higher clock frequency compared to the other published architectures, which implement a 

number of the transforms in H.264/AVC. Moreover, by comparing the gate count of our 

architecture with others we conclude that it requires relatively smaller cheap area than that of 

the individual and separate realizations. Hence, the unified architecture is a fast and resource 

efficient implementation for the entire transforms in the H.264/AVC standard and can be used 

in high speed real time H.264/AVC encoding applications. 
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