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Abstract

In many fields of computer science and other engineering areas, we often need to balance
multi-articulated structures. In this paper, we formalize this kind of balancing problem from
a more physical and theoretical point of view. Through describing details of all the solution
steps, we finally represent a set of algorithms to automatically balance multi-articulated ob-
jects with tree topologies. Given the geometric configurations and masses at the leaf nodes of
target multi-articulated objects, our algorithms achieve their balanced state through adjust-
ing the mass of each node. To minimize the mass changes from the initial configuration, we
use constraints of minimizing the norms of the mass differences between the initial masses
and the final balanced masses. Actually, we use three different metrics, l1, l2 and l∞ norms.
These norms show slightly different behaviors in the minimization process, and users can
select one of them according to their preferences and application purposes. We show all the
details of algorithms, their time complexity analyses, and experimental results.
keywords: balancing, tree-topology, minimization

1 Introduction

In various fields including human computer interface, computer animation, mechanical
engineering, and so on, we frequently use multi-articulated objects, whose components are
linked to each other. Figure 1 shows virtual mobiles, as examples of such multi-articulated
objects. Physically based techniques are then applied to generate their realistic motions.
In this case, we need a set of physical parameters for each component, including mass,
center of mass, moment of inertia, etc. There have been a few methods[4, 7, 8, 9, 10, 11]
to automatically calculate these physical parameters from the given configurations. GPU-
based implementations are also available[5].

Physically based techniques usually require the object to be initially in its balanced
state. In fact, most real-world multi-articulated objects are in their balanced states. In
our previous work[6], we have designed a virtual mobile for our physically based mobile
simulation system, through configuring the shape of each component and assigning the
mass and other physical properties for each component. However, the virtual mobiles
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(a) Steel Fish

(b) Southern Cross

Figure 1. Virtual mobiles in their balanced states.

are difficult to maintain their balanced states, since the manually selected masses of the
components usually result in rotational moments due to gravity. The fundamental problem
is that our multi-articulated object, a mobile does not satisfy the balanced mass conditions
at the links.

It had been impossible to find any previous results on systematically balancing multi-
articulated objects. Thus, we used an iterative method to find the initial balanced states.
To the best of our knowledge, there is still no research results on physically balancing multi-
articulated objects. In this paper, we focus on the systematic way of physically balancing
the multi-articulated objects, and present efficient and robust algorithms for finding the
initial masses of multi-articulated objects with binary tree topology.

Since our algorithms focus on the balancing of tree-topology objects, other application
areas may include the general-purpose load-balancing problems and network-topology op-
timization problems[2]. Although there have been some tree-balancing methods[3, 12, 2],
they usually concentrated on the acceleration of inserting, deleting, and/or finding a node.
Additionally, they usually achieved their goal through modifying the tree topology. Thus,
previous tree-balancing methods are hard to apply for our physically balancing problem.
In contrast, we focus on the change of leaf node masses, to finally get a balanced tree.

In section 2, we will describe the given problem more theoretically as the weighted-leaf
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(a) a weighted-leaf binary tree
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Figure 2. A weighted-leaf binary tree and its physical interpretation.

binary tree balancing problem. Three kinds of minimization methods are also presented in
this section. In the next section, we show the details of our balancing algorithms and their
time complexity analyses. Experimental results on the practical virtual objects follow in
section 4. Finally, we present our conclusions and future work.

2 Problem Definition

In this paper, we will present a systematic way of balancing a multi-articulated object
with binary tree topology, to finally let the object be in its balanced state. As a start point,
we will define a weighted-leaf binary tree, which is the theoretical model for our balancing
problem.

A weighted-leaf binary tree is defined as a binary tree, in which each leaf node Li has its
corresponding positive mass mi and each internal node has zero mass. Since it is a binary
tree, an internal node Ij has its left sub-tree T left

j and right sub-tree T right
j . The total

mass of T left
j and T right

j can be expressed as M left
j =

∑
i∈T left

j
mi and M right

j =
∑

i∈T right
j

mi,
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respectively. Additionally, Ij has its left and right weighting factor, eleftj and erightj , as shown
in Figure 2(a).

We can physically interpret the weighted-leaf binary tree as a set of levers and masses.
In this case, each internal node Ij corresponds to a lever with the arm length of eleftj and

erightj for each direction while each leaf node Li to a mass of mi, as shown in Figure 2(b).

The physical laws show that the levers are in its balanced state if and only if eleftj ·M left
j =

erightj ·M right
j for each internal node Ij .

However, it is hard to achieve the balanced state with arbitrary values of mi’s. In this
paper, we present a systematic way of calculating balanced masses mi’s from the given
values of mi’s. Figure 3 shows a conceptual diagram of our idea. In this way, we can
achieve a balanced weighted-leaf binary tree without changing the tree topology.

The weighted-leaf binary tree balancing problem aims to find the balanced mass for each

leaf node, with which eleftj ·M left
j = erightj ·M right

j for each internal node, where M
left
j and

M
right
j are the total mass of left and right sub-trees respectively. Since we have (n − 1)

internal nodes for n leaf nodes, we have (n − 1) equations for n unknowns. Thus, we
need an additional constraint to solve this problem. In typical applications, the initial
masses mi’s are given and we usually need to change the mass minimally to reserve the
original configuration. Hence, we adopt the constraint of minimizing the difference of the
initial masses mi’s and the balanced masses mi’s. To minimize the mass differences, we
can use three different metrics: the l1, l2 and l∞ norms of the mass differences. Actually,
these norms have slightly different behavior in the minimization process, as shown in the
followings.

Given the values of mi’s, the l1-norm of the mass differences can be expressed as

||mi −mi||1 =
n∑

i=1

|mi −mi|.

Thus, the minimization of this l1-norm means minimizing the sum of all mass differences.
Similarly, the l∞-norm minimization means minimizing the maximum mass difference, since
we can derive that

||mi −mi||∞ =
n

max
i=1
|mi −mi|.

In the case of the l2-norm,

||mi −mi||2 =

√√√√
n∑

i=1

(mi −mi)2,

where its minimization implies to avoid too much difference at a specific leaf node.
The l1-norm minimization can show the smallest amount of total mass changes, while

it also has the potential of too much change on a specific leaf node. We can minimize the
maximum mass change through using the l∞-norm. The l2-norm minimization can give
an intermediate solution. Hence, the user can select one of them according to his own
preferences or the application purposes. The details of our solutions for the minimization
of these norms are presented in the next section.
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(b) balanced configuration

Figure 3. Balancing a binary tree through changing the leaf node masses.

3 Balancing Algorithms

In this section, we will start from showing that the mass differences can be expressed as
functions of the balanced mass of a specific leaf node, m1. Using this property, we present
the weighted-leaf binary tree balancing algorithms for each of l1, l2 and l∞ norms of the
mass differences in the following sections.

3.1 Variable Substitution

For a weighted-leaf binary tree with n leaf nodes, we have (n − 1) equations for each
internal node. These equations are actually linear combinations of n unknowns. We will
first express the (n− 1) unknowns, m2, m3, · · ·, mn in terms of m1, to finally represent the
differences of mi’s and mi’s in terms of a single variable m1.

Suppose that a weighted-leaf binary tree is in its balanced state, with the leaf node
masses mi’s. At a deepest internal node Ik, its left and right sub-trees are leaf nodes.
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Therefore, M
left
k and M

right
k are equal to specific node masses mp and mq, respectively.

Since the tree is balanced, it is derived that eleftk ·M left
k = erightk ·M right

k , or equivalently,

eleftk · mp = erightk · mq. Assuming that p is the smaller index, mq can be calculated as

(eleftk /erightk )mp. The total mass of the sub-tree whose root node is Ik can be expressed as

mp + mq = (1 + eleftk /erightk )mp, with respect to the smaller index mass mp.
Using this approach in a bottom-up manner, we can build up the total mass of all the

sub-trees in terms of the smallest index mass in the corresponding sub-trees. At the root
node, the total mass of the whole tree is expressed in terms of m1. Now, we can propagate
m1 from the root node to the leaf nodes. When the total mass of an internal node Ik is
expressed in terms of m1, it implies that

M
left
k + M

right
k = (1 +

eleftk

erightk

)M
left
k

= (
erightk

eleftk

+ 1)M
right
k

and both of M
left
k and M

right
k can be expressed in terms of m1. Applying this propagation

in a top-down manner, we can finally express all the masses of leaf nodes in terms of m1

as mi = cim1, 1 ≤ i ≤ n. Since we have assumed positive masses, ci is the positive scaling
factor for mi. The value of c1 is trivially 1. Since the whole process only traverses the tree
twice, it is easy to find that the total time complexity for these variable substitutions is
O(n).

3.2 Minimization of l1-norm

Using the variable substitution presented in the previous subsection, the l1-norm of the
mass differences can be calculated as

||mi −mi||1 = ||cim1 −mi||1 =

n∑

i=1

|cim1 −mi|,

where mi’s are the initially given masses of the leaf nodes. Hence, the l1-norm minimization
becomes finding the minimum of the sum of folded line equations |cim1 − mi|’s. As an
example, the initial configuration of a weighted-leaf binary tree in Figure 4(a) gives the
folded line graphs in Figure 4(c). The minimum of the folded line graph finally results in
the balanced configuration of Figure 4(b).

The function of
∑n

i=1 |cim1 −mi| has discontinuity points at cim1 −mi = 0, 1 ≤ i ≤ n.
Since these discontinuity points are only the candidates for the minimum of the l1-norm,
we can easily find the minimum through evaluating the l1-norm at each candidate value
of m1. With the value of m1 for the minimum l1-norm, we can easily derive the values of
balanced masses mi’s from the equality conditions mi = cim1. This process takes O(n)
time and thus it is optimal.

From more theoretical point of view, we additionally need to analyze the number of
operations. In this case, the O(n) candidate points are tested and each point requires O(n)
time additions to calculate

∑n
i=1 |cim1−mi|. Thus, the total number of operations is O(n2).
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Figure 4. An example of the l1-norm minimization

Through sorting the candidate points and applying partial updates, the time complexity
can be reduced to O(n log n). Letting the sorted candidate points be si, 1 ≤ i ≤ n, we have
(n+ 1) intervals separated by these n candidate points. For the left-most interval m1 ≤ s1,
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input: initial masses mi’s and geometric configurations.
output: balanced masses mi’s.

apply variable substitution to get ci = mi/m1, 1 ≤ i ≤ n.
let ti be the candidate m1 values: ti = mi/ci.
{sorting in O(n logn) time}
sort ti to get the sorted candidates si’s.
{get the si with the minimum value in O(n) time}
calculate min =

∑n
i=1 |cim1 −mi| at s1, using Eq. 1.

for i = 2 to n do
calculate val =

∑n
i=1 |cim1 −mi| at si, using Eq. 2.

if val < min then
update min = val.

end if
end for
{calculate the mi’s in O(n) time}
let m1 be the si value corresponding to the min value.
for i = 2 to n do

mi = cim1.
end for

Figure 5. The l1-norm minimization algorithm.

it is simply derived that

n∑

i=1

|cim1 −mi| =
n∑

i=1

(−cim1 + mi)

= −

(
n∑

i=1

ci

)
m1 +

n∑

i=1

mi

= A0m1 + B0 (1)

Letting s1 = mk/ck, the only one folded line equation |ckm1 − mk| changes its sign for
the next left-most interval s1 ≤ m1 ≤ s2. Thus, the l1-norm for this interval can be
incrementally calculated as:

n∑

i=1

|cim1 −mi|

=

n∑

i=1,i6=k

(−cim1 + mi) + (ckm1 −mk)

=

n∑

i=1

(−cim1 + mi) + 2 (ckm1 −mk)

= A0m1 + B0 + 2 (ckm1 −mk)

= (A0 + 2ck)m1 + (B0 − 2mk)

= A1m1 + B1. (2)

In this way, the line equations for each interval can be calculated with only constant
time operations. Through evaluating the line equation at the end points of each interval,
we can get the m1 value for the minimum l1-norm. This new approach can be performed
in O(n log n) time, even counting the number of operations, and thus more suitable for the
theoretical point of view. Overall processing can be summarized as Figure 5.
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input: initial masses mi’s and geometric configurations.
output: balanced masses mi’s.

apply variable substitution to get ci = mi/m1, 1 ≤ i ≤ n.
{calculate the mi’s in O(n) time}
m1 =

(∑n
i=1 cimi

)
/
(∑n

i=1 c
2
i

)
, using Eq. 3.

for i = 2 to n do
mi = cim1.

end for

Figure 6. The l2-norm minimization algorithm.

3.3 Minimization of l2-norm

The l2-norm can be expressed as follows:

||mi −mi||2 = ||cim1 −mi||2

=

√√√√
n∑

i=1

(cim1 −mi)
2

=

√√√√
(

n∑

i=1

c2i

)
m2

1 − 2

(
n∑

i=1

cimi

)
m1 +

n∑

i=1

m2
i .

Since it is the square root of a quadric function of the single variable m1, the value of m1

which minimizes the l2-norm is calculated as:

m1 =

(
n∑

i=1

cimi

)
/

(
n∑

i=1

c2i

)
. (3)

After calculating m1, we can easily get the values of balanced masses, mi = cim1, 2 ≤ i ≤ n.
It is easy to find that this calculation can be performed in O(n) time. The whole steps are
shown in Figure 6.

3.4 Minimization of l∞-norm

The l∞-norm of the mass differences can be expressed in terms of a single variable m1

as follows:
||mi −mi||∞ = ||cim1 −mi||∞ =

n
max
i=1
|cim1 −mi|.

Therefore, the minimization problem becomes a kind of min-max problem. In other words,
we need to find the minimum of the maximum of the folded line equations |cim1 −mi|’s.

Plotting the folded lines |cim1 −mi|’s on the xy-plane, the maximum of these equations
corresponds to the upper-most boundary of the line equations, as shown in Figure 7. The
l∞-norm has its minimum value at the lowest y-value point along the upper-most boundary.

We use a line segment arrangement algorithm[1] to solve this min-max problem. After
plotting the folded line equations, we find the upper-most boundary line segments. Fi-
nally, we find the lowest y-value point located on this boundary. This processing requires
O(n log n + k) time, where k is the number of intersection points in the final line segment
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Figure 7. An example of the l∞-norm minimization.

input: initial masses mi’s and geometric configurations.
output: balanced masses mi’s.

apply variable substitution to get ci = mi/m1, 1 ≤ i ≤ n.
for i = 1 to n do

draw folded line segments |cim1 −mi|’s.
end for
{line segment arrangement in O(n logn + k) time}
apply line segment arrangement algorithm to get the upper-most line segments.
get the minimum-y position along the upper-most line segments.
{calculate the mi’s in O(n) time}
let m1 be the x coordinate of the minimum-y position.
for i = 2 to n do

mi = cim1.
end for

Figure 8. The l∞-norm minimization algorithm.

arrangement. When the lowest y-value point is found, the value of m1 corresponds to its
x-coordinate value. All the values of balanced masses can be calculated in a linear time.
Conclusively, we can solve the l∞-norm minimization in O(n log n + k) time, based on the
line segment arrangement algorithm, as shown in Figure 8.

4 Experimental Results

We used our multi-articulated objects balancing methods to the virtual mobile system[6].
Due to automatic tree balancing features, we can avoid the iterative adjustment of the
component masses. Examples of the balanced mobiles are shown in Figure 1. As we have
expected, the mobiles are naturally in its balanced state. We used the l1-norm minimization
for these examples. Due to its optimized behavior, their execution times were less than 1
msec.

5 Conclusion

In this paper, we formalized the weighted-leaf tree balancing problem, which is directly
applicable to the balancing of multi-articulated objects. We showed that the weighted-
leaf binary tree balancing problem can be transformed into a minimization problem of a
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single variable. The solutions for the l1, l2 and l∞-norm minimizations are presented. These
three different metrics can be selectively used for the user’s preference of the mass adjusting
behavior.

Theoretically analyzing their details, we show that the l1, l2 and l∞-norm minimization
can be achieved in O(n log n), O(n) and O(n log n + k) operations, respectively, where n is
the number of components in the target multi-articulated object and k is the number of
line segment intersections during its processing. Though we have focused on the balancing
problem and its solutions, we can extend it for more general applications and more general
topologies. From the theoretical point of view, it may be a challenging problem to calculate
the upper bound of this kind of minimization problems.
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