
International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

95

A Study on the Source Translator for Generating the Android Game

Source from the WIPI Game Source

YangSun Lee
1
 and YunSik Son

2*

1
Dept. of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, KOREA

2
Dept. of Computer Engineering, Dongguk University

26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, KOREA

yslee@skuniv.ac.kr, *Corresponding Author: sonbug@dongguk.edu

Abstract

In the mobile market, the appearance of various smart phone platforms such as Android,

iOS(iPhone), Bada and Window Phone has led to game developers to repeatedly develop

game contents to suit the different mobile communication companies' platforms in order to

service mobile game contents. Furthermore, to use each of the game contents developed on

the existing feature phone platform, they need to be recreated based on the smart phone

platform. Consequently, large amounts of time and expenses are being used to analyze and

convert the sources and resources of the mobile game contents for use on the smart phone

platform. Rather than creating new game content, developers are investing twice the amount

of time and money required to develop a game for one platform in making existing game

content available on other platforms. In this paper, in order to resolve such problems the

source translator of the automatic mobile game contents converter system will be

implemented in order to convert the WIPI(Wireless Internet Platform for Interoperability)

game contents for use on an Android smart platform. This system has enabled contents to be

transferred into smart platforms within a short time, so that the time and money it takes to

launch services for different mobile communication companies can be reduced. Furthermore,

game contents developed for use on feature phones can also be converted and used on smart

platforms to increase reusability of game contents and also new game contents creation

processes can heighten productivity to consequently provide a more variety of game contents

to users.

Keywords: Source Translator, WIPI-to-Android Mobile Game Converter, WIPI(Wireless

Internet Platform for Interoperability), Android, Mobile Platform, Smart Platform, Automatic

Mobile Game Contents Converter

1. Introduction

In the mobile market, the appearance of various smart phone platforms such as Android,

iOS(iPhone), Bada and Window Phone has led to game developers to repeatedly develop

game contents to suit the different mobile communication companies' platforms in order to

service mobile game contents. Furthermore, to use each of the game contents developed on

the existing feature phone platform, they need to be recreated based on the smart phone

platform. Consequently, large amounts of time and expenses are being used to analyze and

convert the sources and resources of the mobile game contents for use on the smart phone

platform. Rather than creating new game content, developers are investing twice the amount

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

96

of time and money required to develop a game for one platform in making existing game

content available on other platforms [1-8].

This research aims to solve these problems by inventing a resource translator for the WIPI-

to-Android mobile game contents automatic converter which automatically converts game

contents from the existing feature phone platform WIPI to the smart phone platform Android.

The WIPI-to-Android game converter consists of a content analyzer, resource converter,

source translator, and platform mapping engine. The source translator receives the WIPI

Java source code produced by the content analyzer and translates it into Android Java

source code that is semantically equivalent and fulfils the same function on the Android

platform.

By automatically converting the existing mobile game con-tents used in the WIPI Java

feature phone platform to game contents for use in the Android platform, existing game

contents can be transplanted into a different platform within a short period of time. As a result,

the reusability will be increased, while the labor, time and costs involved in servicing same

contents to different mobile communications companies will be saved. A wider range of

contents provision to users can be expected as well.

2. Related Studies

2.1. WIPI

WIPI (Wireless Internet Platform for Interoperability) is legislated by KWISF(Korea

Wireless Internet Standardization Forum) and a standardized standard chosen by

KTTA(Korea Telecommunications Technology Association) as an application program

execution environment for mobile communication platforms[9]. Because mobile

communication companies use different platforms each, contents developing companies feel a

great burden from having to repeat development of contents, users’ rights of using are

restricted and cell phone manufactures feel burdened to develop new phones. Thus a need for

standardization arose and as a result, the Korean standard was set for wireless internet

platforms. Figure 1 depicts the system structure of a WIPI platform.

Figure 1. WIPI Platform's System Configuration

WIPI supports the C language and the Java language which were the languages used when

developing application programs. In the case of Java, bytecode programs are recompiled

using an AOTC (Ahead Of Time Compiler) and then executed in a native way for each cell

phone. The WIPI standards can be largely divided into the HAL (Handset Adaptation Layer

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

97

and the basic API(Application Programming Inter-face). HAL is a standardized hardware

abstraction layer to increase transferability. Also, since it is hardware-independent, it can be

executed with no connection with the native system. Only using the standardized HAL and

API, a WIPI runtime engine can be implemented and a basic API – for both the C language

and the Java language - can be created over it [9, 10].

2.2. Android

The Android platform, developed by Google is an optimized platform for mobile devices

with a perfect combination of an operating system, middleware, and application programs.

The Android platform opted the open source policy and consists of the linux kernel, library,

run-time, application framework and applications [11]. Figure 2 depicts the Android

platform's hierarchical structure and components.

Figure 2. Android Platform's System Configuration

The linux kernel uses core system services such as linux version 2.6, which includes

security, memory management, process management, network stack and driver model. The

kernel functions as an abstraction layer in between hardware and software. The library

consists of C and C++ and provides C system library, media library, 3D library and more.

Application framework is a package component consisting of Java and applications can be

created using the packages of this framework.

All application programs of the Android platform are created using Java and the

applications created are converted into class files through the Java compiler. The class files

created are converted one more time into Dalvik Executable Files before being executed, and

after conversion they are executed using the Dalvik virtual machine. DEX files are optimized

formats for effective mapping, in between storage space and memory. The Dalvik virtual

machine has the characteristics of being optimized to limited memory as it is a virtual

machine based on register [11-13].

2.2. Existing Mobile Game Converters

To date, despite the very active mobile market, there has been a lack of research on mobile

content converters, so there are few examples to which we can refer. Furthermore, converters

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

98

for existing content generally only allow conversion of content having a similar programming

language environment or do not allow automatic con-version at all. The reality is that

programmers must convert content by hand.

An existing mobile game content converter using XML has attempted to convert Java

content [14-17]. In addition, the functions of the API used in the source code to be converted

were imitated and redefined using wrapper functions. Therefore, there is no need to convert

the source code if the same functions are used. The mutual conversion of BREW C and WIPI

C [18] and the conversion GVM C into BREW C [19] have been examined; however, these

studies were flawed because the source code was not automatically converted, so users had to

intervene and convert it manually.

On the other hand, studies of automatic conversion of mobile game content using a

compiler writing system [20, 21] have been attempted. A method of increasing the reusability

of game content and enhancing productivity by converting the mobile C content of the GVM

platform into WIPI C, Java, or MIDP Java has been suggested [1]. In addition, other studies

are underway to convert existing mobile game content for use in the growing smart phone

market for operating systems such as Android and iOS for example, the WIPI-to-iOS

converter, WIPI-to-Android source converter, GNEX-to-iOS converter, GNEX-to-Android

converter, Android-to-iOS converter, and iOS-to-Android converter system.

3. The Source Translator of the WIPI-to-Android Game Converter

WIPI-to-Android automatic mobile game contents converter receives WIPI game contents

in source form, which it converts into the game contents source form that is run on the

Android platform. For automatic conversion on the source level, first the source code must be

converted into a source code of the subject platform that executes the same action. Other data

such as images, sound and etc. must also be converted into a form that can be used on the new

platform. In addition, the API library must be provided to maintain equivalent programming

and event environments [1-8]. Figure 3 shows a model of the WIPI-to-Android mobile game

contents automatic converter system.

The WIPI-to-Android converter receives WIPI Java game contents as an input. It consists

of a contents analyzer which classifies resources and source codes, a resource converter

which converts the WIPI Java resource format into a format that is usable on Android, a

source translator which translates WIPI Java source codes into Android Java source codes, an

environment which enable the equivalent display and execution of WIPI Java contents on the

Android platform and a platform mapping engine which provides APIs.

Figure 3. WIPI-to-Android Game Contents Converter

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

99

3.1. An Outline of the Source Translator

The source translator receives the WIPI Java source codes that are output by the contents

analyzer and translates them into Android Java source codes which are semantically

equivalent and execute the execute the same actions as the WIPI Java source codes. Because

WIPI Java and Android are both Java based platforms, the characteristics of the language are

the same. However, there exists some parts which have been differently altered to suit each of

the platform's virtual machines.

Source translators have been created so that they can overcome the differences of the

platforms and automatically translate the game source programs using compiler writing

technology. Compiler technology analyzes programming grammar and syntax and provides a

method for automatic translation into another language. Figure 4 is a depiction of the source

translator.

Figure 4. The Source Translator

Source translators can be largely divided into the source analysis module and source

translation module. The source analysis modules receive WIPI Java source code inputs and

carries out lexical and syntax analysis to create an Abstract Syntax Tree (AST). The source

translation module searches the AST and creates Android Java source codes which are

semantically equivalent to the WIPI Java source codes.

3.2. Source Analysis Module

The source analysis module is the first component of a source translator. It receives WIPI

Java source code inputs, carries out lexical and syntax analysis, outputs sentence structure as

AST and delivers the AST to the source translation module. Figure 5 shows the source

analysis module.

Figure 5. Source Analysis Module

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

100

The source analysis module can be largely divided into the lexical analyzer and the syntax

analyzer. The lexical analyzer classifies WIPI Java source codes that it receives into tokens,

the smallest unit with grammatical meaning. The lexical analyzer analyzes the source codes

and delivers the results to the syntax analyzer. The token information transferred between the

two analyzers are composed of token numbers and token values. Table 1 shows the output

results of the tokens analyzed by the lexical analyzer.

Table 1. Output Results of the Tokens

Source code Token

 public class ADD
{
 public static int sum;
 public static void
 main(String args[]) {
 int sum;
 sum = 46+12;
 }
 }

The syntax analyzer uses the token information obtained from the lexical analyzer and the

parsing table created by the Parser Generating System(PGS) to analyze the syntax of the

program. The results of the syntax analyze output error messages about wrong programs, and

for correct syntax, results are created in the form of a syntax tree. This tree is the Abstract

Syntax Tree (AST) which is used in the source translation module. Depending on the stack's

top and the current input symbol, the syntax analyzer refers to the parsing table and makes a

parsing action.

The four parsing actions of the syntax analyzer include shift, reduce, accept, and error.

Depending on the top of the stack and the currently evaluated symbol, it refers to the parsing

table and makes a decision. Figure 6 shows the process followed by the analyzer. Because

this process is a continuous action of shifting and reducing, as described below, it is called a

'shift-reduce' syntax analyzer.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

101

Figure 6. Shift-Reduce Syntax Analyzer

The shift action signifies the transfer of the currently evaluated symbol to the stack. The

reduce action abbreviates the handle at the top of the stack according to the creation rules. In

addition, the accept action indicates that the given string is grammatically correct, and

theerror action shows that a sentence is wrong because it cannot be revealed in its current

symbol state. The shift action actually increases the pointer by one so that it points to the next

symbol, while the currently evaluated symbol is pushed onto the stack. The shift action is

performed until the handle appears at the top of the stack. When the handle is found, it is

reduced according to the relevant creation rules, and then the process is repeated until the first

syntax symbol is reached. Table 2 shows the AST information created by the syntax analyzer.

3.3. Source Translation Module

The source translation module receives the AST as an input from the source analysis

module, searches each of the nodes of the tree and creates source codes that will execute in

the same manner in the target platform, Android, as they did in WIPI. Since this module has

been designed to analyze ASTs which are expressed with consistency, it is possible to match

it with all program structures that can be created.

The source translation module which receives AST as an input, begins a successive search

from the tree's root. During the search process, if a significant node appears, the pattern

matching source writer receives the node and translates it into an Android source code. When

the entire AST search process is finished, the pattern matching source writer analyzes the

nodes until now and creates each of the translated source codes into one file, this is the

Android source code.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

102

Table 2. AST Information

Source code AST

 public class ADD {

 public static int sum;

 public static void

 main(String args[]) {

 int sum;

 sum = 46+12;

 }

 }

Figure 7 shows the execution process of the source translation module.

Figure 7. Source Translation Module

Figure 8 shows the screen of the source translator.

The list on the left is the list of WIPI Java files to be translated and the list on the right is a

list of the converted Android files. When the conversion button is pressed, the source

translator automatically converts the sources.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

103

Figure 8. Screen of the Source Translator

Figure 9 shows an example of searching the AST of a WIPI Java program created by the

syntax analyzer and converting it into an Android Java program.

AST WIPI - class

 class MyView extends GNEX {
 :
 }

Android - class

 class MyView extends GNEX {
 :
 }

AST WIPI - member variable

 public static final int N_TIE=5;

Android - member variable

 public static final int N_TIE=5;

AST WIPI - member function

 public int Add(int a, int b)

 {

 Returna+b;

 }

Android - member function

 public int Add(int a, int b)

 {

 Returna+b;

 }

AST WIPI Source-array

 int[] pal2_0 = new int[17];

Android Source-array

 int[] pal2_0 = new int[17];

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

104

AST WIPI - if st.

 If (tieShip[i].blast < 3)
 tieShip[i].blast++;
 else
 tieShip[i].mode = 0;

Android - if st.

 If (tieShip[i].blast < 3)
 tieShip[i].blast++;
 else
 tieShip[i].mode = 0;

Figure 9. AST and Source Translation

4. Experimental Results and Analysis

In this study, the WIPI-to-Android mobile game contents automatic converter system was

used to automatically convert mobile game contents from the feature phone WIPI platform to

the smart phone Android platform. The results of the conversion were then compared and the

contents converter's performance was measured and analyzed. Each of the platform's

emulators used to execute the contents are as in Table 3.

Table 3. Platform's Emulator

Platform Emulator Method

WIPI SKT WIPI Emulator Native

Android Android 2.2 Emulator Native

Figure 10 and Figure 11 show the comparison between the running of games "Aiolos",

"Elemental Force" and etc on each emulator to test the overall performance of the game

contents which were converted in the WIPI-to-Android converter. It can be confirmed that

graphics, image output, sound output and other actions were all executed equivalently.

Figure 10. Game Aiolos's Execution Result

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

105

Figure 11. Game Elemental Force's Execution Result

5. Conclusions

With the recent appearance of smart phones, the mobile game market is experiencing

high growth rates each year, and game content has become killer content in the mobile

market. However, differences in mobile platforms have required repeated development

or conversion of mobile game content for use on multiple platforms.

The source translator of the WIPI-to-Android mobile game converter created in this

research undergo automatic conversion of existing WIPI game contents into the smart

phone platform's Android game contents within a short period of time. Therefore

increasing the reusability of existing game contents and enabling users to be provided

with a more diverse range of contents. Furthermore, the time and money involved in the

development and conversion process of converting game contents of feature phone

platforms for use in the smart phone platform can be reduced extensively, resulting in

increased productivity. Such reduced costs and time can then be invested in developing

new game contents, accelerating the development of mobile game contents and

contribute towards strengthening the productivity of the mobile industry.

In the future, further research on increasing game contents' execution performance

will be carried out, in addition research supplementing and expanding the game

contents converter system so that game contents can be run on the various smart phone

platforms which are spreading such as iPhone, Android, Windows Phone, bada and

more.

Acknowledgements

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and

Technology(No.20100023644).

References

[1] Y. Lee, "Design and Implementation of the GNEX C-to-WIPI Java Converter for Automatic Mobile Contents

Translation", Journal of Korea Multimedia Society, vol. 13, no. 4, (2010), pp. 609-617.

[2] Y. Son, S. Oh and Y. Lee, "Design and Implementation of the GNEX C-to-Android Java Converter using a

Source-Level Contents Translator", Journal of Korea Multimedia Society, vol. 13, no. 7, (2010), pp. 1051-

1061.

[3] Y. Lee, H. Choi and J. Kim, "Design and Implementation of the GNEX-to-iPhone Converter for Smart Phone

Game Contents", Journal of Korea Multimedia Society, vol. 14, no. 4, (2011), pp. 577-584.

[4] Y. Lee, J. Kim and M. Kim, "Development of the Contents Analyzer and the Resource Converter for

Automatic Mobile Contents Converter", Journal of Korea Multimedia Society, vol. 14, no. 5, (2011), pp. 681-

690.

[5] Y. Lee and Y. Son, "A Platform Mapping Engine for the WIPI-to-Windows Mobile Contents Converter",

Multimedia, Computer Graphics and Broadcasting, Springer, CCIS, vol. 262, (2011), pp. 69-78.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

106

[6] Y. Lee and Y. Son, "A Study on the WIPI-to-Windows Mobile Game Contents Converter using a Resource

Converter and a Platform Mapping Engine", Information-an International Interdisciplinary Journal,

International Information Institute, vol.16, to be published, (2013).

[7] Y. Son and Y. Lee, "Design and Implementation of an Objective-C Compiler for the Virtual Machine on

Smart Phone", Multimedia, Computer Graphics and Broadcasting, Springer, CCIS, vol. 262, (2011), pp. 52-

59.

[8] Y. Lee, "Automatic Mobile Contents Converter for Smart Phone Platforms", In Korea Multi-media Society,

vol. 15, no. 1, (2011), pp. 54-73.

[9] WIPI (Wireless Internet Platform for Interoperability), KWISF (Korea Wireless Internet Standardization

Forum), (2004).

[10] I. G. Kim, K. Kwon and T. T. You, “WIPI Mobile Game Programming”, Daelim, (2005).

[11] Goole, Android, http://code.google.com/intl/ko/android/.

[12] S. Hashimi, S. Komatineni and D. MacLean, “Pro Android 3”, Apress, (2011).

[13] D. Galles, “Modern Compiler Design”, Addison-Wesley, (2007).

[14] S. H. Kim, “Design and Implementation of A Mobile Contents Conversion System based on XML using

J2ME MIDP”, Master's Thesis, Hannam University, (2003).

[15] Y. S. Kim and D. C. Jang, "A Design for Mobile Contents Converting Using XML Parser Extraction",

Journal of Korea Multimedia Society, vol. 6, (2003), pp. 267-276.

[16] S. I. Yun, “Integrated Conversion System for Wired and Wireless Platform based on Mobile Environment”,

Ph.D Thesis, Hannam University, (2003).

[17] Y. S. Kim and S. Y. Oh, "A Study on Mobile Contents Converting Design of Web Engineering", Journal of

Korea Information Processing Society, vol. 12-D, no. 129, (2005).

[18] Y. J. Lee, “A Method of C Language based Solution Transformation between WIPI and BREW Platform”,

Master's Thesis, Chungnam National University, (2007).

[19] C. U. Hong, J. H. Jo, H. H. Jo, D. G. Hong and Y. S. Lee, “GVM-to-BREW Translator System for Automatic

Translation of Mobile Game Contents”, Game Journal of Korea Information Processing Society, vol. 2, no. 1,

(2005), pp. 49-64.

[20] Y. S. Lee, "Design and Implementation of the MSIL-to-Bytecode Translator to Execute .NET Programs in

JVM platform", Journal of Korea Multimedia Society, vol. 7, no. 7, (2004), pp. 976-984.

[21] Y. S. Lee and S. W. Na, "Java Bytecode-to-.NET MSIL Translator for Construction of Platform Independent

Information Systems", Knowledge-Based Intelligent Information & Engineering Systems), LNAI 3215,

Springer, vol. 3, (2004), pp. 726-732.

Authors

YangSun Lee

He received the B.S. degree from the Dept. of Computer Science, Dongguk University,

Seoul, Korea, in 1985, and M.S. and Ph.D. degrees from Dept. of Computer Engineering,

Dongguk University, Seoul, Korea in 1987 and 2003, respectively. He was a Manager of the

Computer Center, Seokyeong University from 1996-2000, a Director of Korea Multimedia

Society from 2004-2005, a General Director of Korea Multimedia Society from 2005-2006

and a Vice President of Korea Multimedia Society in 2009. Also, he was a Director of Korea

Information Processing Society from 2006-2010 and a President of a Society for the Study of

Game at Korea Information Processing Society from 2006-2010. And, he was a Director of

Smart Developer Association from 2011-2012. Currently, he is a Professor of Dept. of

Computer Engineering, Seokyeong University, Seoul, Korea. His research areas include smart

system solutions, programming languages, and embedded systems.

