
International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

87

A New Recovery Scheme for the Long-Term Mobile Application

Sungchae Lim

Dongduk Women’s University

sclim@dongduk.ac.kr

Abstract

Recently, the widespread use of mobile devices, such as smartphones and tablet PCs, leads

to a new demand for distributed mobile applications. When the mobile application has a long

lifetime and it is comprised of many parallel tasks, it is required to safely checkpoint its

processing states against abrupt failure. To this end, lots of works have been done to reduce

the wireless traffic overhead caused by distributed checkpointing protocols. In this paper, we

also propose a new recovery scheme with less networking overhead and high flexibility in its

protocol. For this, we deploy logging agents across mobile support stations so that they can

gather the causality dependency vectors of the involved application processes without the use

of wireless data transmission. Because of these features, our scheme provides the benefits of

high flexibility during the checkpointing time and low traffic overhead, while preventing

severe cascaded rollbacks efficiently.

Keywords: recovery, domino-effect, causality dependency, cascaded rollback

1. Introduction

 Recently, we have seen much technological progress in the both fields of wireless

networks and mobile devices. Such progress results in a new demand for the distributed

mobile application that can execute on multiple mobile devices and performs its tasks by

communicating through wireless data links [1, 2, 3]. Originally, the distributed application

was assumed to execute on a number of fixed-networked computing servers, and its recovery

schemes have been also based on the physical features of the fixed-network environment [4, 5,

6, 7]. That is, the schemes suppose that participant application processes can use sufficient

computing powers and pay rather cheap costs for data transit between different processes [7,

8]. Although those schemes are eligible for the traditional fixed-network environment, they

cannot be used without significant modifications, if applied to the mobile computing

environment [8, 9]. Since the mobile device has a battery limitation and data transit within

wireless networks is much costly, compared with that in fixed networks, it is required to

redesign the checkpointing scheme suitably for the mobile application. For this reason, a

group of new recovery algorithms for the mobile distributed application are proposed to

overcome difference between those two network environments [2, 10, 11, 12, 13].

In the paper, we also propose a checkpointing scheme used to save log records during the

execution of a distributed mobile application. In particular, our scheme focuses on how to

efficiently checkpoint a distributed mobile application with a long lifetime. Here, we suppose

that the long-term mobile application usually has intermittent critical points during its long

execution time and a particular group of participant mobile processes attempt to save their

checkpoints more frequently than others. In this situation, if every checkpointing request from

a mobile process freezes the whole processing of the distributed application, then use of

checkpointing could not be acceptable for long-term mobile applications. If we remove such

freezing periods through loose synchronization between mobile processes, by contrast, the

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

88

cost for the recovery phase in the future time is likely to grow due to undesirable cascaded

rollbacks and prolonged time to scrutinize distributed checkpoint records [8, 9, 14].

To solve the technical dilemma above, we employ the special-purpose software agent that

is aimed at reducing the amount of wireless data transit as well as the occurrences of

execution halting during the synchronization phase of checkpointing time. The logging agent

is a process running on the mobile support station, and it is responsible for actively storing

checkpoint records and accepting checkpointing request from its associated mobile process

[11]. To reduce wireless data transit, the logging agent exchanges causality dependency

vectors with others by using fixed-network data links alone.

Through those checkpointing-related data, the logging agent always monitors which

collections of checkpoints can make the global consistent state of the monitored mobile

application. If a high possibility of severe rollbacks is estimated from the monitoring, the

logging agent can initiate the actions of enforced checkpointing to create a global consistent

state on behalf of its mobile processes. Correspondingly, when any mobile process requests

checkpointing, its logging agent may do nothing for that request, if a global consistent state

can be formed from only the recent checkpoints. This means that the undesirable execution

freezing of the mobile application can be avoided in many cases. Sine a rollback limit is also

guaranteed and checkpointing-related data are shared among logging agents, our scheme can

have high flexibility in the checkpointing actions. Due to such features, our scheme can

significantly reduce network and CPU overhead for checkpointing, while preventing the

cascaded rollback from nullifying the recent checkpoints beyond a given limit.

The rest of this paper is organized as follows. In Section 2, we present some technical

backgrounds regarding the necessity of distributed checkpointing and related earlier schemes.

Then, we propose a new efficient checkpointing scheme in Section 3, and conclude this paper

in Section 4.

2. Preliminaries

2.1. Global Consistent State

Since there is no global clock able to give a total order to events arising on more than one

application process (AP), Lamport [15] partially ordered distributed application’s events

based on the relation of “happen-before”. Here, we say that any event e1 is a causal event of

e2, if e1 “happen-before” e2. Since the “happen-before” relation has a transitive property, we

can decide on the existence of a causality relation between two different events within a

distributed application.

From this, Lamport declares that an execution state G is globally consistent, if there is no

event e1 G such that e2 is a causal event of e1 and e2 G. In this way, the GCS (Global

Consistent State) of a distributed application was formally defined [15].

Figure 1. An Example of Failure on a Distribute Application

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

89

Figure 1 shows a distributed application scenario where two different APs have joined in

the application and an application failure occurs in the AP AP1. Ahead of the failure time,

the two APs have stored their local checkpoint records and their records are represented by

rectangles in the figure. In this scenario, message m5 has a causality to the checkpoint record

C2,4 , and m5 becomes to be lost since there is no record saving m5 in AP1. As a result, record

C2,4 has to be eliminated from a GCS since its causality event (i.e., the send event of m5) was

not checkpointed. For the same reason, C1,3 is rolled back because of cancelation of m4, and

the record C2,3 should be deleted since it has causality from m3. Consequently, we obtain the

latest GCS that consists of C1,2 and C2,2 . In the recovery phase, this disrupted application will

be resumed by restoring the processing state saved in C1,2 and C2,2 . Here, we say that there

exist cascaded rollbacks of checkpoints C2,4 , C1,3 , and C2,3 because of domino-effect. query.

2.2 Previous Schemes

In mobile computing environment, each wireless cell is managed by a single mobile

support station (MSS) and the mobile host sends its data thorough any wireless link made in

the wireless cell [8, 11]. The MSS is also responsible for supporting seamless hand-offs and

message routing between mobile hosts. For this, MSSs are interconnected with high-speed

fixed networks. In this environment, the cost for wireless data transmits is much higher than

that in fixed networks. For this reason, the previous checkpointing schemes place their

performance focus on reducing data traffic over wireless links [6, 7, 8, 9].

Those previous schemes can be categorized into the synchronized schemes and the

asynchronized ones. In the synchronized scheme, whenever a mobile AP asks for saving its

current execution state, this triggers a new creation of a global checkpoint. For the global

checkpointing, subsequently, other co-worker APs have to be frozen for synchronization.

Besides such an undesirable freezing period, global checkpointing tends to incur a large

number of message transmits over wireless data links. Consequently, the synchronized

scheme is apt to suffer from a very expensive communication overhead as well as long

freezing times for global checkpointing [7, 9, 10, 13].

Meanwhile, the asynchronized scheme does not advance application’s GSS point

according to every request of checkpointing from APs. Instead, during the recovery phase, the

latest GCS is calculated by scrutinizing local checkpoint records scattered across MSSs. Since

there is no frequent checkpointing enforced by other APs, this scheme can evade the

drawbacks found in the synchronized scheme. Moreover, when it comes to the wireless

network environment, the asynchronized schemes are much more feasible because of less use

of wireless traffic [12, 13]. However, this scheme has a problem of high chances of the

cascaded checkpoint rollback in the recovery phase. In a worst case, the whole intermediate

processing states, saved in local checkpoint records, can be cancelled. To remove such

domino effect in asynchronized scheme, the message-induced checkpointing scheme [9, 10,

12] was proposed.

In this message-induced scheme, the mobile AP toggles its state between SEND and

RECEIVE states according to the events of its message send and receive, respectively. That is,

if a mobile AP sends a message after an event of message receiving, then it changes its state

to SEND from RECEIVE. Then, it remains in the SEND state unless it receives any message

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

90

from other APs later. Correspondingly, when the AP with a SEND state receives a message

from other AP, then it makes a local checkpoint for saving its own processing state before it

switches to the RECIVE state. As a result, since there is always a local checkpoint between

two consecutive events of message receive and message send, the message-induced scheme

can easily remove the chance of cascade rollbacks of local checkpoints [9, 10, 12]. Of cause,

after changing its state to RECEIVE, the AP remains in the same state unless it sends a new

message outwards.

3. Semi-synchronized Checkpointing

3.1 Idea Sketch

Although the message-induced scheme can considerably reduce the occurrence of cascaded

rollbacks during the recovery phase, it has a problem in that checkpointing is totally

dependent on the events of message arrivals. Therefore, the logging policy of the message-

induced scheme is apt to generate obsolete local checkpoints because of lack of context

awareness. For example, if a message saying “hello” induces a local checkpoint, that

checkpoint is unlikely to save any meaningful processing state. Moreover, lack of

considerations on application’s context can be more problematic in the long-term application.

While a long-living distributed application is being in process, some periods in its lifetime

have greater importance than other periods. Suppose that an AP has accepted valuable input

data from its mobile host and advanced its application state just now. If the input data is one

that comes from a laborious user interaction, the AP may want to include this period of time

into a GCS. However, the message-induced scheme cannot reflect such application’s context.

Against those problems, we make efforts to devise a semi-synchronized scheme such that

mobile APs can determine their own checkpointing times on the consideration of

application’s context. Additionally, global checkpoints can be made with more flexibility

rather than in previous schemes. For this, our scheme employs the logging agent running on

the MSS.

Figure 2 shows the assumed system architecture where the loggings agent exists between

two different APs. The figure depicts a situation where a mobile AP (say Pa) in cell A sends a

message to the counterpart mobile AP (say Pb) in cell B for exchanging application’s context.

The message from Pa is first put into the outbound queue of MSS A, and then the logging

agent in MSS A dequeues the message for parsing and modification. To decrease the amount

of wireless traffic, checkpoint-related data, which include the causality vector and serial

numbers of local checkpoints made in all APs, are delivered only in fixed networks. For this,

the checkpoint-related data are inserted into the application message by the logging agent in

MSS A. Correspondingly, the counterpart logging agent in MSS B detaches the additional

data before it puts the original message into its inbound queue. While modifying the message,

the logging agents in MSS A and B update their checkpoint records within main memory.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

91

Figure 2. Architecture of the Assumed Wireless Network Environment

To see our idea, let us assume that a mobile AP attempts to make a local checkpoint L for

saving its current processing state on its own decision. In this situation, there exist two

different approaches possible. As one approach, we can create a global checkpoint including

L. This is just the mechanism of the synchronized scheme, which results in heavy overhead

for global synchronization. The other remaining approach is to create just a local checkpoint

without synchronization with other APs outsides. Although synchronization overhead

decreases in this case, the persistence of checkpoint L is not guaranteed in the presence of

failure on the mobile application.

To lie in between these two extremes, our scheme employs the notion of the cascaded

rollback limit (CRL) and sets an adequate level of CRL to each mobile application. That is, if

it is set to a value of d, then our scheme makes sure that none of mobile APs loses d number

of recent local checkpoints in face of worst-case domino-effect. With a CRL level of one,

therefore, our scheme will work identically with the previous synchronized scheme; if the

value goes big, otherwise, our scheme runs similarly as the asynchronized scheme. In other

words, our scheme can adjust the synchronization strictness of checkpointing by picking a

proper CRL level. The level of CRL has to be determined by considering application’s

tolerance to feature and it is set to a value at application’s startup time.

For this adjustable synchronization of global checkpoints, the logging agent continuously

gathers the checkpoint-related data and calculates possibility of GCS constructions based on

the current local checkpoints. Since the agent always transits such data only in fixed networks,

our scheme provides low overhead for data communions. Detail about that is addressed in the

next section.

3.2 Proposed Algorithm

We first describe the format of the application message to be transferred on the wireless

data links. The followings are the fields of the message. At the startup time of a distributed

application, a unique Id is issued and saved in the field ID_app.

o ID_app: Id of the distributed mobile application.

o ID_sender : Id of the sender AP of this message.

o ID_receiver: Id of the counterpart AP to receive this message.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

92

o Type_m: Flag expressing the type of this message (application data/request for a checkpoint).

o Data: Application data or data for checkpoint creation.

Each logging agent manipulates its own checkpoint record in the main memory

temporarily. This memory-resident checkpoint record is continuously updated whenever a

new message arrives as in Fig. 3. The memory-resident record is written to the disk at the

time of checkpointing later. The fields of the record are as follows.

o ID_app : Id of the distributed mobile application.

o Val_crl : CRL level of application ID_app.

o ID_ap[1,..,N]: Ids of participant APs in application ID_app.

o Idx_ap : Index of the owner AP.of this record

o Ptr_chpt: Disk address to the previous checkpoint record.

o Data: Area for saving APs processing state and the messages sent to counterpart APs.

o Serial[1,..,N]: Serials of the latest local checkpoints made by all the participant APs.

o Vector[1,..,N] : Causality dependency vector.

The field Vector[] is for saving the causality dependency vector and Serial[j] saves the

serial number of the latest local checkpoint made by the AP ID_ap[j]. The usage of those

fields for calculating a GCS is referred to other literature [4, 5, 7].

 Figure 3 depicts how the logging agent works when it receives message M from its local

AP with Id of ID_ap[Idx_ap]. If message M is a message to request checkpointing, which is

notified by the value in Type_m, then the lines 4-11 will be executed; otherwise, if M is for

sending application message to other AP, line 13 is performed. In Fig. 3, the notation R

represents a memory-resident checkpoint record manipulated by the logging agent. In line 7

of Fig. 4, the logging agent checks if there is a possibility that domino-effect may nullify local

checkpoints beyond the level of CRL. If it is possible from the worst-case domino-effect, a

new GCS is made in line 8. Otherwise, it is routed to the counterpart logging agent after the

modification of M.

Figure 3. Algorithm for Processing a Message Arriving at the Outbound Queue

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

93

Meanwhile, Figure 4 shows the way the logging agent works at the arrival event of a

message coming from the counterpart logging agent. If the message M is for the delivery of

application data, it is forwarded to AP M.ID_receiver after checkpoint-related data in M. If

M is a broadcasting message saying a new local checkpointing in AP M.ID_sender, the

logging agent just updates its checkpoint record in line 7. Otherwise, if enforced

checkpointing is requested in message M, interactions with its local AP are performed as in

line 9. While the logging agent is executing the algorithms in Figs. 3 and 4, the routine

AdvanceGCS() plays a critical role in global synchronization. Its algorithm can be referred to

[2].

Figure 4. Algorithm for Processing a Message from the Counterpart Logging
Agent

4. Conclusion

As two key performance metrics of a checkpointing scheme, we consider less overhead

paid for making checkpoint records during the normal execution time and a low possibility of

domino-effect in the recovery phase. Because there is a trade-off between these metrics, it is

hard to develop any checkpointing scheme that has a good performance in both aspects.

Therefore, it is likely that the earlier message-induced scheme provides a rather good balance

on them. However, when it comes to application context awareness in the checkpointing time,

the message-induced scheme has a very poor property because its mobile application process

cannot create checkpoint records on its own decision.

To solve those difficulties in earlier schemes, we have proposed a semi-synchronized

checkpointing protocol that ensures the durability of local checkpoints within a specific

rollback limit. The proposed protocol makes it possible for the mobile AP to create its local

checkpoints in accordance with its application context. When the rollback limit is set to K,

then the worst-case number of checkpoint rollbacks is bounded by N*(K-1), for every

distributed application composed of N APs. Since the actual number of rollbacks is much less

than the worst-case number in reality, our scheme can prevent the undesirable domino-effect.

In addition, since the proposed protocol is executed by logging agents, networking overhead

is very low.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

94

References

[1] S. Gadiraju and V. Kumar, “Recovery in the Mobile Wireless Environment Using Mobile Agents”, IEEE

Trans. on Mobile Computing, vol. 3, no. 2 (2004) April, pp. 180-191.

[2] S. Lim, “A Tunable Checkpointing Algorithm for Distributed Mobile Applications”, International Journal of

Computer Science Issues, vol. 8, no. 6, (2011).

[3] P. Singh and G. Cabillic, “A Checkpointing Algorithm for Mobile Computing Environment”, Personal

Wireless Communications (LNCS), vol. 2775, (2003), pp. 65-74.

[4] D. K. Pradhan and N. H. Vaidya, “Roll-Forward and Rollback Recovery: Performance-Reliability Trade-Off”,

IEEE Trans. Computers, vol. 46, no. 3, (1997).

[5] D. Manivannan and M. Singhal, “Quasi-Synchronous Checkpointing: Models, Characterization, and

Classification”, IEEE Trans. on Parallel and Distributed Systems, vol. 10, no. 7, (1999).

[6] L. K. Awasthi and P. Kumar, “A Synchronous Checkpointing Protocol for Mobile Distributed Systems:

Probabilistic Approach”, International Journal of Information and Computer Security, vol. 1, no. 3, (2007).

[7] Y. M. Wang, “Consistent Global Checkpoints That Contain a Given Set of Local Checkpoints”, IEEE Trans.

on Computers, vol. 46, no. 4, (1997).

[8] S. Lim, “A New Distributed Checkpointing Scheme for the Mobile Computing Environment”, Proceedings of

the IEEE-RIVF, (2009) July 13-17, Danang, Vietnam.

[9] S. Gadiraju and V. Kumar, “Recovery in the Ricardo Baratto, Shaya Potter, Gong Su, and Jason Nieh,

MobiDesk: Mobile Virtual Desktop Computing”, Proceedings of the 10th International Conference on Mobile

Computing and Networking, (2004) September 26-30, Philadelphia, USA.

[10] C.-M. Lin and C.-R. Dow, “Efficient Checkpoint-based Failure Recovery Techniques in Mobile Computing

Systems”, Journal of Information Science and Engineering, vol. 17, no. 4, (2001).

[11] T. Imielinski and B. R. Badrinath, “Mobile Wireless Computing: Challenges in Data Management”,

Communications of the ACM, vol. 37, no. 10, (1994).

[12] T. Tantikul and D. Manivannan, “Communication-Induced Checkpointing and Asynchronous Recovery

Protocol for Mobile Computing Systems”, Proceedings of the 6th International Conference on PDCAT, (2005)

December 5-8, Dalian, China.

[13] L. Alvisi, E. N. Elnozahy, S. Rao, S. A. Husain and A. De Mel, “An Analysis of Communication Induced

Checkpointing”, Proceedings of the 29th Symposium on Fault-Tolerant Computing, (1999) June 15-18,

Wisconsin, USA.

[14] F. Zambonelli, “On the Effectiveness of Distributed Checkpoint Algorithms for Domino-Free Recovery”,

Proceedings of the 7th Symposium on High Performance Distributed Computing, (1998) July 31-31, Chicago,

USA.

[15] Lapmport, “Time, Clocks, and the Ordering of Events in a Distributed System”, Communications of ACM,

vol. 21, no. 7, (1978).

Author

Sungchae Lim

He received the B.S. degree in Computer Engineering from Seoul

National University at 1992, and achieved the M.S. and Ph.D. degrees in

Computer Science from KAIST, at 1994 and 2003, respectively. He is

currently an Associate Professor in the Department of Computer Science

at Dongduk Women’s University.

