
International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

175

A Study on Verification and Analysis of Symbol Tables for

Development of the C++ Compiler

YangSun Lee
1
 and YunSik Son

2
*

1
Dept. of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, Korea

2
Dept. of Computer Engineering, Dongguk University

26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, Korea

yslee@skuniv.ac.kr, *Corresponding Author: sonbug@dongguk.edu

Abstract

The existing C++ compilers are designed to translate C++ source programs into target

codes and then execute them. This translation method is that a compiler that translates C++

source programs to target codes has to be available for each platform. Reusability and

portability of codes will also decrease because target codes have to be different for each

platform they are run under. For that reason, much research is taking place in various fields

in an effort to develop a retargetable compiler and a virtual machine that execute application

programs without recompiling or modifying them though processor or operating systems are

changed.

We have developed the C++ compiler for the SVM(Smart Virtual Machine) of the smart

platform on smart systems. As a part of the C++ compiler development, we designed the

symbol table that can support object-oriented languages, C++ and java. The symbol table is

a data structure to keep track of scope and binding information about names (or identifiers).

Various information is entered into the symbol table after visiting and analyzing the abstract

syntax tree generated by syntax-directed translation, and then is used to check whether the

use of names is consistent with their definition during the semantic analysis phase and

generate a valid code during the code generation phase.

In this paper, we describe the reconstruction technique for verifying and analyzing the

symbol table designed for the C++ compiler. This system reconstructs inputted C++

declarations by using information of the symbol table entered in the declaration process

phase of the C++ compiler, and therefore we can verify completeness of symbol table design

and correctness of information entered in the symbol table. In addition, this system also

produces debug information, and so is effectively utilized for the development of the C++

compiler.

Keywords: C++ Compiler, SVM(Smart Virtual Machine), Symbol Table, Reverse

Translator

1. Introduction

The existing C++ compilers are designed to translate C++ source programs into target

codes and then execute them. This translation method is that a compiler that translates C++

source programs to target codes has to be available for each platform. Reusability and

portability of codes will also decrease because target codes have to be different for each

platform they are run under. For that reason, much research is taking place in various fields in

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

176

an effort to develop a retargetable compiler and a virtual machine that execute application

programs without recompiling or modifying them though processor or operating systems are

changed [1-5].

A virtual machine is a conceptual computer with a logical system configuration, made of

software unlike physical systems made of hardware. In particular, virtual machine technology

for smart systems, as a core technology enabling virtual machines to be mounted on smart

devices such as smart phones and smart tablets, is a requisite software technology for

download solutions [6-9]. We developed the SVM (Smart Virtual Machine) for the smart

platform, which is a virtual machine for smart systems in which the contents can be run

without correction under different platforms, and a C++ compiler for the SVM. In this paper,

we present the reverse translator that restores the attributes inputted into the symbol table to

the original program in order to verify and analyze the symbol table designed in the C++

compiler development phase [5, 10-12].

2. Related Studies

2.1. SVM

The SVM(Smart Virtual Machine) is a platform that is loaded on smart phones. It is a

stack-based virtual machine solution that can independently download and run application

programs. The SVM consists of three main parts: compilers, an assembler and a virtual

machine. Figure 1 shows the structure of the SVM system for the smart platform [15-17].

Figure 1. SVM System Configuration for Smart Systems

The SVM system can be distinguished into a compiler part, a translator part, an assembler

part, and a virtual machine part. In the compiler part, a program coded in a high-level

language, such as C/C++, Objective-C or Java, can be translated to a stack-based intermediate

language (*.sil) for virtual machines. The assembler part takes the SIL (Smart Intermediate

Language) code as input and translates it to *.sef (sil executable format) file, which can then

be executed in virtual machines. Lastly, the virtual machine part, which is attached to

different hardware, executes *.sef files.

2.2. Symbol Table

The symbol table is a data structure to be used to keep and manage track of scope and

biding information about names (or identifiers). Lexical and syntax analysis takes place in the

compiler, then the abstract syntax tree generated by the SDT (Syntax-directed Translation) is

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

177

analyzed to collect and reference the attributes of the recognized names. These attributes are

inserted in a symbol table where the names are defined and the validity of the use of these

names and attributes is verified in the semantic analysis phase. After this, the code generation

phase produces the correct code using the attributes [18-22].

The symbol table designed in the C/C++ compiler divided into window table and sub-

tables. Window tables consist of symbol table, type table. And sub-tables consist of a

concrete table, an abstract table, an aggregate table, an aggregate table, a member table, a link

table, and a template table. Figure 2 shows the relationships between the composed symbol

tables and each table.

Figure 2. Relationships between Symbol Tables

The symbol table stores the offset and scope of the identifiers of variables and functions

declared in the declaration part. The type table stores the size, the type, and the identifiers of

user-defined types such as class, struct, and union. The storage table is divided into a concrete

table and an abstract table. These are commonly used for storing the variable type, the

function return type, and the parameter information. Unlike the abstract table, the concrete

table is allocated additional memory space for storing the initial value.

The user-defined type table is composed of an aggregate table, a member table, and a link

table. These tables hold the information on inheritance, the number of members, the name of

member variables, the offset, and access control.

The template table, a space for storing template parameter variables used in function

templates and class templates, is a table for storing information that is required in the

specialization process, the initial value, and the information of each parameter variable.

2.3. Declaration Processor

The declaration processor is responsible for semantically analyzing the declaration part of

an inputted program, for inserting the information on the recognized symbols (or identifiers)

into the symbol table if the statements are valid, and for generating an error message if the

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

178

statements are invalid. The overall organization of the declaration processor is divided into a

preprocessor, a lexical analyzer, a syntax analyzer, and a declaration processor [10, 11, 20,

22]. Figure 3 shows the organization of the declaration processor of the C++ compiler.

Figure 3. System Structure of the Declaration Processor

3. The Translator for Verification and Analysis of Symbol Tables

3.1. An Outline of the Reverse Translator System

The reverse translator (detranslator) inserts the declaration part extracted from C++ (*.cpp)

files into the symbol table and uses the information to restore them to the C++ declaration

part. First, the C++ declaration part, which contain declaration processor, are semantically

analyzed and the analyzed properties of the symbols are stored in the memory space, or the

symbol table. The reverse translator then restores the stored information back to C++

declaration statements. Thus, a result similar to declaration statements composed for primary

input can be obtained [10, 11]. Figure 4 shows the reverse translation for verification and

analysis of symbol tables.

3.2. Organization of the Reverse Translator System

This reverse translator system is implemented using Visual C++ 6.0 in a Windows XP

environment and it translates to the original C++ program by using information on the

variables inserted into the symbol table, or the user-defined type.

Figure 4. Reverse Translation Process of the DCL Part

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

179

The reverse translator system is composed of a symbol table, a symbol process that uses

the symbol table to process a reverse translation, and a type process. Figure 5 is the system

organization of the reverse translator.

Figure 5. Organization of the Reverse Translator

The symbol process and the type process, according to the declared variable or type, cycles

through member process, which is a sub process, parameter process, link process, template

process, type specifier process(TSP), and symbol kind process(SKP) to perform a reverse

translation.

3.3. Implementation of the Reverse Translator System

The reverse translation system is mainly subcategorized into a symbol process and type

process. It distinguishes the tables that need to be translated by sequentially searching the

symbol table and the type table. Moreover, the sub table is referenced by the table index and

the information is used to translate to a C++ program. Figure 6 is an outline of the algorithm

that forms the reverse translation system.

Figure 6. Outline of a Reverse Translation Algorithm

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

180

The symbol process is the part that translates reversely all the information corresponding to

the external variables in the symbol table. The extracted information details the variable type

through the TSP and determines, through the SKP, if it is an array, a function, or a regular

variable, and then outputs it after translating it to a C++ program. A parameter process is

added for functions with parameters, and the reversely translated parameters are outputted.

Figure 7 shows the flow of the symbol process.

Figure 7. Flow of the Symbol Process

The type process is composed of a member process, a link process, a TSP, and a SKP. It

searches the user-defined type information in the type table to classify the information into

class, struct, union, enum, namespace, and typedef for the reverse translation. The member

process is performed when the type is class, struct, union, and namespace, and is similar to

the symbol process in that it outputs after translating the member variables and member

functions included in the type through the TSP, the SKP, and the parameter process.

Moreover, the user-defined type can have a nested class as its member; in order to do this, the

member process: self-references the type process to translate it reversely. The link process

then translates reversely and outputs the inherited and friends if the type is class and struct.

Figure 8 is the flow of the type process.

Figure 8. Flow of the Type Process

The template process is responsible for translating templates reversely, one of the C++

features, and the template function calls the template process in the symbol process and the

template class calls the template process in the type process and translates it reversely. Figure

9 is the flow of the template process.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

181

Figure 9. Flow of the Template Process

4. Experimental Results and Analysis

The following Figure 10, 11, and 12 is a function pointer array example of a program that

inserts the attributes of the declarations into a symbol table and translates reversely in order to

restore it back to a C++ program.

 int (*FuncPointerArray[3])();

Figure 10. Declaration Part of a Function Pointer Array

Figure 11. Reconstructed C++ Declaration Part

Figure 12. Information of Symbol Tables

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

182

The following Figure 13, 14, and 15 is a class example.

 class Person {

 char * name;

 int age;

 int getInformation();

 };

Figure 13. Declaration Part of a Class

Figure 14. Information of Symbol Tables

Figure 15. Reconstructed C++ Declaration Part

The following Figure 16 is an example of a program that inserts the attributes of the

declarations into a symbol table and translates reversely in order to restore it back to a C++

program.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

183

 char ch; int count; const

double pi;

 extern int error_number;

 struct Date { int d,m,y; };

 int day(Date*p);

 template<class T> T abs(T a);

 enum Beer { Carlsberg, Tuborg, Thor };

 namespace NS { int a; }

 template<class T>

 class D_Day : public Date

 {

 T* day;

 public:

 T& operator+(T*);

 T& get_D_day(int) const;

 }

Figure 16. Declaration Part in the C++ Program

Figure 17 shows the output of the debug information, along with the restored C++

program’s declaration part, using the symbol table attributes for a reverse translation.

Figure 17. Reconstructed C++ Declaration Part

Figure 18 is a class example, and Figure 19 shows the output of the restored C++ class’s

declaration part.

 class Date {

 private:

 int dd, mm, yy;

 static Date default_date;

 public:

 int day(Date * p) const;

 int month() const;

 int year() const;

 static void set_default(int dd, int mm, int yy);

 void swap(void *v[3], int i, int j);

 Date();

 ~Date();

 };

 class Time : public Date{

 public:

 int hour() const;

 int minute() const;

 int second() const;

 };

 Date today;

 Time currentTime;

Figure 18. C++ Class Declaration Part

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

184

Figure 19. Reconstructed C++ Class Part

5. Conclusions

This paper covers the design and implementation of a reverse translator that verifies

and analyzes the symbol table designed during the development stage of the C++

compiler. The reverse translator’s role is to restore, using only the information in the

symbol table, back to the original program. Therefore, it is possible to analyze and

verify the completeness of the designed symbol table and the information on the

identifiers stored in the symbol table.

Moreover, based on the verified symbol table, a correct code can be generated by

examining the use of the referenced identifiers and the attributes of the stored

identifiers in the code generation stage. Furthermore, in addition to translating

programs reversely, the correcting of the C++ compiler became easy by outputting the

debug information. The reverse translator is being expanded to accommodate java,

another object-oriented language, and it is anticipated that it will output even more

debugging information using the symbol table information.

Acknowlegements

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and

Technology(No. 20110006884).

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

185

References

[1] A. V. Aho, R. Sethi and J. D. Ullman, “Compilers: Principles, Techniques and Tools”, Addison Wesley,

(1986).

[2] D. Galles, “Modern Compiler Design”, Addison-Wesley, (2004).

[3] C. Fraser and D. Hanson, “A Retargetable C Compiler: Design and Implementation”, Addison Wesley, (1995).

[4] B. Stroustrup, “The C++ Programming Language”, Addison-Wesley, (2000).

[5] International Standard ISO/IEC 14882:1998(E) Programming Language - C++, ISO/IEC, (1998).

[6] B. Venners, “Inside the JAVA Virtual Machine”, 2nd ed., McGraw-Hill, (2000).

[7] J. E. Smith and R. Nair, “Virtual Machines”, Morgan Kaufmann, (2005).

[8] T. Lindholm and F. Yellin, “The Javatm Virtual Machine Specification”, 2nd ed., Addison Wesley, (1999).

[9] S. M. Oh, Y. S. Lee and K. M. Ko, "Design and Implementation of a Virtual Machine for Embedded Systems",

Journal of Korea Multimedia Society, vol. 8, no. 1282, (2004).

[10] H. J. Kwon, Y. K. Kim, J. K. Park and Y. S. Lee, "Development of C Program Detranslator from Symbol

Table for ANSI C Compiler", Proceedings of Korea Multimedia Society, vol. 8, no. 69, (2005).

[11] M. S. Son, H. J. Kwon, Y. K. Kim and Y. S. Lee, "The Declarations Reconstruction Technique for the Symbol

Table Verification of the Object-oriented Compiler", Proceedings of Korea Multimedia Society, vol. 13, no.

669, (2006).

[12] Y. S. Lee, Y. K. Kim and H. J. Kwon, “Design and Implementation of the Decompiler for Virtual Machine

Code of the C++ Compiler in the Ubiquitous Game Platform”, LNCS 4413, Springer, (2007), pp. 511.

[13] Y. S. Lee and S. W. Na, "Java Bytecode-to-.NET MSIL Translator for Construction of Platform Independent

Information Systems", Springer, LNAI 3215, (2004), pp. 726.

[14] Y. S. Lee, S. W. Na and D. H. Whang, "Intermediate Language Translator for Execution of Java Programs

in .NET Platform", Journal of Korea Multimedia Society, vol. 7, no. 6, (2004), pp. 824-831.

[15] Y. S. Son and Y. S. Lee, “Design and Implementation of an Objective-C Compiler for the Virtual Machine on

Smart Phone, Multimedia”, Computer Graphics and Broadcasting, CCIS, vol. 262, Springer, (2011), pp. 52.

[16] Y. S. Son and Y. S. Lee, "The Semantic Analysis Using Tree Transformation on the Objective-C Compiler",

Multimedia, Computer Graphics and Broadcasting, CCIS, Springer, vol. 262, (2011), pp. 60-68.

[17] Y. S. Lee and Y. S. Son, "A Study on the WIPI-to-Windows Mobile Game Contents Converter using a

Resource Converter and a Platform Mapping Engine", Advanced Science Letters, vol. 5, no. 3, to be published,

Amer Scientific Publishers, (2012).

[18] R. P. Cook and T. J. Leblanc, "Symbol Table Abstraction to Implement Languages with Explicit Scope

Control", IEEE Transactions on Software Engineering, vol. 9, no. 8, (1983).

[19] S. C. Dewhurst, "Flexible Symbol Table Structures for Compiling C plus plus", Software-Practice and

Experience, vol. 17, (1987), pp. 503.

[20] M. Gallego-Carrillo, F. Gortázar-Bellas, J. Urquiza-Fuentes and J. Á . Velázquez-Iturbide, "SOTA: a

Visualization Tool for Symbol Tables", ACM SIGCSE Bulletin, vol. 37, (2005), pp. 385.

[21] R. Meyers, "The New C: Declarations and Initializations", C/C++ Users Journal, vol. 19, (2001), pp. 56.

[22] J. F. Power and B. A. Malloy, "Symbol Table Construction and Name Lookup in ISO C++", the Conference

on Technology of Object-Oriented Languages and Systems, TOOLS, TOOLS-PACIFIC, (2000), pp. 57.

[23] W. Alouini, O. Guedhami, S. Hammoudi, M. Gammoudi, and D. Lopes, "Semi-Automatic Generation of

Transformation Rules in Model Driven Engineering: The Challenge and First Steps", International Journal of

Software Engineering and Its Applications, vol. 5, SERSC, (2011), pp. 77.

[24] P. G. Vijayrajan, "Analysis of Performance in the Virtual Machines Environment", International Journal of

Software Engineering and Its Applications, vol. 32, SERSC, (2011), pp. 53.

Authors

YangSun Lee

He received the B.S. degree from the Dept. of Computer Science, Dongguk University,

Seoul, Korea, in 1985, and M.S. and Ph.D. degrees from Dept. of Computer Engineering,

Dongguk University, Seoul, Korea in 1987 and 2003, respectively. He was a Manager of the

Computer Center, Seokyeong University from 1996-2000, a Director of Korea Multimedia

Society from 2004-2005, a General Director of Korea Multimedia Society from 2005-2006

and a Vice President of Korea Multimedia Society in 2009. Also, he was a Director of Korea

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

186

Information Processing Society from 2006-2010 and a President of a Society for the Study of

Game at Korea Information Processing Society from 2006-2010. And, he was a Director of

Smart Developer Association from 2011-2012. Currently, he is a Professor of Dept. of

Computer Engineering, Seokyeong University, Seoul, Korea. His research areas include smart

system solutions, programming languages, and embedded systems.

