
International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

163

Software Modules Management Techniques for Multi-Cooperate

Robots based on R-Object Model in Dynamic Environments

YunSik Son
1
, YangSun Lee

2
 and JinWoo Jung

1
*

1
Dept. of Computer Engineering, Dongguk University

26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, Korea

2
Dept. of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, Korea

sonbug@dongguk.edu, yslee@skuniv.ac.kr,

*
Corresponding Author: jwjung@dongguk.edu

Abstract

In recent research, robots have been regarded as having a complete set of functions. Such

robots can fulfill only specialized roles. Accordingly, it is not possible to use these robot

systems for alternative purposes. The complexity of robot system for various tasks can be

simplified by multi-robot cooperation system. Also In the classical robot motion paradigm,

model-based paradigm in the field of motion planning of robots, robots make it difficult to

respond efficiently to the dynamically variable environment such as disaster area. In order to

handle such a situation that may be changed dynamically, a technology that allows a dynamic

execution of data transmission and physical/logical connection between multiple robots based

on scenarios is required.

In this paper, we deal with the software module management techniques for the multi-

cooperate robot systems using R-Object model in dynamically changed environments. The

proposed method is designed for managing versions of software modules to processing same

or different functions and used to the multi-cooperate robot system can be adapt to any given

environment and execute scenarios.

Keywords: Robot Model, Reconfigurable Robot Software, Dynamic Environment, Robot

Software Module Management

1. Introduction

Industrial and alternative robots were the very important reason developing robots. Due to

the reduced production costs of robots resulting from a constant development of robot

technologies, robots that aid our everyday lives in various ways are becoming

commercialized.

The various kinds of robots developed today employ the well-known methods of Sense-

Plan-Act, Behavior-based, and Hybrid. These classical methodologies are difficult to deal

with robots developed for disaster and space exploration purposes once their parts break

down during operations, because traditional techniques is very complex to consider

dynamically changing environments. Therefore, we would be able to respond more efficiently

if we utilize surrounding robot components to assume the tasks that cannot be fulfilled by as

single robot.

To solve such problems, many researches are conducted on systems that reconstruct robots

through physical combination among modules. These systems construct robots through 2D or

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

164

3D physical linking based on a fixed control module [1, 2, 3, 4]. However, most module robot

studies focus on only mechanical or physical conjunction and failed to propose a clear

methodology as to how hardware-linked robots actually execute a given set of tasks.

An evolutionary robot technology is defined as each element as a robot component and

allows it to accomplish its goals through a combination of these components. A method that

effectively controls the dynamically shifting environment is needed be-cause such

evolutionary robot executes a search of surrounding components, combination, separation,

and task sequent reconstruction based on the given scenario [5].

An R-Object is modeling technique that represents an evolutionary robot that

accommodates dynamic integration and separation while executing tasks.

In this paper, we will discuss on robot software management techniques in dynamically

changing environment. The robot software management techniques are based on R-Object

model and solve the problem for software management in dynamically reconstructable robots.

2. Evolutionary Robots using Multi-Robot Cooperation

Evolutionary robots have a self-developing mechanism that allows them to adapt to

different environments through learning and evolution. In the notion of evolutionary robots,

we can regard each functional unit as an independent component robot. Functional unit robots

execute a given set of tasks through mutual collaboration with surrounding robots [6, 7, 8, 9].

A methodology for accomplishing given goals is required in order to develop an evolutionary

robot system. In this study, we limit robots to those used in natural disasters and space

explorations.

Table 1. Scenario Execution Steps in Evolution [10]

Step Description

Step 1 A scenario is given.

Step 2 Separate the scenario into task sequences.

Step 3 Each robot diagnoses whether it can accomplish a given t

ask. At this time, robots use task sequences and task-beha

vior mapping information.

Step 4 Decide major control robot in the given robot set.

Step 5 Robots execute a scenario. In this process, robots needed

for a task cooperate with each other.

Step 6 If a cooperating robot is removed or a new robot is added,

 the system reconstructs the robot set and goes to step 4 u

ntil the scenario is ended.

Step 7. If, during scenario execution, other robots are equipped w

ith newer or enhanced functions and if a more effective sc

enario execution seems possible based on the given metri

cs, the particular robot reconstructs the task sequence for

the current scenario execution and the structure of the rob

ot function layer.

Table 1 shows the scenario execution procedure chosen based on the analysis of space

exploration robots [11].

The layer of the proposed evolutionary robot can be divided in a robot platform-dependent

layer and a platform-independent layer, which gives the advantage of being able to deal with

various platform-dependent functions using the same commands in the platform-independent

layer. We designed a new robot software module layer model called TBPPC (Task-Behavior-

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

165

PIF-PSF-Component) in previous work [10, 12, 13, 14] for evolutionary robots. Figure 1

illustrates the layers of a robot analyzed from a functional perspective and it shows the

process of modifying the mapping relationship when an error occurs during mapping actual

robot components run based on the TBPPC model.

Figure 1. Functional Perspective Robot Layer

3. R-Object Model

We need a new robot model because it is difficult to reconstruct robot components for

scenario execution with the existing robot model. In this study, we define the unit with

functions including communication, self-diagnosis, and inference as a single robot model and

we propose an R-Object model for component-based evolutionary robots [10, 12, 13, 14].

The R-Object model is consisted of a task-diagnostic module that determines if a task can

be executed, TBPPC mapping information, an action algorithm, and attribute information

with which robots are expressed. The task-diagnostic module recognizes the functionality of

the robot self and identifies the functions needed additionally to perform the given tasks.

TBPPC mapping information shows the mapping relationships across tasks, behaviors, PIFs,

PSFs, and components. Further, PIF (Platform Independent Function) and PSF (Platform

Specific Function) each relate to expressing hardware-independent functions and hardware-

dependent functions, respectively. Also, individual robot components can contain multiple

PSFs. Each robot model is designed to enable independent behavior and collaboration

through restructuring.

The R-Object is modeled while taking into consideration the defined input data and

hardware robot system. Figure 2 illustrates the R-Object model.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

166

Figure 2. R-Object Model

The R-Object is consisted of 6 memory sectors, 4 tables, and 9 modules. A memory sector

expresses the state and the attribute information of a robot and is consisted of an event queue

for executing scenarios based on events and a memory sector for saving information acquired

during the scenario execution. The 4 tables are composed of actions, mounted sensors,

possible events, and mapping information across task-components.

The 9 modules that carry out the core tasks in the R-Object model include the loader,

executor, action algorithm, memory manager, event manager, network module, reasoning

module, diagnosis module, and logger. The loader delivers data to the executor, which

analyzes scenarios received by the robot. The action algorithm role is to contain a set of

actions that can be taken by the robot. The memory manager is a module that manages

memory loaded on to the robot and the event manager is a module for capturing and filtering

events generated from the robot. The network module is responsible for inter-robot

communication and the reasoning module consists of a set of functions that can be replaced

with when the robot breaks down. The diagnosis module determines what tasks the robot

object can execute based on the mapping information and sub-task sequences, which result

from scenario analysis. Once the diagnosis module decides that a particular robot is able to

carry out a task, it creates a set of robots necessary for the task. The logger denoted by the

dotted line is a module that collects debugging information and it can be added as needed.

With the R-Object model, users can generate specific modeling information for an actual

robot. The R-Object model offers a way to generate new models by extending the existing

model while taking reusability into consideration. Also, the R-Object model can be extended

through connection of R-Objects during scenario execution.

Input data for R-Object modeling consists of name, status, attribute, action, sensor, and

network information. The status information of a robot includes information subject to change

during scenario execution such as control point, location, and declination. The attribute

information of a robot is defined as density, material, color, width, height, and shape. Action

and sensor information indicates the number and types of actions and sensors that a robot can

perform.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

167

(a) On Software

(b) On Hardware

Figure 3. R-Object Model on Software and Hardware

The goal of the model is to abstractly portray a hardware robot and to describe it with

consistency from a functional perspective independent from its hardware. It also offers a

TBPPC model-based hardware-independent interface so that dynamic aggregation and

separation of software and hardware is possible. This allows us to apply identical models to

software and hardware. Figure 3 illustrates the structure with which the R-Object modules are

mounted on software and hardware.

In order to link and separate robot components, we must consider the information linking

structure between R-Objects. In this structure, we design the linking structures of

configuration information conservation form, tree form, and star form and we analyze the

advantages and disadvantages of each. For the analysis, we assume that robots are interlinked

with one another in a linear form as shown in (a) of Figure 4.

The method of the configuration information conservation form (a) is expressed identically

as the link structure of actual robots. Thus, it is an advantage that we can maintain the

configuration information for robot linking. However, there exists overhead from the

communication between the intermediary robots (B, C) and the major control robot (A*) to

direct orders to an indirectly linked robot (D). In a tree structure (b) link, the major control

robot can directly place orders to all linked robots but non-major control robots cannot put

direct orders to other robots and information about the type of robot link becomes lost. In the

star-type link (c) structure, robots can send directions to one another and they can directly and

mutually exchange information. However, the star-type structure fails to maintain the

information about the type of robot link.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

168

Figure 4. Representation of Connection Structure

In a component-based evolutionary robot, the robot in control sends orders to other linked

robots and assigns them tasks. The configuration information conserving structure can always

maintain configuration information but it is not suitable because it entails overhead for

ordering commands. Also, the star-type is not appropriate for the notion of component-based

evolutionary robots because it allows all robots to send orders to one another on top of the

spatial overhead from expressing so much connection information. Thus, we chose the tree-

type structure, which well reflects the idea of linking and separation of component-based

evolutionary robots and conserved the linking information of each robot in order to maintain

our configuration information.

Information sharing across individual robots is done by communication through network

modules. Also, all information can be shared since linked robots are logically expressed by a

single R-Object.

The robot used in this case study was a mobile robot platform with the R-Object model as

shown in Figure 5.

Figure 5. Experimental Robot Platform

4. Robot Software Module Management Techniques

In this chapter, we propose the management techniques for robot software modules based

on R-Object model. Especially, in this study, we are focusing on the management method for

software unit modules that executing same function by robot itself in dynamically changing

environments. In the proposed method, all robots based on R-Object has a software modules

information graph to process a given specific task and expand robot group’s functions by

merging graphs of each joined robot for cooperation work.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

169

Figure 6. Extended R-Object Simulation Model

Next, we deal the software module graph and operations for graph used in proposed

method. Table 2 shows notations in graph management operations. In the proposed method,

software modules information graph, G is directed acyclic graph.

Table 2. Notations for Software Modules Information Graph

Symbol Description Symbol Description

G G = { (v, E)* } Eo Set of outer edges

V Set of vertex(node) I Module information

v Vertex(node), v = (I, T, M) T Type of function

 (self, cooperation, other)

E Set of edges M Meta information

Ei Set of inner edges S Super vertex for all vertex,

no inner edges

The Algorithm in Table 3 are to generate module selection information.

Table 3. Module Selection Information Generation Algorithm

Input: G

Output: order information of G

1. Write lower vertexes while traverse graph G from bottom to top.

2. Except an S vertex.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

170

The algorithm to merge information graphs is follows. We can apply this algorithm to both

single robot module information graph and merged graph.

Table 4. Information Graphs Merge Algorithm

Input: G1and G2

Output: merged graph Gm

1. Calculate module information of G1and G2.

2. Add all vertexes v of G1 and G2 to new graph Gm

except common vertexes of G1 and G2.

3. Add Ei and Eo of common vertexes of G1 and G2 to

graph Gm

4. Find vertexes that have no Ei from G1and G2. (find root

nodes)

5. Check cross element - v1 ∉ G1 and v2 ∉ G2 – for found

vertexes at step 4.

6. If step 5 is true than add v1 and v2 to Eo of new vertex

S and add S to Ei of v1 and Ei of v2.

a. If v1 ∉ G2 and v2 ∉ G1 then

Ei of v1 ∪ S and Ei of v2 ∪ S

Eo of S ∪ v1 and Eo of S ∪ v2

{ v1 | v1 ∈ G1 and Ei of v1 = Ф }

{ v2 | v2 ∈ G2 and Ei of v2 = Ф }

b. If S is already existed then Eo of new S ∪ Eo of old

S and delete old S.

7. If the graph has cycles then process normalization to

remove the cycles.

criteria1. Remove Eo of the most deepest v in the

cycle.

criteria2. Remove Eo of v has the most smallest sub

v in the cycle.

criteria3. Reflect the depth of original graph.

8. Calculates the module selection information of the new

constructed graph.

By using generated information and graph, the multi cooperative robot system can select a

suitable robot software unit module on the situation.

Figure 7 shows result that merge graph from graph G1 and G2 using algorithm in Table 4.

In Figure 7, each graphs are represented by set of tuples as the definition in Table 2 and each

tuples are consist of (vertex, (set of inner edge, set of outer edge)).

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

171

Figure 7. Merge Operation on Software Module Information Graph

Table 5. Module Selection Information Generation Algorithm

Input: G

Output: order information for all vertex of G

1. write all lower vertex information of visited one while traverse

from bottom vertexes to the top vertex.

2. excepts S vertex.

Table 6. Candidate Module Information Extraction Algorithm

Input: module version information, module selection information (if

merged graph, includes module selection information of pre-merged

graph).
Output: candidate module information

1. Union order information of the each module by inputted module

version information, module selection information.

2. Union order information until not changed version information

(information are increased while repeated, and cycled vertex information

are generated finally).

Next, the module selection information is generated from the software module information

graph and the candidate module information is extracted from it. Table 5 shows the algorithm

to generate module selection information from the graph and Table 6 is the algorithm to

extract candidate information.

Figure 8 shows the module selection information generated from each graphs using

algorithm in Table 5.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

172

Figure 8. Simple Software Module Information Graphs and Module Selection
Information

Next example is about to introduce graph normalization of merged graph. Figure 8 is target

software information graph and Figure 9 is merged graph of Figure 8 and resolved cycle

problem by proposed method. The directed edge from node D to node B is eliminated

according to the criteria 1.

Figure 9. Cycle Resolution for Merged Software Module Information Graph

Information obtained through this process, a software module graph is utilized in the

scenario execution of the robots. And, each candidate functions are evaluated by features -

environmental information, execution complexity, performance and etc. – and the robot can

choose the more efficient function to execute target sub task sequence.

5. Conclusions

In the classical robot paradigm, robots make it difficult to apply efficiently to the

dynamically variable environment such as disaster environment. An R-Object model

could adapt to changing environments and features dynamic linking, separation, and

collaboration. In this study, we proposed robot software management techniques in

dynamically changed environments. Proposed techniques can solve various software

problems while robot reconstruction to process the given task.

In the future, we need to study how to determine optimized function for given task

and situation. Also, we will need to simulate and experiments about the R-Object model

and suggested techniques.

Acknowledgements

This paper was extended from the previous research paper “Robot Software Modules

Management Techniques in Dynamic Environments” in AITS-MSA 2012.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

173

References

[1] A. L. Christensen, R. O’Grady and M. Dorigo, “Distributed Growth of Specific Structures Using Directional

Self-Assembly”, IEEE Robotics & Automation Magazine, (2007), pp. 18-25.

[2] C. Detweiler, M. Vona, Y. R. Yoon, S. K. Yun and D. Rus, “Self-Assembling Mobile Linkages”, IEEE

Robotics & Automation Magazine, (2007), pp. 45-55.

[3] S. Murata, K. Kakomura and H. Kurokawa, “Toward a Scalable Modular Robotic System”, IEEE Robotics &

Automation Magazine, (2007), pp. 56-63.

[4] J. H. Kim, M. T. Choi, M. S. Kim, S. T. Kim, M. S. Kim, S. Y. Park, J. H. Lee and B. K. Kim, “Intelligent

Robot Software Architecture”, IEEE International Conference on Robotics and Automation, (2007), pp. 385-

397.

[5] T. A. Choi, “Scenario based Robot Programming”, IASTED International Confer-ence on Robotics and

Applications, (2006), pp. 55-60.

[6] L. E. Parker, “Adaptive Heterogeneous Muti-Robot Teams”, Neurocomputing, Special issue of NEURAP ’98,

Neural Network and Their Applications, vol. 28, (1999), pp. 75-92.

[7] D. Kim , S. Park , Y. Jin , H. Chang , Y. S. Park , I. Y. Ko , K. Lee , J. Lee , Y. C. Park and S. Lee, “SHAGE:

a framework for self-managed robot software”, Proceedings of the 2006 International Workshop on Self-

Adaptation and Self-Managing Systems, (2006).

[8] D. Kim and S. Park, “Alchemistj: A Framework for Self-Adaptive Software”, The 2005 IFIP International

Conference on Embedded And Ubiquitous Computing, LNCS3824, (2005), pp. 98-109.

[9] M. Karanam and A. R. Akepogu, “A Framework for Visualizing Model-Driven Software Evolution – Its

Evaluation”, International Journal of Software Engineering and Its Applications, vol. 5, no. 2, (2011) April,

pp. 136-148.

[10] J. W. Park, Y. S. Son, J. W. Jung and S. M. Oh, “Software Interface for Hardware-independent Robot

Platforms”, International Journal of Assistive Robotics and Mechatronics, vol. 9, no. 4, (2008), pp. 110-119.

[11] M. Romano, B. N. Agrawal and F. Bernelli-Zazzera, “Experiments on command shaping control of a

manipulator with flexible links”, Journal of Guidance Control and Dynamics, vol. 25, no. 2, (2002), pp. 232-

239.

[12] Y. S. Son, J. W. Park, J. W. Jung, and S. M. Oh, “R-Object Model Simulator for Evolutionary Robots”, The

6th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2009, (2009).

[13] J. W. Park, Y. S. Son, J. W. Jung and S. M. Oh, “R-Object Model for Evolutionary Robots using Multi-robot

Cooperation,” The 2nd IFAC International Conference on Intelligent Control Systems and Signal Processing,

(2009).

[14] J. W. Park, Y. S. Son, J. W. Jung and S. M. Oh, “A Study on the Evolution of Software Aspects for

Evolutionary Robots”, International Journal of Assistive Robotics and Systems, vol. 10, no. 2, (2009), pp. 27-

35.

[15] N. Koeniq and A. Howard, “Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator”,

Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, (2004),

pp. 2149-2154.

[16] O. Reinoso, A. Gil, L. Paya and M. Julia, “Mechanisms for collaborative teleoperation with a team of

cooperative robots”, Industrial Robot, vol. 35, no. 1, (2008), pp. 27-36.

[17] J. W. Jung and B. C. So, “An Idea to Reduce Number of Cells in the 2D Exact Cell Decomposition-based

Mobile Robot Path Planning”, The 7th International Conference on Ubiquitous Robots and Ambient

Intelligence, (2010).

[18] J. H. Lim, S. H. Song, J. R. Son, H. S. Park and H. S. Kim, “An Automated Test Method for Robot Platform

and Its Components”, International Journal of Software Engineering and Its Applications, vol. 4, no. 3, (2010),

pp. 9-18.

[19] N. Azoui and L. Saidi, “Passivity Based Adaptive Control of Robotic Manipulators Electrically Controlled”,

International Journal of Advanced Science and Technology, vol. 34, (2011), pp. 45-54.

[20] S. M. Ghosh, H. R. Sharma and V. Mohabay, “A Study of Software Change Management Problem”,

International Journal of Database Theory and Application, vol. 4, no. 3, (2011), pp. 39-48.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 4, October, 2012

174

Authors

Yunsik Son

He received the B.S. degree from the Dept. of Computer Science, Dongguk

University, Seoul, Korea, in 2004, and M.S. and Ph.D. degrees from the Dept. of

Computer Engineering, Dongguk University, Seoul, Korea in 2006 and 2009,

respectively. Currently, he is a Researcher of the Dept. of Computer Science and

Engineering, Dongguk University, Seoul, Korea. His research areas include smart

system solutions, secure software, programming languages, compiler construction, and

mobile/embedded systems.

YangSun Lee

He received the B.S. degree from the Dept. of Computer Science, Dongguk University,

Seoul, Korea, in 1985, and M.S. and Ph.D. degrees from Dept. of Computer Engineering,

Dongguk University, Seoul, Korea in 1987 and 2003, respectively. He was a Manager of the

Computer Center, Seokyeong University from 1996-2000, a Director of Korea Multimedia

Society from 2004, a General Director of Korea Multimedia Society from 2005-2006 and a

Vice President of Korea Multimedia Society in 2009. Also, he was a Director of Korea

Information Processing Society from 2006, and a President of a Society for the Study of

Game at Korea Information Processing Society from 2006. And, he was a Director of Smart

Developer Association from 2011-2012. Currently, he is a Professor of Dept. of Computer

Engineering, Seokyeong University, Seoul, Korea. His research areas include smart system

solutions, programming languages, and embedded systems.

Jin-Woo Jung

He received the B.S. degree from the Dept. of Electricity and Electronic

Engineering,Korea Advanced Institute of Science and Technology, Daejeon, Korea, in

1997, and M.S. and Ph.D. degrees from the Electricity and Electronic Engineering, ,

Korea Advanced Institute of Science and Technology, Daejeon, Korea in 1999 and 2004,

respectively. Currently, he is a Professor of the Dept. of Computer Science and

Engineering, Dongguk University, Seoul, Korea. His research areas include human-

robot interaction, assistive robotics, and embedded systems.

