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Abstract 

One of the most popular scale exponent estimation algorithms is the Rescaled Range (R/S) 

analysis. The algorithm estimates the ratio of a range and standard deviation statistics in a 

window with increasing length. Firstly, through simulations with generated noise we analyze 

estimation precision of the algorithm and find that the algorithm overestimates and 

underestimates at lower and higher bounds of the estimation range correspondingly. 

Secondly, we analytically analyze the reasons for estimation errors. Based on spectral model 

of self-similar processes we find that the root of incorrect estimation is in the bias that 

persists in variance calculated for self-similar processes of limited length. Thirdly, we apply 

R/S algorithm to estimate scale exponents in WiMAX traffic, finally we compare the estimated 

exponent with the exponent obtained based on standard deviation statistics. 
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1. Introduction 

The network traffic is one of the numerous examples of processes with self-similar 

properties. It was discovered in the earlier 90s that previously widely used Poisson 

models do not take into account correlation in network traffic. Novel fractal models 

found to be more suitable to consider long range dependencies (LRD) of traffic loads. It 

turned out that LRD of the network effects its efficiency. It has been shown that TCP can 

induce fractal behavior in network traffic [1]. The analysis of network traffic helps improving 

network performance and design as it affects the total per-packet delay. The analysis of 

processes with self-similar properties consists in estimation of a process’s scale-exponent. 

Therefore, the estimation precision is of a great importance in network traffic analysis. One of 

the most popular estimation algorithms is Rescaled Range analysis that relays on R/S statistic. 

The algorithm calculates range and standard deviation statistics for a window with an 

increasing length. Incorrect estimation may lead in misinterpretation of network traffic 

behavior. Ghaderi [2] proposed a network traffic predictor based on assumption that so called 

Hurst exponent a characteristic of self-similarity, rarely exceeds 0.85. However, our analysis 

shows that Rescaled Range analysis is significantly overestimates at lower values of H 

(   ) and underestimates H for values      . Thus such a conclusion is incorrect 

provided that R/S estimation algorithm is used. 
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2. The Spectral Model of Self-similar Processes 

There are two approaches to define statistically self-similar (SS) processes. In this paper 

we focus on the model defined in frequency domain [3]. The other model of self-similar 

processes is defined through autocorrelation function [4]. Both approaches are related to one 

another. The definition of the SS process by means of power spectral density (PSD) is given 

by: 

Definition 1. 

A statistically self-similar random process      is said to be     process if its power spectral 

density is presented in the following form: 

      
 

       (1) 

The parameter γ is called the spectral exponent and   is an arbitrary constant. Spectral 

exponent γ plays the key role in the behavior of self-similar processes. 

Notice that this definition says nothing about the frequency bounds, meaning that f can 

take any values from zero to infinity which leads to undefined power spectral density at 

infinity and zero frequency for some γ values. The self-similarity directly follows from the 

definition (1) as: 

                    (2) 

The spectral exponent is only one among a number of scale exponents that are widely used 

in characterization of self-similar processes. The most widely used method for scale exponent 

estimation is the R/S algorithm. R/S algorithm estimates a parameter H that is linearly linked 

to spectral exponent γ. In the following section we review and analyze the R/S algorithm and 

underline over- and underestimation problems associated with the algorithm. 

Algorithm 1. R/S Analysis 

1) Divide   into          adjacent sub-windows                           with   samples 

in each sub-window, so                           

2) Compute the accumulated departures         for each sub-window          

            
                  

    ,     (3) 

where           is the mean value of  th sub-window of size L. 

3) Calculate the range of deviation within each sub-window with accumulated departures         via 

                                        (4) 

4) Find the sample standard deviation defined for each sub-window         

          

 
    

                 
 

 
          (5) 

5) Compute R/S statistics for each           as follows  

            
 

 
 

       

       
   
            (6) 

6) Finally the Hurst exponent H is estimated by solving a least mean square problem: 

               
     

     
              

 
 
        (7) 
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3. R/S Analysis and its Estimation Problems 

The R/S analysis was originally created by the British hydrologist Harold Edwin Hurst [5, 

6] while he was studying the problem of water storage on the Nile river. Later, it was 

popularized by Benoit Mandelbrot especially in the area of long term dependency analysis of 

the stock market. The R/S analysis estimates the parameter H which is a scale exponent and it 

is related to spectral exponent γ as 

  
   

 
, for           (8) 

Given the time series                of length N, the R/S statistics are calculated as 

outlined in algorithm 1. 

Form the algorithm it can be observed that H is a slope of a line that is a best fit for the 

relationship             
        

        
  . Assuming that       and       do not significantly 

fluctuate around their means          and        , and taking into account that    

               ,  we can separately analyze contributions of numerator and denumerator in 

estimation of H. Thus, we estimate scale exponents r and s using only the average of range 

deviations      over cumulative departures (figure 1 a)) and using the average of standard 

deviations       (figure 1 b)) correspondingly (S statistics).  

 
(a) (b)         (c) 

Figure 1. The left ordinate corresponds to value of   and the right ordinate 

represents the value of the scale exponent respectively. a) Shows the 
estimations of r based on range analysis of integrated time-series, b) shows 

the estimations of s based on standard deviation, c) shows the estimations of 
H with the R/S analysis. 

 

By estimating the slope of the line             against        , and             against 

        and then subtracting one from the other gives us an approximation of the slope of the 

line fit for      
    

    
   against        . Such approximation allows us to analyze the behavior 

of R/S statistics and understand how range deviation and standard deviation contribute to the 

estimation process. To check the precision of each approach we conducted three groups of 

simulations. We generated five sets of processes for each               . This choice of   

covers the range of  s for the most often appearing self-similar processes occurring in nature. 

For instance     and     correspond to white and Brownian processes. Network 

processes are usually processes with     such processes are uncorrelated, however with 
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occurring congestion the value of    diverges [1]. The process with     is called pink noise 

and its current value is approximately equally correlated with values from recent and the very 

distant past. Heart rate variability is a good example of processes with    .  

To analyze how the length of processes effects estimation precision, we generated 100 

realizations with a different number of samples                     for five mentioned 

above values of  . We change the window size in accordance with the length of the process in 

the following manner                   . For each pair of   and N  we calculated the 

mean and standard deviation. These calculated values are shown in figure 1(a). 

The relationship between the estimated scale exponent r and the spectral exponent   is 

given by: 

  
   

 
      (9) 

Note that        statistics is calculated for cumulated sum. As it can be seen from figure 1 

(a) among all values of   the only accurate estimation is for processes with    , (    ). 

For processes with     estimations are overestimated and for the processes with     are 

underestimated. The precision gets better with increasing windows’ sizes and time-series 

length. Nevertheless, there is a strong bias for estimated values with           that 

almost does not depend on N.  

The relationship between estimated scale exponent s and the spectral exponent   is 

  
   

 
,     (10) 

From figure 1 (b) it is easy to notice that estimation of scale exponents by observing the 

growth of standard deviation is only suitable for processes with          . Exponents close 

to     are overestimated and exponents around     are underestimated. The estimation 

improves as the numbers of samples in sub-windows and in time-series increase. 

The estimated scale exponents for generated processes with            are zero, due to 

the stationary nature of these processes. For such processes standard deviation does not 

depend on the observation time. The standard deviation increases for processes with     . 

Figure 1 (c) shows the estimation accuracy of H. The quality of estimation slowly 

increases with the increasing number of samples in sub-windows as well as in processes. The 

relation between H and   is given in eq. (3). The estimation behavior in figure 1 (c) coincides 

with the following equation, 

          (11) 

that supports the assumption we made earlier. Moreover, from this fact we conclude that the 

range of deviations and standard deviation behaves similarly. Thus, by subtracting 

corresponding values of s from values of r, we obtain good approximation of H.  Therefore, 

we can conclude that the division by standard deviation in the R/S algorithm leads to 

narrowing of the estimation range to         and promotes significant underestimation for 

processes with    . The estimations for processes with     overlap with the constant 

   . Thus the R/S analysis combines the estimation drawbacks of estimation algorithm for 

exponents r and s. The exponent H=0 is overestimated in figure 1 (c) in the same fashion as   

overestimated for a process with true     in figure 1 (a) and H=1 is underestimated 

similarly to the underestimated s in figure 1 (b).  
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4.  The Sources of Estimation Errors 

As we have seen in section 3, by measuring the increase in the standard deviation, the scale 

exponent s is estimated. From the simulation results we have also observed that scale 

exponent r of cumulated departures has similar behavior and the difference between these two 

exponents is a good approximation of H. Therefore we further for simplicity base our analysis 

on the behavior of standard deviation. 

The variance of self-similar processes increases with the increasing observation interval L 

following the power law (12). 

         
  

  
  

  
   

   
 
  

  

   

         

     

    (12) 

Thus the reason for wider estimation range of r exponents using range deviation is in the 

prior summation step. Recalling that integration procedure is equivalent to multiplying the 

process in frequency domain by     , so it leads to the following spectral density after 

integration: 

     
 

     
     (13) 

Thus, the summation step in R/S algorithm increases the spectral exponent by 2 thus r is 

increased by 1 according to (9). The summation step allows estimating r exponents for 

processes with    . 

To study the over- and underestimation problems let us denote       , where   is 

sampling period and    
 

 
. Then the variance changes as follows: 

      
 

 
       ,     (14) 

where      . 

For     the relationship (14) converges to 

        ,     (15) 

on other hand when L is comparable with the sampling period T, the power law rolls off  and 

the rate of the deviation from the power law depends on  . 

The variance exponents are estimated as a ratio between the logarithm of the observation 

intervals and the logarithm of the variance calculated for a process with sampling period T: 

                  
   

 
         

   
 

   

    
     (16) 

Although when L tends to infinity, the limit converges to a correct value of the exponent, 

the rate of convergence varies for various exponents. The difference in the convergence rate 

results in incorrect estimation on the limited range of scales. 

Let us first analyze the cause of the overestimation problem. To do so, we take a closer 

look at the right side of expression (16), that consists of two summands. The first summand is  

       
         

   
     (17) 
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For the self-similar processes with infinitely fine details i.e. high frequency limit    

     , the summand (17) reaches a constant         . However, when     and    , 

the numerator tends to   . Thus, in estimation procedure for the case when observation 

interval is comparable with the sampling period, the variance behavior rolls off. 

Figure 2 (a) shows the plots of the expression (17) for            while   
                  . As it can be seen for longer L the underestimation effect is less adverse 

and it is especially strong at lower values of  . Thus, the process discretization leads to 

underestimation, however we saw from the simulation results (Figure 1c) that estimated 

values are overestimated. The cause of overestimation is the second summand in (16), i.e.: 

        
   

   
    (18) 

 
(a) (b) (c) 

Figure 2. The plots show the relation between the true   and the estimated    for        magenta, 

                   green, and         cyan curves. a)       , b)       and c)                    , the 

black line correspond to ideal match of the estimated    and the true  . 

When    ,        tends to zero, and summand (18) does not influence the estimation. 

On the other hand for finite observation interval, the summand        significantly contributes 

to the total variance, especially for greater  . Figure 2(b) shows the plots of (17) for   
         and                     . The longer the observation interval the closer         

to zero at all values of  . Nevertheless the expression (17) diverge at    . 

The estimated exponent is a sum of (17) and (18) and is shown on figure 2(c).  It is seen 

now that when the true values of   are close to zero, the estimated exponents are always 

overestimated.  The overestimation effect is less for longer L. From figure 2(c) it is also seen 

that for longer L, variance exponents     are always underestimated. The underestimation 

gets worse for greater values of  . 

Thus, comparing the effects of (17) and (18) on the estimation we conclude that even 

though the estimation is effected by the finite high frequency limit, the main cause of the 

overestimation and underestimation is in the nature of variance measurement of self-similar 

processes, specifically in      summand. The estimation error is minimal for   , i.e. 

    that corresponds to brown noise. When    , the estimation is only effected by the 

finite high frequency limit, that makes the estimation underestimated (fig. 2(a)). Generally, 

for longer observation intervals, scale exponents   are overestimated for      and 

underestimated for    . In terms of Hurst parameter H, the underestimation occurs for 

      and overestimation occur for      .  
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5. Experiments 

The estimation algorithm is also analyzed with real network traffic data. The data have 613 

samples of average daily downlink traffic throughput in bit per second (figure 4 (a)). The 

network traffic data are collected from a real router in mobile WiMAX networks in Seoul, 

Korea, from October 2010 to June 2012. In the target router, there have been about 4,100 

active subscribers in average for that period. Note that the subscribers had been growing in 

general but sometimes were shrunken due to rearrangement of the base stations among 

routers. In general, 100~300 base stations are connected to one router and the router is 

directly connected to the backbone network. 

Figure 3. The abscissa and ordinate are true and estimated scale 
exponents respectively.  Green and blue lines are value of estimated 

exponents using R/S statistics and standard deviation correspondingly. 
The black dashed lines correspond to perfect estimations using R/S and S 

statistics. 

Prior to estimating exponents for real data we generated groups of 100 random sequences 

with          and with the step 0.1. The length of each sequence is equal to 613, i.e. the 

length of available WiMAX downlink traffic throughput. The average and standard deviation 

among estimated exponents were calculated in each group. To estimate exponents we used 

R/S and S statistics with              . The estimation is even worse on such small 

sequences (fig. 3) than on longer sequences (fig. 1(b),(c)).  Figure 3 also shows the behavior 

of estimated exponents     using R/S statistics. The processes with scale exponents     

are better estimated with S statistic. However, the results are still unsatisfactory. 

To check WiMAX network traffic on self-similarity, we plot log(R/S) versus log(L) . We 

chose the same range of               as in simulations above. Analyzing figure 4(a) it is 

easy to see that WiMAX traffic is self-similar with a crossover occurring at a point L = 57 

that is approximately equal to the number of days in two month. The slope of the first 

segment is 0.77, whereas the slope of the second segment is 0.06. Both values diverge from 

0.5, and therefore we conclude that WiMAX traffic is not perfectly Brownian. Moreover the 

first estimated exponent is above 0.5 and thus it is underestimated.  The slope of the second 

segment is almost zero. Such small estimated H, according to figure 3 (blue line), only could 

correspond to   , thus R/S algorithm is not capable of estimating the exponents for this 

process. A better choice for estimating the exponent for WiMAX traffic is by using S 

statistics. The crossover this time occurred at a point L = 29 that is approximately equal 

to the number of days in a month. This phenomenon has to be studied. The slope of the 

first segment is 0.19, whereas the slope of the second segment is 0.34.  According to 

simulations (figure 3, green line) these value are more trustful. The corresponding 
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values of   eq. (10) are 1.38 and 1.68. From these values we can derive stronger 

negatively correlated behavior of the traffic within one month time and weaker 

negatively correlated behavior with time range over a month. 

 

 
(a) WiMAX daily network traffic 

 
(b) Relationship log(R/S) vs log(L) 

 
(c) Relationship log(S) vs log(L) 

Figure 4. WiMAX Network Traffic Analysis 

 

6.  Conclusion 

The R/S algorithm is suitable only for process with Hurst parameter around 0.5. The 

estimation error tends to zero when lengths of sub-windows tends to infinity. We found that 

the estimation quality depends on the lengths of sub-windows. Especially for processes with 

lower values of   , longer sub-windows should be used to minimize the overestimation effect. 

However, this is often impossible, as in our example of WiMAX data, when only records for 

about one and a half year are available. Therefore R/S finds a limited area of applications and 

other estimation algorithm should be applied. We applied S statistics to estimate scale 

exponent for WiMAX traffic data. From the prominent crossover and the estimated values 

    we concluded negative correlation in WiMAX network traffic.  The phenomenon of 

the crossover point has to be further studied with more reliable estimation algorithms [7]. 
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