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Abstract 

Local feature matching is an essential component of many image and object retrieval 

algorithms. Feature similarities between object model and scene graph are complemented 

with a regularization term that measures differences of the relational structure. In this paper, 

we present a novel approach to the optimal feature matching using new Bayesian graph 

theory. First, we will discuss properties of various local invariant feature detectors and 

descriptors for scale, affine transformation and illumination changes. Second, we propose an 

efficient features corresponding method using local invariant features and new graph 

matching algorithm. Main theoretical background of our algorithm is that it can be based on 

the Bayes theorem and an iterative convex successive projection algorithm used to obtain the 

global optimum solution for feature matching problem. Finally, we have conducted the 

comparative experiments between proposed method and existing method on various real 

images. Experimental results show that our method outperforms clearly rather than the 

existing algorithms about feature correspondence in two images with rotation or scale 

transformation and illumination changes.  
 

Keywords: Local Invariant Feature; Bayesian Graph Theory; Feature Matching Method, 

Convex SDP 
 

1. Introduction 

Many features matching algorithms have been proposed during last few decades [1-3]. 

Among these methods, the similarity measure is one of the most powerful tools for feature 

matching. In order to find the corresponding point for a feature point using the similarity 

measure, a template window is considered around the feature point and this window is shifted 

pixel by pixel across a larger search window around an estimated corresponding point, and in 

each position the similarity between the two regions is measured. The maximum or minimum 

value of the resultant measurements defines the position of the best match. Normalized cross 

correlation and SSD (sum of squared differences) are well-known methods for measuring 

similarity between two regions. In addition to a normalized similarity value, normalized cross 

correlation has the advantage of being invariant to the linear change between the data sets, 

which makes the algorithm robust against low varying illumination change the scene. In 

recently, Torresani, et. al., [4] presented a new approach for establishing correspondences 

between spare image features. They formulate this matching task as an energy minimization 

problem by defining a complex objective function of appearance and the spatial arrangement 
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of the features and used a novel graph matching optimization technique, which they refer to 

as dual decomposition.  

In this paper, we present a novel approach to the optimal feature matching using new 

Bayesian graph theory. First, we will discuss properties of various local invariant feature 

detectors and descriptors for scale, affine transformation and illumination changes. Second, 

we propose an efficient features matching method using local invariant features and new 

graph matching algorithm. Main theoretical background of our algorithm is that it can be 

based on the Bayes theorem and an iterative convex successive projection algorithm used to 

obtain the global optimum solution for feature matching problem. Finally, we have conducted 

the comparative experiments between proposed method and existing method on various real 

images. 

 

2. Detectors and Descriptors 

A local feature on distinguished region of given image represents an image pattern which 

differs from its immediate neighborhood. It is usually associated with a change of an image 

property or several properties simultaneously. Here, we have discussed various detectors and 

descriptors describing the image characters that are locally invariant with image rotation, 

scale transformation and illumination changes.     

 

2.1. Local Invariant Feature Detector 

The currently most popular distinguished detectors can be roughly divided into three 

categories; corner based or intensity based, contour based or region based, parametric model 

based detector or other approaches [5,6,7]. Corner based detectors locate interest points and 

region which contain a lot of image structure such as edges or intensity changes around 

points. To measure the change, first and second derivatives of images are used in many 

different forms and combination. Therefore, these are not suited for uniform regions and 

region with smooth transitions. Region based detectors regard local blobs of uniform 

brightness as the most salient aspects of an image and extract contours from image. 

Parametric model based detectors or other approach take into account the entropy of a region 

or try to find interest points by matching models or templates to an image. The most popular 

interest detectors, which give sufficient performance results, are listed: Harris or Hessian 

point based detectors (Harris, Hessian, Harris-Laplace, Hessian-Laplace), Difference of 

Gaussian Points (DoG) detector, Entropy Based Salient Region (EBSR) detector, Harris or 

Hessian affine invariant region detectors (Harris-Affine, Hessian-Affine), Maximally Stable 

External Regions (MSER) detector, and Edge Based Regions (EBR) detector and Intensity 

Based Regions (IBR) detector.  

 

2.2 Local Invariant Feature Descriptor 

The currently most popular distinguished descriptors can be roughly divided into three 

categories; distribution based descriptors, filter based descriptors, and other methods [8,9]. 

Distribution based descriptors use histograms to represent the characteristics of the region. 

The characteristics could be pixel intensity, distance from the center point, relative ordering 

of intensity, or gradient. Filter based descriptors use a set of differential operators or different 

types of filters to describe an interest region. Other approach takes into account the moments 

or gradient moment with high order degrees to characterize shape and intensity distribution in 

an interest region. Many different techniques for describing local image regions have been 
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developed. They are listed: Scale Invariant Feature Transform (SIFT) descriptor, PCA-SIFT, 

Gradient location and orient histogram (GLOH), shape context, spin images, differential 

invariants, steerable filters and complex filters, and moment invariants.  

 

3. Efficient Local Invariant Feature using New Graph Matching Method 
 

3.1 Formulation of Probabilistic Feature Matching Algorithm 

Here, we will formulate feature matching problem as Bayesian inference framework. The 

feature matching implies the correspondence between two sets of feature detectors ),( )2()1( PP  

using their descriptor properties ),( )2()1( DD given from the two input )1(I and )2(I . This is 

represented by the bi-directional detector to detector correspondences mapping )2()1(
1 : PPm   

and )1()2(
2 : PPm  . And also it is efficiently represented using an assignment matrix 21 NN 

X of 

nonnegative real numbers, where 1N and 2N denote the numbers of feature detectors in )1(P

and )2(P  respectively. That is, each component ),( jiX of the assignment matrix X  is 

representing the possibility that a detector )1()1( Ppi  matches to some detector )2()2( Pp j  .  

Hence, in order to find the optimal assignment matrix, we are going to apply the Bayesian 

inference principle with the matching problem between two sets of feature detectors 

),( )2()1( PP .  

 

3.1.1. Prior Distribution of Assignment Matrix: First, we will consider the prior 

distribution for row and column vectors of the assignment matrix X . Here, we factorize an 

assignment matrix X  as the 1N  row vectors R
N

R
i

R

1
,,,,1 xxx  . Then, each component ijx  for 

one of row vector ),,,,()(
21 iNiji

TR
i xxx x  represents the possibility that the detector 

)1()1( Ppi   is mapping to any one of detectors )2()2( Pp j   . Hence, we can assume that these 

components satisfy two properties. These are 0ijx  for all 2,,1 Nj   and 1
2

1
 

N

j
ijx . 

Therefore, we can define a new discrete random variable Y  taking with finite number of 

values 2,...,2,1 N . And the probability distributions of Y  taking y can be parameterized by the 

component of a vector R
ix  , that is, 2,,1,)( NyxyYp ij  . Another way to write this is    





2

1
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N

j

jyI
iji xyp x ,                                                                                                  (1) 

where )( jyI   denote an indicator function.  

Moreover, we assume that a conjugate prior for each row probabilistic vector R
ix  is the 

Dirichlet distribution: 
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where )(  denotes the gamma function and 
2

,,1 N  are positive numbers. The hyper-

parameter j can be interpreted as a virtual occurrence for value ijx . Large j corresponds to 

strong prior knowledge about the distribution and small j corresponds to ignorance. Then, 
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using properties of the Gamma distribution and Dirichlet distribution, we can generate the 

pseudo random variable for the thji ),(  component R
ijx of each row probabilistic vector R

ix as 

follows: 

2
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                                                                   (3) 

where ),(  denote the Gamma distribution with parameter  and  .           

Similarly, we factorize an assignment matrix X  as the 2N  column vectors C
N

C
j

C

2
,,,,1 xxx  . 

We assume that a conjugate prior for each column vector C
jx  is the Dirichlet distribution: 
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where )(  denotes the gamma function and 
1

,,1 N  are positive numbers. Then, using 

properties of the Gamma distribution and Dirichlet distribution, we can generate the pseudo 

random variable for the thji ),(  component C
ijx of column vector 

C
jx as follows: 
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where ),(  denote the Gamma distribution with parameter  and  . 

 

3.1.2. Likelihood Function for Assignment Matrix: Second, in order to solve the feature 

matching in a Bayesian inference principle, we need to construct the )( 21 NN  likelihood function 

matrix L  with likelihood components ),( mll that represents the possibility of some detector )1()1( Ppl 

matching to any detector )2()2( Ppm  for the assignment matrix X . It can be derived from the weighted 

combination of the matching matrix Y  that is induced from the similarity for a pair of descriptors 

defined at two detectors and the distance matrix D  that represents the spatial distance between 

locations of detectors.  

First, we consider the matching matrix Y  that is induced from the similarity for a pair of 

descriptors corresponding two detectors. We define edges )1()1( Eeij   and )2()2( Eeab   as a pair 

of detectors ),( )1()1(
jl pp  and ),( )2()2(

ba pp . For each pair of  )1()1( Eeij   and )2()2( Eeab  , the similarity 

matrix S  of size 2211 NNNN   is defined by having its elements as similarities: 

     
       

                
   

      
   

                                                                     (6) 

Here        is denoted with the norm of edge. Then, we can compute the )( 21 NN 

matching matrix Y  with components ),( mly that represents the possibility of some 

detector    
   

      matching to any detector    
   

      from the similarity matrix S  as 

following form.  That is, it can be obtained by summing the similarities for all pairs of edges 

containing detectors )1()1( Ppl  and )2()2( Ppm  : 
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Second, we think about the distance matrix D  that represents the spatial distance between 

positions for a pair of detectors contained two images. In matching problem for two detectors, 

we have to consider the local information which represents the spatial relationship of 

neighbors for detectors. The possibility of some detector )1()1( Ppi  in image )1(I   matching to 

a near detector )2()2( Ipm   is higher than far away detector )2()2( Ipm   in image )2(I  . The local 

information is formulated into the distance matrix D  as follows: 

)
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| || |
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D                                         (8) 

Here, the large value of ),( mld  amplifies the matching potentiality but the small value of 

),( mld  attenuates this property. Finally, we combine the matching matrix and the distance 

matrix to construct the likelihood function matrix L . First, in order to agree with scales for 

elements of the matching matrix Y  and the distance matrix D , we apply the bi-stochastic 

normalization scheme with two matrices. Next, adopting the proper weighting parameter , 

the likelihood function matrix L  is obtained by using the following equation: 

10,)1(   DYL                                                                               (9) 

Hence, we use the thi  row and thj column element ),( jil  of the likelihood matrix L  as the 

likelihood function that represents the possibility of some detector )1()1( Ipi  matching to any 

detector )2()2( Ip j   .  That is, we have that 

                     
      

                                                     (10) 

  

3.1.3. Posterior Distribution of Assignment Matrix: Finally, by combining the prior 

distribution )|( ijxp  and the likelihood function )|),(( )2()1(
ijji xppL  of thji ),( component ijx of row 

vector R
ix and column vector C

jx using Bayes formula, we have obtained the posterior distribution 

),|( ij
R
ij Lxp  of thji ),( component R

ijx of row vector R
ix  and the posterior distribution ),|( ij

C
ij Lxp  of 

thji ),( component C
ijx of column vector C

jx  respectively as follows: 
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                                           (12)     

Here, we have repeated this algorithm iteratively by taking the posterior probabilities 

),|( ij
R
ij Lx   and ),|( ij

C
ij Lx   as initial value of the hyper-parameter j again. If the difference 

between values of one step before and after step can be ignored, we will stop the iteration. 
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Finally, we have obtained that the row and column matching matrices RX  and CX  between 

two features ),( )2()1( PP  are defined by 
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N

C

21
C

xxX                                                            (13) 

 

3.1.4 Computation of Optimal Feature Matching Solution by Convex Problem 

Relaxation: Next, we consider an optimization problem for recovering the optimal solution *
X   from 

probabilistic matching matrices R
X and C

X  by minimizing the distance between X and R
X or 

between X and C
X defined by the following form: 

*
X = 0minarg X  (

)| |( R
XXKLD

)  or 
*

X = 0minarg X  (
)| |( C

XXKlD
)  

Such that 1X1 , 11X T , kT X11                                                               (14) 

In this case, we are going to use the distance function as the Kullback-Leibler divergence 

that is a non-symmetric measure of the difference between two probability distribution P and

Q .  It is defined to be  


),(

),(

),(
log),()| |(

ji

KL
jiQ

jiP
jiPD QP                                                                    (15) 

Moreover, we assume that k detectors are matching at two images.  

This is a special case of the general convex semi-definite program (SDP) which has the 

following standard form:  

min  Tr ]
~

[ XQ  s.t.   Tr ][ XiA  = iC   for mi ,,1 ,  0X                            (16) 

In our case, the objective function for the semi-definite relaxation is given by the following 

form: 


),( ),(

),(
),( log)(

ji ji

R
jiR

ji
x

x
xf X    or   

),( ),(

),(
),( log)(

ji ji

C
jiC

ji
x

x
xf X                               (17) 

where ),( jix , R
jix ),(  and C

jix ),(  are respectively the thji ),(  component of matrix X , R
X  and 

C
X  and the convex SDP constraints sets are defined by: 

}0,|{1  X1X1XC , }0,|{2  X11XX
TC and }0,|{3  XX11X kC T

  
  (18) 

To find the globally optimal solution X  of object function )(Xf , we want to use a 

generalization of successive Bregman projections as proposed in [10]. Before we consider the 

algorithm, we need to define a sub-problem operator )(HPj  for 3,2,1j  as follows: 




HXXfHP
jCX

j ,)(minarg)(                                                                         (19) 
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 Where 

),(

),(),(,

ji

jiBjiAHX  is the dot product between two matrices. Then, by repeated 

applications of )(HPj in a cycle manner, we obtain a primal-dual block update algorithm 

which is defined as follows.   

 

Algorithm: 

Initial Step: Define  3,2,1,, )0()0( jX jj  and set  0)0( j   and 3,2,1,R)0(  jX j X       

Use the convention
)1(

3
)(

0



tt

XX           

Iteration Step: Iterate on ,2,1t   until convergence: 

    For 3,2,1j  : 

))(( )(
1

)1()( t
j

t
jj

t
j fP 

  XX   , )()( )()(
1

)1()( t
j

t
j

t
j

t
j ff XX  

  

Final Step: At convergence with   iterations, the optimal solution is given by 

)(
3

1 )(
3

)(
2

)(
1

* TTT
XXXX 

 
 

The algorithm employs successive Bregman projections and is derived using the 

framework of Frenchel Duality.  

 

4. Experimental Results 

In this section, we evaluate the comparative performances of our method (BGMA) with 

several existing feature matching approach such as Lowe’s shift matching (SM) [11] by 

conducting experiments on various real image data.  

 

  
(a)                                           (b)                                              (c) 

Figure1. Experiments on images from Toole with rotation and translation 
transformation. (a) 47 and 48 Hessian detectors extracted from left and right 
image, (b) SM: 16 correct matches out of 47(left image) and 48(right image)  

detected points, (c) BGMA: 19 correct matches out of 47(left image) and 
48(right image) detected points 

 

We test on two image pairs taken from http://vasc.ri.cmu.edu/idb/html/motion/. The 

candidate local features are generated using the Hessian detector and shift descriptor. Figure 1 

shows that our method is better matching than SM method in   rotated and translated images. 
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5. Conclusions 

We have presented the mathematical formula for the feature matching problem using both 

local invariant features and Bayesian graph matching algorithm. Our method considers the 

properties of detectors and descriptors extracted from given image. And it also induces the bi-

directional detector to detector probabilistic matching algorithm. Main advantage of our 

algorithm is that it can be achieved by Bayes theorem and an iterative convex successive 

projection algorithm in order to the global optimum solution for feature matching problem. 

Experimental evaluations demonstrate that our method clearly outperforms the previous 

matching approaches on various real images.   
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