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Abstract

Cloud is one of the most important atmospheric effects in computer graphics applications,
and there have been lots of research results on it. Although they have mainly focused on
the modeling and rendering of more realistic clouds, nowadays flight simulation games or
even full-scale flight simulators often need a quantity of visually plausible clouds rather
than realistic ones. Furthermore, we also need to save graphics designer’s efforts, especially
for small production companies. Contrary to the previous works, we aimed at the mass
production of clouds, and represent a new method for modeling various kinds of visually
plausible clouds with as little effort as possible. These clouds are displayed in real time with
low computing power consumption. Based on the hierarchical particles, our system starts
from locating relatively large spherical particles in the space. Using these seed particles,
our system automatically generates descendant particles to represent details of the clouds.
In this way, the visually plausible clouds can be generated with much less effort, while
the designer may build up specifically shaped clouds through controlling the seed particle
locations. The particle hierarchy also enables us to naturally implement level-of-detail effects
on the cloud rendering. In the final rendering stage, our system renders each particle with
alpha-blended billboards to achieve fast real-time processing.

1: Introduction

Clouds are mandatory elements for natural outdoor scenes. Especially, they play im-
portant roles to increase user immersions in flight simulation games and/or more serious
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flight simulation applications. Thus, nowadays, we meet increased needs for effective ways
of representing clouds in computer graphics applications[18].

The actual form of cloud depends on the size and density of seed particles, the strength
of the uplift, the air stability, etc. Rapidly constructed clouds typically have water droplets
of almost the same sizes, while slowly grown clouds have those of somewhat difference
sizes. Cloud types mean the shape of the cloud and there are 10 major cloud types[14].
Among them, cumulus, stratus and cirrus are well-known and typical cloud types with
distinguishable shapes, as shown in Figure 1.

(a) cumulus (b) stratus (c) cirrus

Figure 1. Three typical cloud types.

In computer graphics, clouds can be physically simulated from the water vapors to its
final three-dimensional voluminous shapes, dynamically changing with respect to the at-
mospheric conditions such as temperature, air pressure, air stability, and so on. These
physically simulated clouds may have ambiguous boundaries, and are hard to be effectively
simulated. Additionally, we should consider the way of rendering those clouds, to show
more realistic clouds. Since the incident lights can either pass through or be scattered by
the water droplets, complex calculations are required to get precise colors of the clouds, with
respect to their circumstances. Thus, although various modeling and rendering techniques
for clouds have been developed, there is not yet a universal solution which can satisfy all
the requirements.

We focused on the visually-plausible real-time display and its convenient generation. Our
paper does not aim at a more realistic cloud modeling technique, as in most previous meth-
ods. Our goal is to represent a visually plausible method, with the following characteristics:

• real-time display: The rendering time for the finally constructed clouds should be
reduced as much as possible. Typical flight simulators or even casual flight simulation
games need much processing time for realistic motions of aircraft and others. Thus,
the per-frame simulation costs for the clouds, as minor roles, should be minimized,
not to disturb major calculations.

• convenient generation: The virtual cloud designers would want to see the final
cloud appearance as soon as possible. Especially, novice designers tend to get the
final output interactively, and we should satisfy their needs. When designers specify
rough shapes of the clouds, our system would automatically generate their details.

• user-controllable construction: Designers may need specifically shaped clouds,
and our system would support them. As skywriting[17] or sky-typing techniques[16]
in the real world, designers can locate clouds whose shapes are specific alphabets,
company logos, or game characters in the virtual sky of flight simulation games, for
gaming purposes or advertising purposes.
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Our cloud modeling method with the above characteristics has somewhat different goals
in comparison with previous methods. Most previous methods aimed at the generation
of realistic clouds, as natural as possible, while our goal is visually plausible clouds, with
minimized design costs and rendering time.

In this paper, to achieve the above goals, target cloud types are roughly classified as
cumulus, stratus and cirrus. At the first step, a user will locate relatively large spheri-
cal particles in the space, to intuitively describe the rough shape of a cloud. Then, our
system automatically generates relatively small particles around those seed particles, in a
hierarchical manner. Users can control the numbers, locations, and sizes of the descendant
particles, to finally construct detailed ones from the original rough shapes.

At the rendering stage, particles are approximately rendered with DirectX billboards, to
satisfy the fast real-time requirement. We use the concept of texture palettes as used in
Wang’s work[18], to plausibly display several cloud types in a single framework. Addition-
ally, using hardware blending and renderable textures, the silver lining effects on the cloud
boundaries are also supported. Conclusively, our method efficiently constructs visually
plausible clouds, and displays them fast enough.

Previous works in cloud modeling and rendering are presented in Section 2. Section 3
represents our cloud modeling and rendering method. Experimental results from our pro-
totype implementations are shown in Section 4. Conclusions and future work are followed
in Section 5.

2: Previous Works

We can classify previous cloud modeling methods into two categories: procedural methods
and physically based methods. Procedural methods focus on the appearance of clouds, and
enable relatively fast modeling with somewhat reduced reality. Users may control cloud
shapes with some intuitive parameters. In contrast, physically based methods are based on
the physical simulation of the droplets in the cloud. For large-scale clouds, these methods
are hard to achieve real-time processing capability, due to the massive calculations. Since
the cloud shapes should be controlled indirectly through the physical parameters, they are
also hard to make specifically shaped clouds.

Ebert[6] and later Schpok et al.[15] presented procedural cloud modeling methods, re-
spectively, in which overall cloud shapes are constructed by implicit functions and their
details are added by turbulence and noise factors. Since they used slice-based volume ren-
dering techniques, all the textures should be updated for every viewpoint change, and thus
they are hard to achieve real-time renderings.

Nishita et al.[13] focused on the rendering methods rather than modeling, to show more
natural and realistic clouds, and represented a cloud shading method, which reflects light
scatterings. Later, they also used GPU for cloud rendering[5] and extended their method
for some special purposes[3, 2].

Harris et al.[7, 8] proposed a more advanced real-time cloud rendering method, which can
handle multiple scattering effects due to multiple directional light sources and anisotropic
scattering effects due to the change of viewpoints. When the viewpoint changes, they still
need slice-based recalculations, though.

In physically based modeling area, there have been computational fluid dynamics solu-
tions for modeling and animation of fluids including clouds. Kajiya and von Herzen[10]
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solved partial differential equations derived from fluid dynamics, for rendering clouds with
ray tracing methods. Later, GPUs are actively used for parallel processing of massive data
including cloud simulation. However, physically based simulation of clouds still requires
heavy computation.

Dobashi et al.[4] used a cellular automaton to model cloud shapes and their motions.
They simplified overall physical process of cloud construction to accelerate the cloud mod-
eling and animation. Thus, it is difficult to generate various types of clouds. Additionally,
it requires memory spaces for three-dimensional volume data, and also even much compu-
tation. At least at this time, fluid dynamics-based methods are hard to achieve real-time
processing, due to their heavy computation.

Wang suggests a good approximation method for cloud modeling and rendering, espe-
cially for flight simulation games[18]. A cloud is modeled with a set of rectangular boxes
and later rendered with alpha-blended textures. Wang gave considerations on the expres-
sion power for the designers. After designing the final virtual clouds in a rendering program
such as 3D Studio Max, a plug-in program exports the final clouds into the flight simu-
lation game. In contrast, our system generates all the details from the roughly located
seed particles, through adding descendant particles with their own hierarchies. Thus, al-
though designers are hard to control the fine details, this automatic generation capability
in our system enables us to achieve mass production of visually plausible clouds. Though
it is a common point to use a kind of texture palette at the rendering stage, our system
dynamically changes the texture set according to the cloud types, for more efficient cloud
generation on a single framework. More details of our cloud modeling and rendering method
will be represented in the following sections.

3: Cloud Modeling and Rendering

In this section, we start from our cloud modeling method, and represent its corresponding
real-time rendering method. As already mentioned, our final goal is fast modeling of visually
plausible clouds, rather than realistic clouds.

3.1: Modeling of clouds

The main idea in our cloud modeling method is that a cloud is modeled with a set of
spherical particles, with their own hierarchies. At the first stage, users locate relatively
large particles, which become seed particles or the upper-most level particles. According
to the desired cloud types, we apply some constraints on the relative positions of these
seed particles. For example, since most cirrus clouds are characterized by thin and wispy
shapes spreading horizontally, the locations of seed particles for cirrus clouds are vertically
bounded to a specific range. Other cloud types also have their corresponding constraints,
and users should satisfy these constraints to make clouds of a specific type. If necessary,
our system can also generate these initial seed particle locations automatically. In this case,
the clouds can be full-automatically generated.

After locating the seed particles, the next level particles with smaller sizes are positioned
around their upper level ones. This hierarchical generation is used to reflect the randomness
on the fine details of cloud boundaries. Up to the pre-specified number of levels, the child
particles are located around the parent particles, the grandchild particles are located around
the child particles, and so on, as shown in Figure 2.
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(a) the seed particles (b) child particles (c) grandchild particles
(level 0) (level 1) (level 2)

Figure 2. Hierarchical particles for a cloud.

(a) cumulus (b) stratus (c) cirrus

Figure 3. Various cloud shapes.

To generate child particles, we use a modified version of Levet’s particle sampling method[11],
which is originally developed to approximate an implicit surface with a set of particles. Orig-
inally, Levet’s method generates a dense set of particles with the same sizes. In contrast,
we need to control the denseness according to the cloud types, and also, particle sizes had
better to have somewhat distributed range, for more plausible cloud boundaries.

Each particle has a set of its own attributes including the radius, the center position,
and the repulsion radius. The repulsion radii are varied with respect to the cloud types.
In the case of cumulus clouds, their shapes are somewhat rounded and need to show some
smooth feeling, and thus, we decrease the repulsion radius to densely position relatively
many particles. Stratus clouds seem to be blown off and their relatively large repulsion
radii give us sparsely located particles for final thin and wispy shapes.

For a given particle, the center positions of the next level particles are located on the
surface of their parent particles, while the child particles are apart more than the repulsion
radius from one another. More details on the positioning child particles are described in
Levet’s paper[11].

The radii of child particles are reduced in proportion to that of its parent particle. It is
more natural to vary their radii in a specific range. Thus, we set the radius ri+1 at (i+1)-th
level in a statistical way, as follows:

ri+1 = (s + d · R) · ri, (1)
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(a) far away: only level 1 particles.

(b) middle ranges: up to level 2 particles.

(c) near distance: up to level 3 particles.

Figure 4. Clouds rendered to different levels for the level-of-detail technique.

where ri is the radius of its parent particle at i-th level, and s and d are user-controllable
parameters for the role of average and standard deviation, respectively. The R term is a
randomized real number in the range of [−1, +1]. Since the repulsion radii for child particles
are arranged to be proportional to its radius, the overall child particles are irregularly
located. If necessary, we can modify the above equation to show a normalized distribution
of the child radii.

Figure 3 represents a set of hierarchical particles, generated by the above procedures.
To generate various cloud shapes, users can control the number of particle levels, the ratio
between the particle radius and its repulsion radius, the s and d values in Equation (1),
and so on. Of course, we can minimize the manual selections through using the system
default values for each specific cloud type.

3.2: Rendering of clouds

Since we use hierarchical particles for cloud modeling, we also perform particle-based
rendering. Depending on the cloud types such as cumulus, stratus and cirrus, we prepare
separated texture sets and each particle is rendered with a randomly chosen texture from
the specific texture set. Although it looks similar to that of Wang’s work[18], our rendering
strategy would be explicitly different on the use of different textures for different cloud
types. Furthermore, our texture sets can be dynamically changed in real-time when a user
selects different cloud types.

Another benefit of our hierarchical particle-based method is straight-forward implemen-
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Figure 5. Textures used for cumulus(left) and cirrus(right) clouds.

Figure 6. Billboard representations of cloud textures.

tation of the level-of-detail technique. For clouds at long distances, we need to render only
seed particles. As clouds approaching to the camera, we adjust the particle levels to be
rendered. Finally, the closest clouds will be drawn to its maximum level particles. Figure 4
shows examples of clouds for the level-of-detail demonstration.

Texture images used in our system are 32bit full color images with alpha values, as shown
in Figure 5. We use different sets for different cloud types. Each set of textures consists of
16 texture images with 256 × 256 resolutions, to use totally 4M byte video RAM for each
set of textures.

At the texture mapping stage, particles are displayed with DirectX billboards, as shown
in Figure 6. Since we use spherical particles, the billboards are always rendered to be
perpendicular with respect to the camera positions. This is another advantage of spherical
particles, since other shapes, as an example, such as rectangular boxes used in Wang’s
work[18] require re-positioning calculations for camera position changes. Even for rapid
viewpoint changes, our spherical particle-based method is easy to maintain the overall
cloud shapes. Additionally, we used hardware blending and renderable texture features in
DirectX, to more naturally express the cloud boundaries and to approximate the multiple
scattering and anisotropic scattering effects, as did in Harris’s work[9].
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(a) a cumulus cloud: 12 seed particles, 946 descendant particles and the image.

(b) a stratus cloud: 12 seed particles, 193 descendant particles and the image.

(c) a cirrus cloud: 12 seed particles, 128 descendant particles and the image.

Figure 7. Clouds generated by our prototype system.

4: Experimental Results

Using techniques described in the previous sections, we developed a prototype system
for editing, modeling, and rendering of clouds. In this section, we present the experimental
results, executed on a Microsoft Windows system with a single core CPU at 3.2GHz, 1G
byte main memory and nVIDIA GeForce 6600 graphics card.

Figure 7 shows the cumulus, stratus and cirrus clouds generated on our system, with
different seed particle locations and other parameters for each cloud type. Cumulus clouds
are modeled with relatively thick seed particle layers and more distinct and voluminous
textures. In the case of stratus clouds, we use cloud textures with somewhat indistinct
boundaries and let the particles a little scattered. Most thin particle layers and more
scattered particles are used for cirrus clouds. Additionally, more transparent and scattered
cloud textures are used.

For clouds shown in Figure 7, we generated up to level 2 particles, starting from 12 to
23 seed particles. Control parameters such as particle radii, repulsion radii, and so on are
set to appropriate values for each cloud type. Total numbers of particles are ranged from
128 to 946, depending on the cloud types.

Figure 8 shows some examples of composing our final alpha-blended cloud images with
landscape images. We used at most 1,961 and 2,253 particles for the upper and lower
cumulus clouds, respectively. Stratus and cirrus clouds need fewer particles.

Due to the particle-based modeling, the rendering speed of our system depends mainly

International Journal of Multimedia and Ubiquitous Engineering 
Vol. 7, No. 2, April, 2012

142



(a) original images (b) cumulus (c) stratus (d) cirrus

Figure 8. Composition of our clouds with landscape images.

Table 1. Experimental results with respect to the number of particles.
No. of particles frames per second

100 340.78
1,000 200.30
2,000 130.00
3,000 80.28
4,000 47.59
5,000 25.18
6,000 17.03

on the number of particles and their radius on the screen. Our benchmark shows more than
140 frames per second for about 3,000 particles with various radii, as shown in Table 1.
We used 1, 280 × 1, 024 resolutions for the final images. We turned off the level-of-detail
features in the above measurement, and thus, we can additionally accomplish much speed
up with the proper level-of-detail processing. Most plausible images can be generated with
less than 3,000 particles. If necessary, users can adjust the trade-off between the rendering
speed and the final rendering quality, since our system provides user-controllability for the
number of particles, their minimum and maximum sizes, ratios between them, and so on.

Figure 9 shows our system’s design capability for intentional cloud shapes. As the
skywriting[17] or the sky-typing messages[16] are used in the real world, flight simula-
tion applications are also targets for sky-written messages. For this purpose, our users can
construct any specific cloud shapes as shown in Figure 9. We also integrated our cloud
rendering feature into a flight simulation game, as shown in Figure 10. Clouds in these
screen shots are modeled with up to 2,000 particles for each scene.

5: Conclusions and Future Work

In this paper, we presented a cloud modeling and rendering technique to generate visually
plausible clouds for typical cloud types including cumulus, stratus and cirrus, even without
delicate manual works by expert designers. Users specify the rough cloud shapes through

International Journal of Multimedia and Ubiquitous Engineering 
                                                     Vol. 7, No. 2, April, 2012

143



(a) bubble man: totally 1,998 particles

(a) animation character: totally 1,325 particles

(a) initial K: totally 1,321 particles

Figure 9. Cloud modeling for intentional shapes.

Figure 10. Clouds integrated in a flight simulation game.

locating spherical particles in the space. Then, the details of clouds are automatically gen-
erated as hierarchically descendant particles. Using a particle-based modeling technique,
we can avoid re-calculations due to viewpoint changes and additionally approximated scat-
tering effects for faster processing. Our proposed method would be suitable for real-time
flight simulation applications including casual flight simulation games and mobile platform
applications.

On our cloud generation strategy for specifically shaped clouds, we can easily add auto-
matic seed particle generation features from generic mesh models or solid geometries. In
this way, users can get a particle-based cloud modeling method, which requires much little
user interaction. Since Bradshaw and O’Sullivan[1] and Liu et al.[12] presented algorithms
to approximate solid objects with spheres or ellipsoids, we expect we can add these features
soon.

We also need to consider dynamic cloud animations. Since our system is based on
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the hierarchical particles, it is easily possible to make natural and efficient interactions
with winds. After setting proper physical quantities such as densities to the particles,
a physically-based simulation with the particles and wind factors would generate cloud
dispersion and disappearance very naturally. Adding path specification features and wind
direction simulation features, we would finally get an integrated cloud processing system.
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