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Abstract 

Most implementations of pairing-based cryptography are using pairing-friendly curves 

with an embedding degree k ≤  12. They have security levels of up to 128 bits. In this paper, 

we consider a family of pairing-friendly curves with embedding degree k = 24, which have an 

enhanced security level of 192 bits. We also describe an efficient implementation of Tate and 

Ate pairings using field arithmetic in Fq24; this includes a careful selection of the parameters 

with small hamming weight and a novel approach to final exponentiation, which reduces the 

number of computations required. When comparing with the latest implementation available 

in the research community, ours is 15% faster due to both our selection of efficient elliptic 

curve parameters and faster multiplication on Fq24. Therefore, it can significantly contribute 

to most contemporary identity-based or attributed-based encryption or signature schemes 

whose basic and essential operations are based on paring, known as one of the most time-

consuming operations. 

 

Keywords: pairing-friendly curve, Tate pairing, Ate pairing. 

 

1. Introduction 

Pairing can be defined as a computable bilinear map between an elliptic curve group E(Fq) 

and a multiplicative group of an extension field Fqk, where k is called the embedding degree 

of the elliptic curve. A pairing operation is considered to be secure if the discrete logarithm 

problem in the groups is computationally infeasible. In fact, the security of a pairing operation 

depends on the selected elliptic curve E(Fq) and finite field Fqk. Therefore, over the last few 

decades, many papers have been published on the construction of pairing-friendly curves 

[5,8,9,10]. Pairing-friendly curves are parameterized by an embedding degree k and prime 

number q. For optimal security, the parameters k and q should be selected such that the 

discrete logarithm problem is difficult to solve even when using the best known algorithm 

[10]. Many researchers have examined the issue of constructing elliptic curves with a 

recommended embedding degree. 

Menezes et al. [11] showed that a supersingular elliptic curve must have an embedding 

degree k ≤  6. Miyaji et al. [12] described the complete characteristics for ordinary elliptic 

curves of prime order with the embedding degree k = 3, 4, or 6. Barrento et al. [8] also 

provided a method for the construction of curves of prime order with k = 12. 

Security level is an extremely important aspect of real systems. The National Institute of 

Standards and Technology recommends the use of different algorithms to raise the security 

level [14]. The use of either a 192- or 256-bit key is recommended for top security agencies 

or a military environment, where security levels stronger than those in commercial 
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environment are required. Thus, in this paper, we focus on the implementation of pairing-

friendly curves with embedding degree k = 24, which have a 192-bit security level. The 

implementation of these types of curves has never been studied in detail at the time of starting 

this paper. 

The paper is organized as follows: In Section 2, we provide a detailed background about 

pairing. The main contributions of this paper are presented in Sections 3 and 4 where we 

describe a pairing-friendly elliptic curve, a Tate pairing, and an Ate pairing. We describe our 

computational experiments in Section 5. In section 6, we compare ours with another 

implementation with the same embedding degree that is presumed to be proposed almost at 

the same time. We finally conclude this paper in Section 7. 
 

2. Preliminaries 

We declare that most of the following materials such as definitions, properties, and 

theorems come from [1] and [3] with/without modifications. 

 

2.1. Elliptic Curves 

Definition 1. An elliptic curve is the set of points satisfying an equation of the form 

y
2
=x

3
+ax+b where the coefficients a and b are elements of a field F with the 

characteristic of F is not equal to 2 or 3. We write E/F to indicate this and say that the 

elliptic curve is over the field. Such a curve is said to be in Weierstrass normal form. 

Definition 2. The discriminant of an elliptic curve in Weierstrass normal form 

y
2
=x

3
+ax+b  is the quantity ∆=-16(4a

3
+27b

2
).  

Definition 3. An elliptic curve for which the discriminant ∆=0 is called singular. An 

elliptic curve for which the discriminant ∆≠0 is called nonsingular.  

Property 1.  If F is field and E is an elliptic curve then E(F) is a group.  

The point at infinity acts as the identity element for this group. Note that there is 

only one operation defined for E(F), which we are thinking of as addition, so it is 

impossible to multiply or divide elements of E(F). Thus, E(F) cannot be a field, which 

requires two operations that we think of as being addition and multiplication.  

Definition 4. A formal sum of a set S is series {s0,s1,s2,…} of elements of S. A formal 

sum is often written using a placeholder, with the understanding that the placeholder is 

not to be evaluated. 

Definition 5. Let E be an elliptic curve. A divisor on E is a formal sum of the form 

( )PP E
D n P


  

where each 
Pn  is an integer and all but finitely many 

Pn  are zero. 

Definition 6. We sat that a divisor D is a principal divisor if there is a rational 

function f such that D=div(f). An equivalent definition is that a divisor D on an elliptic 

curve is principal if we can write 

( )i ii
D a P  

where 0ia   and 
i ia P O , with the last sum using the addition of points on an 

elliptic curve. In particular, if P is a point of order n, then the divisor n(P)-n(O) is a 

principal divisor. 
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Definition 7. If E is an elliptic curve and 

( )PP E
D n P


  

is a divisor then the support of D is the set of all points P such that 0Pn  . 

Definition 8. Let 
1D  and 

2D  be divisor. Then we say that 
1D  and 

2D  have disjoint 

support if the intersection of the support of 
1D  and the support of 

2D  is the empty set, or 

1 2D D  .  

Definition 9. If D is a divisor of the form 

( )i ii
D a P  

then we define what it means to evaluate a rational function f at D by 

( ) ( ) ia

ii
f D f P  

Property 2. Let f and g be rational functions defined on some field F. If div(f) and 

div(g) have disjoint support then we have that f(div(g))=g(div(f)). 

Definition 10. Divisors 
1D  and 

2D  are equivalent if they differ by a principal divisor, 

that is, 
1 2D D D   is a principal divisor. 

Definition 11. Let ( )P E F  for some elliptic curve E/F. We say that the order of a 

point is n if n is the smallest positive integer such that nP=O. 

Definition 12. If E is an elliptic curve over a field F and n is a positive integer, we write 

E(F)[n] for the set of points of order n in E(F). If the field F is clear from the context, this can 

be abbreviated to E[n]. E(F)[n] is a subgroup of E(F). The points in E(F)[n] are also called 

the n-torsion points of the curve E. 

Definition 13. We write #E(F) to indicate the order of the group E(F), which is the 

number of points on an elliptic curve E over a field F, including the point at infinity, O. 

Determining the value of #E(F) for an arbitrary elliptic curve is a nontrivial problem. 

Definition 14. If E is an elliptic curve over qF  and we have # ( ) 1qE q t  F , then t is 

called the trace of Frobenius, or simply the trace. 

Hasse’s theorem tells us that an elliptic curve / qE F  has to have approximately q+1 

points on it, and that the trace tells us roughly how far from this expected behavior a 

particular curve is. 

Property 3. (Hasse’s theorem) For an elliptic curve / qE F , the trace of Frobenius 

satisfies the inequality | | 2t q . Thus the number of points on an elliptic curve over qF  is 

approximately q+1. 

Definition 15. Let p be the characteristic of qF  and E be an elliptic curve over qF  and 

t be the trace of E. If p divides t then we say that the elliptic curve E is supersingular. A 

curve that is not supersingular is said to be ordinary.  

Definition 16. Let / qE F  be an elliptic curve and n be an integer such that | # ( )qn E F . If 

k is the smallest positive integer such that | ( 1)kn q   then k is called the embedding 
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degree of E with respect to n. If # ( )qn E F  then we can abbreviate this to saying that k is 

the embedding degree of E. 

If k is the embedding degree of / qE F , we can think of kq
F  as being an extension of qF  

in which ( )qE F  is a subgroup of *
kq
F . This gives us the ability to multiply points, an 

operation that we cannot perform in an elliptic curve group, where only the operation of 

addition is defined. 

2.1.1. Pairing-Friendly Elliptic Curves 

Given an elliptic curve E defined over a finite field Fq, a pairing operation takes points on 

E that are defined over Fq or over an extension field Fqk as inputs and give an element of F
×

qk 

as output. For a pairing-based cryptosystem to be secure, the discrete logarithm problems in 

the group E(Fq) of Fq-rational points on E and in the multiplicative group F
×

qk must both be 

computationally infeasible. The best known discrete logarithm algorithm on elliptic curves is 

the parallelized Pollard rho algorithm [17, 18], which has running time O(√ r) where r is the 

size of largest prime-order subgroup of E(Fq). On the other hand, the best algorithm for 

discrete logarithm computation in finite fields is the index calculus attack [19] which has 

running time subexponential in the field size. Thus to achieve the same level of security in 

both groups, the size q
k
 of the extension field must be significantly larger than r. The ratio of 

these sizes is measured by two parameters: the embedding degree and the parameter ρ = log 

q/log r, which measures the base field size relative to the size of the prime-order subgroup on 

the curve. An elliptic curve with a small embedding degree and a large prime-order subgroup 

are commonly referred to as pairing-friendly. Table 1 shows the relationship between the 

security level and the embedding degree [3]. 

Table 1.  Key size Security in Bits 

Security level 

(bits)  

Subgroup size  

r (bits) 

Extension field size 

q
k
(bits) 

Embedding degree k 

ρ  1        ρ  2 

80 160 960 - 1280 6 – 8           2-4 

128 256 3000 - 5000 12 – 20       6-10 

192 384 8000 - 10000 20 – 26     10-13 

256 512 12000 - 18000 28 – 36     14-18 

 

Remark. If K is a finite field qF  and | # ( )qr E F  is relatively prime to q, the following 

three conditions are equivalent: 

(1) E has embedding degree k with respect to r. 

(2) k is the smallest integer such that r divides 1kq  . 

(3) k is the order of q in ( / )r Z Z . 

Definition 17. Suppose E is an elliptic curve defined over a finite field Fq. We say that E is 

pairing-friendly if the following two conditions hold: 

(1) there is a prime r ≥√ q dividing #E(Fq), and 

(2) the embedding degree of E with respect to r is less than log2(r)/8. 
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Let E be an elliptic curve defined over a field K; we may also use E/K (read “E over K”) to 

denote such a curve. We denote by E(K) the group of K-rational points of E, and by #E(K) the 

order of this group when it is finite. For any integer r, we let E[r] denote the group of all r-

torsion points of E, and by E(K)[r] the group of r-torsion points of E that are defined over K. 

Let G1 and G2 be additive groups and G3 be a multiplicative group. Let be a bilinear 

pairing. Let Fq be a finite field with a characteristic q and E(Fq) be an elliptic curve 

defined over Fq. Let n be the order of E(Fq), r a large prime number that n is divisible 

by, and k, the smallest positive integer such that r|q
k
-1. The integer k is the embedding 

degree of E with respect to r. We know that the r-th roots of unity are contained in Fqk. 

Freeman et al. [3] gave a classification of the known methods for constructing 

pairing-friendly elliptic curves. At the highest level, pairing-friendly elliptic curves can 

be classified as either individual curves or families of curves. The former type 

(supersingular curves, Cocks-Pinch curves, DEM curves) gives integers q and r such 

that there is an elliptic curve E over qF  with a subgroup of order r and embedding 

degree k with respect to r. The latter type (sparse families: MNT, GMV, Freeman; 

complete families: cyclotomic, sporadic, Scott-Barreto) gives integers q(x) and r(x) 

such that if q(x0) is a prime power for some value of x0, there is an elliptic curve E over 

Fq(x0) with a subgroup of order r(x0) and embedding degree k with respect to r(x0). 

 

Construction of supersingular curves with embedding degree k=2: 

Explicitly, in fields qF  of characteristic 2, the trace-zero supersingular curves over qF  

are  

2 3/ :qE y y x x  F  

if 2sq   with s even, where 
4/ 0

q
Tr  F F , and  

2 3/ :qE y y x F  

if 2sq   with s odd [25]. 

Construction of supersingular curves over prime fields of characteristic greater than 

3 makes use of the following theorem: 

Theorem 1 [26]. Let L be a number field, and E/L be an elliptic curve with complex 

multiplication. Suppose ( ) ( )LEnd E Q Q D   . Let | p  be a prime of L where E has good 

reduction. Then the reduction of E mod   is supersingular if and only if   does not 

split in ( )Q D , i.e., / 1D p  . 

Given a subgroup size r, if we choose any h such that q=hr-1 is prime, then we have 

the following algorithm (combining the constructions of Koblitz and Menezes [23] and 

Broker [27] for constructing a curve over qF  with embedding degree 2 with  respect to 

r). 

Algorithm  1. Input: a prime 5q  . Output: a supersingular elliptic curve / qE F . 

(1) If q≡3 (mod 4), return 
2 3y x ax   for any 

X

qaF  with 
2( )X

qa  F . 

(2) If q≡5 (mod 6), return 
2 3y x b   for any 

X

qbF . 
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(3) If q≡1 (mod 12), do the following: 

(a) Let D be the smallest prime such that D≡3 (mod 4) and / 1D p   . 

(b) Compute the Hilbert class polynomial DH  of ( )Q D . 

(c) Compute a root qjF  of DH  (mod q). 

(d) Let m=j/(1728-j), and return 2 3 2 33 2y x mc x mc    for any 
X

qcF . 

Construction of supersingular curves with embedding degree k=3: 

A supersingular curve over qF  has embedding degree k=3 with respect to a subgroup 

of prime order r>3 if and only of sq p  with s even, and t q   [28]. In characteristic 

p>3, the only such curves are those of the form 

2 3/ :qE y x  F  

where   is a non-cube in 
X

qF  [29]. 

Construction of supersingular curves with embedding degree k=4: 

Supersingular curves that have embedding degree k=4 with respect to a subgroup of 

prime order r>2 only exist over finite fields of characteristic 2. Then necessarily, 2sq   

with s odd, and 2t q   [28]. The only possible such curves are ([25]) 

2 3/ :qE y y x x  F  and 
2 3/ : 1qE y y x x   F . 

Construction of supersingular curves with embedding degree k=6: 

Supersingular curves that have embedding degree k=6 with respect to a subgroup of 

prime order r>3 only exist over finite fields of characteristic 3. Then necessarily, 3sq   

with s>1 odd, and 3t q   [28]. The only possible such curves are ([29])  

2 3/ :qE y x x   F  and 
2 3/ :qE y x x   F . 

where q F  with 
3/ 1

q
Tr  F F . 

The Cocks-Pinch Method: 

Theorem 2 [15]. Fix a positive integer k and a positive square-free integer D. Execute 

the following steps. 

(1) Let r be a prime such that k|r-1 and / 1D r  . 

(2) Let z be k-th root of unity in ( / )XrZ Z . (Such a z exists because k|r-1.) Let 1t z   . 

(3) Let ( 2) / (mod )y t D r    . 

(4) Let tZ  be congruent to t mod r, and let yZ  be congruent to y  mod r. Let 
2 2( ) / 4q t Dy  . 
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If q is an integer and prime, then there exists an elliptic curve E over qF  with an 

order-r subgroup and embedding degree k. If 1210D  , then E can be constructed via 

the CM method. 

The Dupont-Enge-Morain Method: 

Theorem 3 [30]. Fix a positive integer k and execute the following steps. 

(1) Compute the resultant 

2( ) Re ( ( 1), ( 2) ) [ ]x kR a s x a x a     Z[  

(2) Choose aZ[ such that R(a) is prime and set r= R(a). 

(3) Compute 2( ) gcd( ( 1), ( 2) )kg x x a x      in [ ]r xF  and let rtt F  be a root of the 

polynomial g. 

(4) Let tZ  be congruent to tt  mod r. Let 2( ) / 4q t a  . 

If q is an integer and prime, then there exists an elliptic curve over qF  with an order-r 

subgroup and embedding degree k. If 2a Dy  with 1210D  , then E can be constructed 

via the CM method. 

MNT Curves: 

Theorem 4 [28]. Let q be a prime, and let / qE F  be an ordinary elliptic curve such that 

# ( )qr E F  is prime. Let 1t q r   . 

(1) E has embedding degree k=3 if and only if there exists xZ  such that 1 6t x    

and 212 1q x  . 

(2) E has embedding degree k=4 if and only if there exists xZ  such that t x   or 

1t x   and 2 1q x x   . 

(3) E has embedding degree k=6 if and only if there exists xZ  such that 1 2t x    

and 
24 1q x  . 

 Cyclotomic Families: 

Theorem 5 [9]. Fix a positive integer k and a positive square-free integer D. Execute 

the following steps. 

(1) Find an irreducible polynomial ( ) [ ]r x xZ  with positive leading coefficient such 

that [ ] / ( ( ))K Q x r x  is a number field containing D  and the cyclotomic field 

( )kQ  . 

(2) Choose a primitive k-th root of unity k K  . 

(3) Let ( ) [ ]t x Q x  be a polynomial mapping to 1k   in K. 

(4) Let ( ) [ ]y x Q x  be a polynomial mapping to ( 1) /k D    in K. 

(So, if ( )D s x , then ( ) (2 ( )) ( ) / mod ( )y x t x s x D r x  .) 
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(5) Let ( ) [ ]q x Q x  be given by 2 2( ( ) ( ) ) / 4t x Dy x . 

Suppose that q(x) represents primes and 0( )y x Z  for some 0x Z . Then the triple 

(t(x),r(x),q(x)) parameterizes a complete family of elliptic curves with embedding 

degree k and discriminant D. The  -value of this family is 

2max{deg ( ),deg ( )}
( , , )

deg ( )

t x y x
t r q

r x
  . 

Construction. Let k be odd, k<1000. Let 

4( ) ( ),kr x x  

2( ) 1,t x x    

2 4 2 2 2 4 2( ) ( 2 2 1) / 4.k k kq x x x x x x        

Then (t,r,q) parameterizes a complete family of pairing-friendly elliptic curves with 

embedding degree k and discriminant 1. The  -value of this family is ( 2) / ( )k k . 

Sporadic Families of Brezing-Weng Curves 

Example of Barreto-Naehrig curves. Let 

4 3 2( ) 36 36 18 6 1,r x x x x x      

2( ) 6 1,t x x   

4 3 2( ) 36 36 24 6 1.q x x x x x      

Then (t,r,q) parameterizes a complete family of curves with embedding degree k=12, 

discriminant 3, and  -value 1. 

Scott-Barreto Families 

Example. Let l be an even integer, and let D be a positive square-free integer. Define 

(t,r,q) by: 

( ) 2t x   

( ) ,r x x  

2 2( ) 1.q x Dl x   

Then (t,r,q) parameterizes a complete family of curves with embedding degree 1 and 

discriminant D. The  -value of this family is 2. 

 

2.2. Tate Pairing 

Let [ ]P E r  and ( )kq
Q E F . For each integer i and point P, let ,i Pf  be a rational function 

on E such that ,( ) ( ) ( ) ( 1)( )i Pf i P iP i O    . Let D be a divisor which is linearly equivalent to 

( ) ( )Q O  with its support disjoint from ,( )r Pf . The Tate pairing is a bilinear map 

* *ˆ : [ ] ( ) / ( ) / ( )k k k k

r

q q q q
e E r E rE F F F F , ,

ˆ( , ) ( )r Pe P Q f D . 
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Definition 18. Assume that curve ( )qE F  has a subgroup of prime order r and 

embedding degree k>1. Let ( )[ ]qP E r F  and ( )kq
Q E F  be linearly independent points. The 

Tate pairing of order r is defined as ( 1)/( , ) ( )
kq re P Q f D  , where ~ ( ) ( )D Q O  and 

( ) ( ) ( )f r P r O  .  

Property 4. The Tate pairing has the following properties: 

1. The Tate pairing is nondegenerate, that is, for each ( )[ ] /{ }qP E n O F , there is some 

( )kq
Q E F  with ( , ) 1e P Q  . 

2. The Tate pairing is bilinear, that is, for each 1 2, , ( )[ ]qP P P E n F  and 1 2, , ( )kq
Q Q Q E F  

we have 1 2 1 2( , ) ( , ) ( , )e P P Q e P Q e P Q   and 1 2 1 2( , ) ( , ) ( , )e P Q Q e P Q e P Q  . 

Computation of the Tate pairing is helped by the following properties [22]. 

Property 5. For any d>1 such that d|k, / 1k dq   is a factor of ( 1) /kq r . 

Property 6. ( 1)/( , ) ( )
kq re P Q f Q   for Q O . 

Property 7. Let n be a prime, ( )[ ] \{ }qP E n O F , ( )kq
Q E F  be linearly independent from 

P, and k>1. Then we have that e(P,Q) is nondegenerate [16]. 

So if we have ( )[ ]qP E n F  and a nontrivial embedding degree, that is, we have k>1, 

then one way to make sure that the Tate Pairing e(P,Q) is nondegenerate is to make sure 

that Q is linearly independent of P. One way to do this is to use a distortion map, so 

that instead of computing e(P,Q), we compute ( , ( ))e P Q  instead, where   is an 

appropriate distortion map. Another way is to compute ( , ( ))de P Q  where Q E  is on the 

twist of the elliptic curve E and :d E E   is the mapping defined later. In either case, 

we denote the resulting pairing by ˆ( , )e P Q , where either ˆ( , ) ( , ( ))e P Q e P Q  or 

ˆ( , ) ( , ( ))de P Q e P Q  as appropriate and call such an ê  the modified Tate Pairing. 

Definition 19. Let / qE F  be an elliptic curve and n be an integer relatively prime to q, 

and P a point of order n in ( )qE F . A distortion map with respect to (or for) P is an 

endomorphism   that maps the point P to a point ( )P  that is linearly independent from 

P. The following property implies that distortion maps do not exist for ordinary curves.  

Property 8. Let E be an elliptic curve over Fq which has a distortion map. Then E is 

supersingular. 

Definition 20.  A twist of / qE F  is an elliptic curve / qE F  that is isomorphic to E over 

qF . The minimal d for which E and E  are isomorphic over dq
F  is the degree of the twist.  

Definition 21. The trace map is the mapping Tr : ( ) ( )k qq
E EF F  defined as 

2 1( ) ( ) ( ) ( )kTr P P P P P     . We have ( ( )) ( ( )) ( )Tr P tr P tr P    for any ( , ) ( )kq
P x y E  F   
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where the sum is elliptic curve point addition. The trace map is a group 

homomorphism and ( ) ( )qTr P E F .  

It follows that if ( )kq
P E F  has prime order r, ( )qP E F  and ( )Tr P O , then ( ( ), ) 1e Tr P P  .  

The trace map transforms points which are defined over a large field into points 

defined over a small field, whereas distortion maps go the other way around.  

The trace map enables mapping into a specific cyclic subgroup of ( )kq
E F  of order r 

(called the trace zero subgroup T) as follows. If P is a randomly chosen element of 

( )kq
E F  of order r, then [ ] ( )P k P Tr P    is easily seen to satisfy ( )Tr P O  . Furthermore, if 

( )qP E F  and if r is coprime to k, then P O  .  

For some curves / qE F  it is possible to create twists. In these cases we have 

2 3:E y x a x b      where 4/da v a   and 6/db v b  , and v is a root degree d but not a root of 

less than degree d over F, which we can call a twist of degree d. All elliptic curves have 

quadratic (i.e., degree 2) twists. The only curves with higher-order twists are those with 

CM discriminant 1 (defined by equations of the form 2 3y x ax  ), which have quartic 

twists, and those with CM discriminant 3 (defined by equations of the form 2 3y x b  ), 

which have cubic and sextic twists. The possible twists are summarized in Tables 2, 3, 

and 4. 

Table 2.  Elliptic Curves and Their Twists 

Degree of Twist d Form of E Form of E’ 

2 (quadratic) 2 3y x ax b    2 3 2 3y x v ax v b    

3 (cubic) 2 3y x b   
2 3y x vb   

4 (quartic) 2 3y x ax   
2 3y x vax   

6 (sextic) 2 3y x b   
2 3y x vb   

 

Table 3.  Points on Twists of Elliptic Curves 

Degree of Twist d Typical Point on E Corresponding Point on E’ 

2 (quadratic) ( , )x y  3/2( , )vx v y  

3 (cubic) ( , )x y  1/3 1/2( , )v x v y  

4 (quartic) ( , )x y  1/2 3/4( , )v x v y  

6 (sextic) ( , )x y  1/3 1/2( , )v x v y  

Table 4.  Mappings :d E E   

Degree of Twist d :d E E   

2 (quadratic) 1 3/2

2( , ) ( , )x y v x v y    

3 (cubic) 1/3 1/2

3( , ) ( , )x y v x v y    

4 (quartic) 1/2 3/4

4( , ) ( , )x y v x v y    

6 (sextic) 1/3 1/2

6( , ) ( , )x y v x v y    
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A twist of degree k on a curve with embedding degree k would be ideal for 

implementation, as it would allow all curve points and pairing values to be given over 

the base field qF . Unfortunately, such a curve must either be supersingular or have  –

value nearly 2. 

When implementing pairings on pairing friendly non-supersingular curves, one of the 

parameters is placed on the curve defined over the base field qF , and the other is 

typically placed on a ‘twisted’ curve, where there exists a group of points of order r 

which are isomorphic to a group of points on the curve defined over the full k-th 

extension of the base field. For example if the pairing is the ate pairing, or one of its 

variants, the pairing is e(Q,P), where /( )k dq
Q E F , where k is the embedding degree and d 

is the degree of the twist. Points on the twisted curve are defined over a smaller field, 

and are thus obviously much faster to manipulate. However when required in the 

pairing calculation (for example for evaluation of the line function) they can be quickly 

mapped to a point on ( )kq
E F . 

If the embedding degree k is even then the quadratic twist (d=2) can be used. If the 

pairing-friendly curve has a CM discriminant of D=1, and 4|k, then we can use a quartic 

twist associated with d=4. Similarly if the curve has D=3, and 6|k, then a sextic twist 

can be used d=6. 

Consider first the case of the quadratic twist [21] with the elliptic curve in its 

standard Weierstrass representation 

2 3y x Ax B    

The twisted curve over the field of definition /k dq
F  will be  

2 3 2 3/ /y x Ax i B i    

where i is any quadratic non-residue in the field of definition. Since the chosen QNR 

i appears here as a divisor, we call this a type D twist. To map from the twisted curve to 

the original curve 

3/2: ( , ) ( , )E E x y ix i y   

 

An alternative and perhaps simpler way to address this issue is to represent the 

twisted curve by the isomorphic curve 

 

We call this a type M twist. To effect the mapping in this case 

1/2 2: ( , ) ( / , / )E E x y x i i y i   

The equation for the type D sextic twist [20] associated with our choice of i is 

2 3 /y x B i   

But an isomorphic curve is the M-type twist 

2 3y x i B    

2 3 2 3y x i Ax i B  
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For the D-type twist we can move from the twisted curve back to the original curve 

using 

1/3 1/2: ( , ) ( , )E E x y i x i y   

For the M-type twist the mapping is slightly more complicated 

2/3 1/2: ( , ) ( / , / )E E x y i x i i y i   

 

2.3. Miller’s algorithm [2] 

Victor Miller gave an algorithm to compute the Tate pairing. Miller ’s idea is to use 

the double-and-add method. Let ( )[ ]qP E r F   and ( )kq
Q E F . Let ,R Tl  be the equation of the 

line through points R and T, and let Sv  be the equation of the vertical line through point 

S. For ,i jZ , we have ,

( )

( )

, , , ( )
( ) ( ) ( ) iP jP

i j P

l Q

i j P i P j P v Q
f Q f Q f Q

  . 

Using the above formula, ( 1)/

, ( )
kq r

r Pf Q   can be computed in polynomial time by Miller’s 

algorithm. 

Algorithm 2.  Miller’s Algorithm 

0
: 2

in

ii
Input r l


 , where

  

{0,1}il  , [ ]P E r  and ( )kq
Q E F .

 : ( , )Output e P Q  

1. T P , 
1 1f   

2. for i = n-1, n-2, …, 1, 0 do 

2.1 ,

2

( )2

1 1 ( )

T T

T

l Q

v Q
f f  , 2T T  

2.2 if 1il   then 

2.3 , ( )

1 1 ( )

T P

T P

l Q

v Q
f f


  , T T P 

 

3. return 
( 1)/

1

kq rf 

 

 

2.4. Ate Pairing  

Let qF  be a finite field with mq p  elements, where p is a prime. Let E be an ordinary 

elliptic curve over qF , r a large prime satisfying | # ( )qr E F  and let t denote the trace of 

Frobenius, i.e., # ( ) 1qE q t  F . Let T=t-1 and then T≡q mod r. Let q  be the Frobenius 

endomorphism, : : ( , ) ( , )q q

q E E x y x y  . Denote 2 [ ] ( [ ])qQ G E r Ker q    and 

1 [ ] ( [1])qP G E r Ker    . Let gcd( 1, 1) 0k kN T q     and 1kT LN  , where k is its 

embedding degree. Denote the normalized function , , ,/ ( )( )norm r

T Q T Q T Qf f z f O , where 2Q G  

and z is a local parameter for the infinity point O. Then the Ate pairing is defined as 

, ( )norm

T Qf P  and 
( 1)/

,( , ) ( )
kL norm c q N

T Qe Q P f P  , where 
1 1

0
mod

k k i i

i
c T q N

  


 . 
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2.5. Extension Field Arithmetic 

Arithmetic in the extension field kq
F  can be implemented very efficiently if this field 

can be built up as a “tower” of extension fields, 

1 2d d kq qq q
   F F F F  

where the ith extension field diq
F  is obtained by adjoining a root of a polynomial 

1/i id d

ix    for some 
1dii q




F  that are “small” in the sense that they can be represented 

using very few bits. This property is likely to apply if 2 3a bk   for some a, b, so pairings 

may be computed more quickly on curves with embedding degree of this form.  

Koblitz and Menezes [23] show that if 2 3a bk   and q ≡ 1 (mod 12), then kq
F  can be 

built in one step by adjoining a root of kx   for some (not necessarily small) q F . 

Barreto and Naehrig [24] give a construction for k=12 consisting of adjoining a square 

root followed by a sixth root. 

 

3. Pairing-friendly Elliptic Curve with Embedding Degree k=24 

We implemented a method to generate pairing-friendly elliptic curves over a prime field, 

with embedding degree k = 24. Freeman et al.[3] described a general method to generate 

ordinary curves using the Cocks-Pinch method [15]. The Cocks-Pinch method has an 

advantage in that it can produce curves with prime-order subgroups of nearly arbitrary sizes. 

Theorem 6. [3] Fix a positive integer k and a positive square-free integer D. Execute the 

following steps:  

(1) Find an irreducible polynomial r(x) with a positive leading coefficient such that 

K=Q[x]/(r(x)) is a number field containing D  and the cyclotomic field ( )kQ  . 

(2) Choose a primitive k-th root of unity 
k K  . 

(3) Let ( ) [ ]t x Q x  be a polynomial mapping to 1k    in K.  

(4) Let ( ) [ ]y x Q x  be a polynomial mapping to ( 1) /k D    in K. 

(5) Let ( ) [ ]q x Q x  be given by 2 2( ( ) ( ) ) / 4t x Dy x . 

Let q(x) represent primes and y(x0)∈Z for some x0∈Z. Then the triple (t(x), r(x), q(x)) 

parameterizes a complete family of elliptic curves with an embedding degree k and 

discriminant D. 

In the paper, we follow the Cocks-Pinch method and the method proposed by Freeman et 

al. [3] to generate a family of elliptic curves with embedding degree k=24. Reference [3] 

classified families in all cases where k is not divisible by 18. 

The equation of the curve is E: y
2
 = x

3
+b, with b ≠  0. The trace of the curve, the prime 

number r by which the order of the curve is divisible, and the characteristic of Fq are 

parameterized as follows: 
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We can calculate the ρ value like as follows: 

ρ=deg q(x)/deg r(x) = 10/8 = 1.25 

Example 1. Using the proposed pairing-friendly curves, we present an example of an 

elliptic curve with embedding degree k = 24. Let x = -562956395872256. Then t = x+1 is 50 

bits, r is 489 bits, q is 393 bits, and the hamming weight of x is 3. The desired curve has the 

form of y
2
=x

3
+10 with  

t=-562956395872255 

r=10656787880906874147812348094874097963607051329763223860525167618939022

741021963689038580532996677087163516250596952237761485508717718504766037469

87, and 

q=1065678788090687414781234809487409796360705132976322386052516761893902

274102196368903858053299667708716351625059695223776148550871771850476603746

987 

 

4. Computation of Bilinear Pairings over Elliptic 
 

4.1. Tower Extension of Finite Field 24q
F  

The elements in the field are represented through a polynomial of degree k - 1, i.e., Fqk 

=Fq[x]/(f(x)), where f(x) is an irreducible polynomial of degree k. In the paper, we construct 

the extension field Fq24 as a tower of finite extensions: quadratic on top of a cubic on top of a 

quadratic, i.e., 1-2-4-12-24. The irreducible polynomials for the tower of extensions are 

detailed in Table 5. 

Table 5.  Tower of Extension Fields 

Extension Construction Representation 

2q
F  

2[ ] / ( 1)qF u u   
0 1a a a u   

4q
F  2

2[ ] / ( (1 ))
q

F v v u   
0 1a a a v   

12q
F  4

3[ ] / ( )
q

F w w v  2

0 1 2a a a w a w    

24q
F  12

2[ ] / ( )
q

F z z w  0 1a a a z   

 

4.2. Sextic Twist and Miller’s Algorithm 

We describe the Tate and Ate pairing operations in this section. The pairing operations 

take points P=(xP,yP)∈E(Fq) and Q=(xQ,yQ)∈E(Fq24). For optimization, we can compress 

points in E(Fq24) to points in a sextic twist E
’
(Fq4). Let i∈Fq4 be such that x

6
-i is irreducible 

over Fq4. Then the elliptic curve E admits a sextic twisted curve E
’
:y

2
=x

3
+b/i with 

8 4

10 9 8 6 5 4 2

( ) 1

( ) 1

1
( ) ( 2 2 1)

3

t x x

r x x x

q x x x x x x x x x
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#E
’
(Fq4)=q

4
+1-(3f+T)/2 where T=t

4
-4qt

2
+2q

2
 and 4 2(4 ) / 3f q T   [4]. Let θ ∈ Fq24 be a root of 

x
6
-i. Then the injective homomorphism 2 3: ( ', ') ( ', ')E E x y x y    maps the points on the sextic 

twisted curve to the original curve.  

Tate and Ate pairing can be computed by using Miller’s algorithm such as [5]. When we 

compute the line function of Ate pairing, we can use sextic twist formula like [6]: 

For 
24

2 3 2 3( , ) ( ' , ' ), ( , ) ( ' , ' ) ( )A A A A B B B B q
A x y x y B x y x y E F         , let lA,B be a line passing through A and B. 

Then we have  

 

 

where                    
               

.
  

 

4.3. Final Exponentiation 

Both Tate and Ate pairing algorithms compute a final exponentiation 24( 1) /q r  after running 

the Miller algorithm. This exponentiation is factored into three parts to speed up our 

implementation: 12( 1)q  , 12

24( 1) / ( )q q , 
24 ( ) /q r  where 

24 ( )q  is the 24-th cyclotomic polynomial 

[7]. Here, 
24 ( ) /q r  is called the hard exponentiation. It can be easily shown by computation 

that 
24 ( )q =q

8
-q

4
+1, 8 4( ) 1r x x x   . Then these exponents are explicitly expressed as 12( 1)q  , 4( 1)q  , 

and 3 2 2 3 4 4 2(1 ( )( 1)( 1) / 3)q xq x q x q x x       . The exponentiation for the first two parts is easy to 

compute because of the Frobenius. 

Algorithm 3.  Hard Exponentiation 

3 2 2 3 4 4 2(1 ( )( 1)( 1) /3)

: , ,

: q xq x q x q x x

Input f x q

Output f       
 

1. Compute 
qf , 

2qf , and 
3qf using Frobenius 

2. Compute 
3 2' ( ) (( ) (( )( ) ) )q q q x x xf f f f f 

 

3. Compute 
4'( )qf using Frobenius

 

4.  
4 4'' ' ' ' 1( ) ( ) ( )q xf f f f   

 

5. 
2'' ( 1) /3( ) xf f f  

 
 

However, the exponentiation of the third part is difficult to compute. Therefore, instead of 

using the expensive multi-exponentiation method, we exploit the polynomial description of q 

and r to obtain Algorithm 3, which can produce equivalent result with lesser exponentiation. 

Our experiments show that this method is twice as fast as compared to multi-exponentiation. 

 

4.4. Final Exponentiation 

In the case of particular prime p such that p = 3 mod 4, p = 1 mod 6 and p = 7 mod 12, we 

can speed up the abovementioned final exponentiation by converting exponentiations to 

multiplications as follows: 

3

, ', ' ', '( ) ( ) ( ) ( ' ' )A B P P A B A A A Bl P y x y x       

', ' ( ' ') / ( ' ')A B B A B Ay y x x   
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If we let 

( 1)/2 ( 1)/6 ( 7)/12

1 2 31 , , , ,p p pE u F E F E F E      
4/)3(

4

 pEF
 

    
then we have 

7 6 12 ( 7)/12 ( 7)/12

3( )p p p pz z z z z vz E vz F vz     
 

6 ( 1)/6

2 1( ) , ,p p p pw w w F w v Fv u u      

Therefore we obtain the following Table 6. 

Table 6.  Tower of Extension Fields and their Frobenius Constants used in the 
Proposed Implementation 

Extension Representation Frobenius 

2q
F  0 1a a a u   

0 1

pa a a u 
 

4q
F  0 1a a a v   

0 1 1

p p pa a a Fv 
 

12q
F  

2

0 1 2a a a w a w    2 2

0 1 2 2 2

p p p pa a a F w a F w  
 

24q
F  0 1a a a z   

0 1 3

p p pa a a F vz 
 

 

5. Computation Experiment 

The performances of the Tate and Ate pairings were measured using a Window 7 system 

with a 2.91GHz AMD Athlon™ II processor. The results have been listed in Table 7. 

The MIRACL v5.4.2 library (http://www.shamus.ie) was used in our test; this library 

supports multi-precision arithmetic and a number of powerful optional optimizations. 

Internally, prime field elements are in Montgomery representations [13], which allows for fast 

reduction without divisions. The measured times for the Ate and Tate pairings are listed in 

Table 7. The Ate pairing over the proposed curve takes approximately 0.320 seconds, which 

is quite efficient for present-day use. 

Table 7.  Timings in Seconds for 2.91GHz AMD Athlon™ II. 

 Tate pairing Ate pairing 

Miller loop 0.740s 0.073s 

Final exponentiation 0.254s 0.247s 

Total 0.994s 0.320s 

 

6. Comparison 

As we mentioned earlier, when we started this research, there was no implementation of 

elliptic curve with k = 24. The highest implementation available in terms of embedding 

degree was only 18 at that time. After completing our implementation, we found that a newer 

version v5.5.3 of MIRACL was released to support k = 24 recently.  

To compare ours with MIRACL v5.5.3, we changed our elliptic curve parameters 

according to those of MIRACL v5.5.3 as follows: We used x =16140901064496219136. 

Then t = x+1 is 64 bits, r is 637 bits, q is 511 bits, and the hamming weight of x is 7. The 

desired curve has the form of 
2 3 6y x   with  
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t=16140901064496219137, 

r=40008889806482692586964443463292919641168886157034917495392212572966672

461899035184504670227532875923214877317848155697029429349418131151526125463

0747346973699227695948818501146537094645143211, and 

q=4607042346141032066615947694645524272571463435339904476001046449948073

922425071966049474503748656831008508494052020690114438167307589092568149671

532298241 

One of the major differences between ours and MIRACL v5.5.3 is tower of extension 

shown in Table 8: we used 1-2-4-12-24, while MIRACL v5.5.3 used 1-2-4-8-24. 

Table 8.  Tower of Extension Fields and their Frobenius Constants used in 
MIRACL v5.5.3 

Extension Representation Frobenius 

2[ ]/( 1)
4 2

F F u u
q q

   0 1a a a u   

0 1

pa a a u 
 

2[ ]/( ( 1))
4 2

F F v v u
q q

    0 1a a a v   

0 1 1

p p pa a a Fv 
 

2[ ]/( )
8 4

F F w w v
q q

   0 1a a a w   

0 1 4

p p pa a a F w 
 

3[ ]/( )
24 8

F F z z w
q q

   

2

0 1 2a a a z a z    

2 2

0 1 3 2 3

p p p pa a a F vz a F Ez  
 

 

Table 9 shows the performance comparison result between MIRACL v5.5.3 and ours. Ours 

is approximately more than 15% faster than MIRACL v5.5.3. The reason behind this is that 

multiplication on Fq24 in ours is faster than that of MIRACL v5.5.3 as shown in Table 10. In 

addition, by directly comparing the total time in Table 7 with that in Table 9, we confirm that 

our selection of elliptic curve parameters is more efficient than those of MIRACL v5.5.3. 

Table 9.  Performance Comparison 

Ate pairing MIRACL v5.5.3 Proposal 

Miller loop 0.160s 0.124s 

Final exponentiation 0.504s 0.437s 

Total 0.664s 0.561s 

 

Table 10.  Comparison of Multiplications on 24q
F . 

ZZn24 MIRACL v5.5.3 Proposal 

Multiplication 1.357ms 1.030ms 

 

 

7. Conclusion 

 
In this paper, we described our novel implementation of the Tate and Ate pairings over the 

proposed elliptic curves with embedding degree k = 24. We also compared the time required 

to compute the pairings with the latest version available in the research community. From the 

experiment, we conclude that the proposed implementation is considerably efficient in terms 
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of computation time. In the near future, we plan to continue optimizing the pairing operations, 

particularly the final exponentiation, in lightweight devices such as sensor nodes or mobile 

devices. 
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