
International Journal of Multimedia and Ubiquitous Engineering  

Vol. 7, No. 2, April, 2012 

 

 

383 

 

Efficient Tree-based Discovery of Frequent Itemsets 
 

 

Byung Joon Park 

Department of Computer Science,  

Kwangwoon University, Seoul, Korea 

bjpark@kw.ac.kr 

Abstract 

Various types of data structures and algorithms have been proposed to extract frequently 

occurring patterns from a given data set. In particular, several tree structures have been 

devised to represent the input data set for efficient pattern discovery. One of the fastest 

frequent pattern mining algorithms known to date is the CATS algorithm, which can 

efficiently represent the whole data set and allow mining with a single scan over the database. 

In this paper, we propose an efficient tree structure and its associated algorithm that provides 

a considerable performance improvement over CATS in terms of memory usage and 

processing time. We have demonstrated the effectiveness of our algorithm and performance 

improvement over the existing approach by a series of experiments. 
 

Keywords: frequent itemset, pattern discovery, tree structure  
 

1. Introduction 

As various applications such as text, transaction, and image processing generate a large 

volume of data, discovery of frequent patterns from a huge collection of data has been a topic 

of active research in the information processing community. Various types of data structures 

and algorithms have been proposed to discover sets of items frequently occurring together 

from a given data set [1, 2]. In particular, several tree structures have been devised to 

represent the input data set for efficient pattern discovery.  Most of these tree structures 

allow efficient incremental mining with a single pass over the database as well as efficient 

insertion or deletion of transactions at any time [3]. One of the fastest frequent pattern mining 

algorithms known to date is the CATS algorithm, which can efficiently represent the whole 

data set and allow mining with a single scan over the database [4]. The CATS algorithms 

enable frequent pattern mining with different support values without rebuilding the tree 

structure. This paper describes our work on improvement over the original CATS approach in 

terms of memory usage and processing time. The proposed tree structure allows insertion or 

deletion of transactions at any time like CATS, but usually results in more condensed types of 

tree enabling a more efficient pattern discovery process.  

This paper is organized as follows. Section 2 describes some related work and the 

background knowledge on CATS. In Section 3, we present the proposed tree structure, its 

construction algorithm, and comparison with CATS FELINE approach.  In Section 4, we 

discuss experimental results and performance evaluation of our approach. And finally Section 

5 draws a conclusion.. 

 

2. Related Work  

FP-tree [5] is one of the earliest tree structure-based approaches that do not use 

candidate generation adopted by Apriori. Given a set of transactional data, it first 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 7, No. 2, April, 2012 

 

 

384 

 

constructs a tree structure in which all items are arranged in descending order of their 

frequency. After the construction of FP-tree, the frequent patterns can be mined using 

an iterative algorithm, FP-growth, which looks up the header table and selects the items 

with the minimum support. Then the infrequent items are removed from the prefix-path 

of an existing node and the remaining items are regarded as the frequent item-sets of the 

specified item.  

Can-Tree [2] constructs a tree structure similar to FP-tree, but does not require a 

rescan of the original database when it is updated. CAN-tree contains all the 

transactions in some canonical order, hence the ordering of the nodes in CAN tree will 

be unaffected by any frequency changes due to incremental updates like insertion, 

deletion, and modification of the transactions.     

CATS-tree [3] is a tree-based approach our proposed algorithm is directly related to. A 

CATS-tree is a prefix tree and contains all elements of FP-Tree including the header, the item 

links etc. Paths from the root to the leaves in a CATS-Tree represent sets of transactions. 

Once a CATS-tree has been constructed from a database, it enables frequent pattern mining 

with different supports without the need to rebuild the tree structure. In the mining process 

with a CATS-tree, the CATS-FELINE algorithm builds a conditional condensed CATS-tree 

for each frequent item p by gathering all transactions that contain p. A conditional condensed 

CATS-tree is one in which all infrequent items are removed and is different from a 

conditional FP-tree. In order to ensure that all frequent patterns are captured by CATS-

FELINE, it has to traverse both up and down the CATS-tree. 

 

3. The Construction Algorithm for a Conditional Condensed Tree 
 

Now we describe our proposed tree structure and its related algorithm. It is the 

process of constructing a conditional condensed CATS-tree that is the main focus of our 

work. Like CATS-FELINE, the overall mining process proceeds in three phases:  

 

Step 1: Convert the CATS tree generated from a database scan into a condensed tree  

with nodes having the frequency count less than the minimum support removed. 

 

Step 2: Construct conditional condensed CATS-trees (also known as alpha-trees) for 

items in the header table with frequency counts greater than the minimum support. 

 

Step 3: For each alpha-tree generated in step 2, item sets with at least minimum support 

are mined. 

 

Our algorithm differs from CATS-FELINE in step 2. Instead of recursively 

constructing alpha trees for each frequent item set, our algorithm generates a single 

conditional condensed tree for each item using a pre-order traversal of the original 

CATS-tree. To illustrate the basic idea behind the algorithm, we will use the database 

shown in Table 1 as an example (same as the sample database in [3]) and the original 

CATS-tree constructed from a database scan and its condensed one will look like the 

following (assuming minimum support of 3) [3]: 



International Journal of Multimedia and Ubiquitous Engineering  

Vol. 7, No. 2, April, 2012 

 

 

385 

 

Table 1. Sample Database 

TID Original Transactions 

1 F, A, C, D, G, I, M, P 

2 A, B, C, F, L, M, O 

3 B, F, H, J, O 

4 B, C, K, S, P 

5 A, F, C, E, L, P, M, N 

 
 

 

 

Figure 1. CATS-tree and its Condensed One 

This condensed tree, a header table containing all the frequency counts for each item, and 

the required minimum support will be the actual input to our algorithm called FPM(Frequent 

Patterns Merge). Given the above condensed tree, FPM starts building an alpha tree for each 

frequent item (i.e. alpha item) as follows: 

 

Figure 2. Initial Round of Constructing Alpha Tree for c 

Since C is an item with the highest frequency in the header table, FPM constructs an alpha 

tree for c first. By traversing the leftmost path of the tree of Figure 1(b) in preorder, it will 

construct a partial tree Figure 2 consisting of a single path C-F-A-M (all items with support at 

least 3). Note that the order of nodes and the frequency count of some node have been slightly 

changed from Figure 1(b) to Figure 2. The node for item c has been moved to the root 

because it is the current alpha item under consideration. And the frequency of node F has 

been changed to 3 from 4 because the branch F-B in Figure 1(b) does not contain item C and 

thus the frequency of F has been decremented by 1.  

After C-F-A-M has been added to the current alpha-tree, the node for „P:2‟ will be 

encountered in the preorder traversal. In this case, P is not frequent (with count 2) and there is 

no node for P in the current alpha tree. Then, a node is created for „P:2‟ and will be inserted to 

the current alpha tree as a child of the root. This is the major difference between the CATS-

FELINE and FPM. FPM attempts to reduce the number of nodes in the alpha tree by 

condensing even infrequent items. The same process applies to node ‘B:1‟ and Figure 3 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 7, No. 2, April, 2012 

 

 

386 

 

shows the resulting alpha tree after the left subtree of the original condensed tree has been 

traversed.    

 

 Figure 3. Next Round of Constructing Alpha Tree for c 

Now, the right subtree of the input tree is to be traversed. It has one node for C and thus the 

root count of the current alpha tree should be incremented by 1, making it 4. And also the 

counts of node B and P should also be incremented by 1 respectively. Figure 4 shows the final 

alpha tree constructed for item C: 

 

Figure 4. Final Round of Constructing Alpha Tree for c 

The following summarizes the procedure for generating the alpha tree for an alpha item  

given a CATS-tree and a required minimum support: 

1. Prune the condensed tree further by removing from it all paths that do not 

contain the alpha item and update the node‟s frequency counts accordingly.  

2. Let the alpha tree be a single node containing the alpha item and count 0.  

3. If the root item of the condensed tree is frequent, either insert the root into the 

current alpha tree at proper position (if not present already) or update the count 

of the existing node by adding its new count. 

4. Otherwise, either insert the root into the current alpha tree as a child of the root 

(if not present already) or update the count of the existing node by adding its 

new count. 

5. Next, for each subtree of the condensed tree, repeat steps 3 and 4 recursively. 

 

4. Experimental Results 

Given the same database used in Section 3, alpha trees constructed by CATS-

FELINE and ours will be different as shown in Figure 5. The difference is due to the 

way how the infrequent items are dealt with. As shown in Figure 4, CATS-FELINE 

keeps many separate nodes(P:2 and P:1 in Figure 4) for infrequent items such as P 

although they share the same alpha node. Hence, it needs more memory space for 

storing infrequent items. However, FPM results in a more condensed alpha tree in most 

cases since separate infrequent items are collapsed into single child nodes of the alpha 

item(root).        



International Journal of Multimedia and Ubiquitous Engineering  

Vol. 7, No. 2, April, 2012 

 

 

387 

 

 

Figure 5. Different Types of Alpha Tree 

 

We conducted a series of experiments to compare the processing time with different 

sizes of transactions for each of algorithms. In the experiments, we set the minimum 

support to 3. Figures 6 shows the relative performance of FPM compared to CATS-

FELINE in mining time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: mining time comparison 

 

 

5. Conclusion 

In this paper, we described an efficient tree structure for representing a conditional 

condensed tree (alpha tree) for a frequent item in transactions. The proposed tree structure 

allows insertion or deletion of transactions at any time like CATS, but usually results in more 

condensed types of tree enabling a more efficient pattern discovery process. We demonstrated 

the performance improvement of FPM over CATS-FELINE by conducting a series of 

experiments with various minimum support values and different sizes of databases. A 

considerable performance improvement over CATS in terms of memory usage and processing 

time has been achieved by our proposed tree structure.. 

 

 

0 

20 

40 

ti
m

e
(s

e
c)

 

# of transactions 

FELINE 

FPM 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 7, No. 2, April, 2012 

 

 

388 

 

Acknowledgements 

The present research has been supported by the Research Grant of Kwangwoon University 

(No. 60012008199). 
 

References 
 
[1]  R. Agrawal and R. Srikant, “Fast algorithms for mining association rules”, Proc. of the 20th Very Large Data 

Bases International Conference, (1994), pp. 487-499, Santiago, Chile. 

[2]  C. K.-S. Leung, Q. Khan and T. Hoque, “Cantree: A tree structure for efficient incremental mining of 

frequent patterns”, Proc. of 5th IEEE International Conference on Data Mining, (2005), pp.274–281, Los 
Alamitos, CA.  

[3]  K. Sasireka, G. Kiruthiga and K. Raja, “A Survey about Various Data Structures for Mining Frequent 

Patterns from Large Databases”, International Journal of Research and Reviews in Information Sciences, 

(2011) Vol. 1, No. 3, pp. 74-76. 

[4]  W. Cheung, and O. Zaiane, “Incremental Mining of Frequent Patterns Without Candidate Generation or 

Support Constraint”, Proc. of 7th International Database Engineering and Applications Symposium, (2003), 
pp. 111–116, Los Alamitos, CA. 

[5]  J. Han, J. Pei, Y. Yin and R. Mao, “Mining frequent patterns without candidate generation: a frequent-pattern 
tree approach”, Data Mining and Knowledge Discovery, (2004), Vol. 8, No.1, pp. 53–87.  

 

Authors 

 

Byung Joon Park 

He is currently an Associate Professor at the Computer Science 

Department, Kwangwoon University in Seoul, Korea. His research 

interests include artificial intelligence and web/smart applications, 

especially machine learning and data/web mining. He received his 

Bachelors degree in Computer Engineering from Seoul National 

University, Korea, Masters Degree in Computer Science from University 

of Minnesota, Minneapolis, USA, and Ph.D. in Computer Science from 

University of Illinois at Urbana-Champaign, USA, respectively. 


