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Abstract 

NAND-based storage devices deploy the flash translation layer (FTL) in order to emulate 

the block device characteristics because NAND flash memory does not support the overwrite 

operation. The FTL schemes that use log blocks such as the BAST and the FAST scheme are 

adequate for the devices with harsh memory. This paper presents the log block replacement 

scheme to improve the performance of the FAST FTL scheme. The presented scheme 

considers the number of valid pages of the candidate log block when selecting the victim log 

block, because the cost of the garbage collection decreases as the number of valid pages in 

the victim log block is less. The presented scheme gives the second chance to the candidate 

log block if its valid pages are more than the threshold. The simulation shows that the 

presented scheme improves the performance of the FAST scheme up to 5.0 %. The 

improvement is more conspicuous as more NAND blocks are used as log blocks. 
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1. Introduction 

NAND flash memory is cheap, light, silent, shock-resistant, and energy-efficient. It has 

been dominating a mobile storage market, and nowadays it is encroaching on the share of 

hard disk drives in laptops, PCs, and servers markets. The efficient firmware of NAND flash 

memory, which is called flash translation layer (FTL), has contributed to the success of 

NAND flash memory. 

NAND flash memory is a variant of EEPROM (Electrically Erasable Programmable Read 

Only Memory) and thus an overwrite function is not supported. The initial state of each cell is 

clean. Data can be written (programmed) to a clean cell. However, once data are written to a 

cell, the state of the cell is changed to programmed (dirty), and the programmed cell cannot 

be re-written. In order to write new data, the cell should be erased, which changes the state of 

the cell to clean. The worse thing is that the erase unit is larger than the read/write unit.  

NAND flash memory consists of blocks. A block is the unit of the erase operation and 

generally 128 KB or 256 KB in size. A block consists of multiple pages. A page is the unit of 

the read/write operation and generally 2 KB or 4 KB in size. On the overwrite request, if we 

erase the block that the target page belongs to and write new data to the target cleaned page, 

the data of the other pages that belong to the same block will be lost. Thus, we cannot 

perform an in-place update that overwrites the original page. Instead, an out-of-place update 

is used. In the out-of-place update, the new data are written to another clean page and the 

original page is invalidated. The location of valid data becomes different on every re-write 

request and thus it needs to maintain the mapping information between a logical sector 
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number and its physical location. Performing the out-of-place update and maintaining the 

mapping information is primary functions of FTL. FTL emulates the block device 

characteristic that the overwrite operation is supported and makes it possible to use NAND 

flash memory as storage media of block devices. The efficiency of FTL is one of major 

factors that determine the overall performance of NAND-based block devices, and thus there 

were intensive research works to design an efficient FTL [1-5]. However, there is still a room 

for improvement in the exiting FTL.  

The clean pages will be eventually short by the continuous out-of-place update, which 

initiates a garbage collection process. The garbage collection process selects the victim block 

for the reclamation of clean pages and moves the valid pages of the victim block to another 

clean place. Finally, the victim block is erased and the clean pages are reclaimed. Because the 

garbage collection causes several page copies and block erasures, it is important to reduce 

both the frequency and the cost of the garbage collection. The aim of this work is to reduce 

the cost of the garbage collection process with the efficient victim selection scheme. 

The rest of the paper is organized as follows. Section 2 explains the related work focusing 

on the strengths and the drawbacks of the previous FTL schemes. Section 3 describes the 

presented victim selection scheme and section 4 evaluates its performance. Finally, section 5 

draws a conclusion. 

 

2. Related Work 

FTL performs the out-of-place update and maintains the mapping table between a logical 

sector number and its physical location in order to emulate the block device interface. The 

mapping unit is a primary factor that determines the performance and the memory 

requirement of FTL. The previous FTL schemes are classified to the page mapping, the block 

mapping, and the hybrid mapping FTLs by the mapping unit. 

The page mapping FTL [4] maintains the mapping table in a NAND page unit. For this 

purpose, data are written in a page unit. When modifying the original data, it first finds the 

clean page and then writes the modified data to the found page. At this time, the original page 

is invalidated, and the physical location of the target logical page, which is calculated from 

the logical sector number, is changed to the found clean page. Thus, the mapping table is one-

dimensional array, whose index is a logical page number and whose value is a physical page 

number. On a shortage of clean pages, the garbage collection process is initiated. The 

drawback of the page mapping scheme is a large memory requirement to maintain the 

mapping table. The size of the mapping table increases proportionally to the number of 

NAND pages. Thus, the page mapping FTL is adequate for the block devices that have a large 

memory such as solid state drives.  

The block mapping FTL [5] maintains the mapping table in a NAND block unit. For this 

purpose, data are written in a block unit. When modifying the original data, it first finds the 

clean block and then writes the modified data to the found block together with the other 

unmodified data of the original block. The original block is invalidated and the physical 

location of the target logical block, which is calculated from the logical sector number, is 

changed to the found clean block. Thus, the mapping table is one-dimensional array, whose 

index is a logical block number and whose value is a physical block number. The strength of 

the block mapping scheme is low memory consumption because the size of the mapping table 

increases proportionally to the number of NAND blocks. However, its performance is 

seriously damaged by the excessive coping overhead. Even when modifying the small amount 

of data, the entire block should be copied to a clean block. 
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In order to address the drawbacks of the page mapping scheme and the block mapping 

scheme, the hybrid mapping scheme, BAST (Block Associative Sector Translation) [1] was 

presented. The BAST scheme uses a portion of total NAND blocks as write buffer. The 

blocks that are used as write buffer are called log blocks and the other blocks are called data 

blocks. The data blocks are visible to file systems while the log blocks are invisible. In order 

to reduce the mapping table size and the copying overhead on the small amount of update, the 

BAST scheme operates the block mapping scheme for the data blocks and the page mapping 

scheme for the log blocks. On the write requests, the BAST scheme searches for the 

associated log block with the target data block, and the data are written to the log block 

regardless of the logical sector number similarly to the page mapping scheme. If there is no 

associated log block, a clean log block is allocated and associated with the target data block. 

The association between the data block and the log block is one to one. The BAST scheme 

maintains two mapping tables: the block mapping table for the data blocks and the page 

mapping table for the log blocks. Because a portion of total blocks is used as log blocks, the 

memory requirement of the BAST scheme is similar to the block mapping scheme. The 

weakness of the BAST scheme is that it is vulnerable to the small sized random write pattern 

[2]. By the continuous write requests, the clean log blocks will be eventually short, which 

initiates the garbage collection. The garbage collection process selects the victim log block 

and merges it with the associated data block. After merging, the victim log block is reclaimed 

to a clean log block. The garbage collection process accompanies several page copies and a 

block erasure, frequent garbage collection damages the performance seriously. However, the 

small sized random write pattern causes the frequent garbage collection because the log block 

can be associated with only one data block. The under-utilized log blocks are merged with the 

data blocks. 

In order to address the vulnerability of the BAST scheme against the small sized random 

write pattern, the FAST (Fully Associative Sector Translation) scheme [2] was presented. The 

FAST scheme is a kind of the hybrid mapping scheme similarly to the BAST scheme. The 

difference is that it allows a log block can be associated with multiple data blocks. The FAST 

scheme manages the log blocks with a FIFO (First In First Out) list. On the write requests, 

data are written to the current working log block regardless of the logical sector number. If 

there is no clean page in the current working log block, the next log block in the FIFO list 

becomes the current working log block. If the next log block does not have clean pages, it is 

merged with multiple data blocks and reclaimed to a clean log block. The FAST scheme fully 

utilizes the log block space and thereby reduces the frequency of the garbage collection 

process. However, the computation overhead of finding the location of the valid sector is 

considerable because the data of a data block can be distributed to the entire log blocks [3]. 

However, this computation overhead can be mitigated be the hashed page table that maintains 

hash lists for the locations of valid sectors in the log blocks [3]. 

Another restriction of the FAST scheme is that the latency of the garbage collection 

process can be considerably long if the victim log block has the valid pages of multiple data 

blocks. In the FAST scheme, the log block is associated with multiple data blocks and thus 

the log block should be merged with multiple data blocks on the garbage collection, which 

causes several block erasures and multiple page copies. The long latency of the garbage 

collection hurts the performance of the FAST scheme and restricts the use of the FAST 

scheme. This work tries to improve the performance of the FAST scheme by reducing the 

garbage collection cost. 
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3. Second Chance Replacement Scheme Considering the Garbage 

Collection Cost 

As described in the section 2, the FAST scheme selects the victim log block in FIFO order, 

without considering the number of valid pages of the log block. The garbage collection cost 

increases proportionally to the number of valid pages. For example, if the victim log block 

does not have valid pages, single erasure is sufficient to reclaim the victim log block. 

However, if the victim log block has many valid pages, the corresponding data blocks should 

be merged with the victim log block before erasing the victim log block, which incurs lots of 

page copies and several block erasures. Thus, it needs to consider the number of valid pages 

of the log blocks when selecting the victim log block. 

In this work, we present a second chance replacement scheme for the FAST scheme. The 

presented scheme manages the log blocks with the FIFO list similarly to the original FAST 

scheme. However, when selecting the victim log block, it considers the number of valid 

pages. If the number of valid pages of the candidate log block is more than the predefined 

threshold, n, it gets one more chance and the next block in the FIFO list becomes the 

candidate. As to the next candidate, the same victim selection procedure is performed. If the 

candidate already got one more chance, it becomes the victim even though it has many valid 

pages. The chance value of each log block is reset when one of its pages is invalidated by the 

write requests or by the garbage collection process, because the other valid pages are also 

likely to be invalidated in a short time. 

 

4. Performance Evaluation 

In order to evaluate the effect of the presented second chance replacement scheme, we 

compared its performance with the original FAST scheme that uses the FIFO replacement. In 

the both schemes, the hashed page table [3] was used to reduce the computation overhead. In 

the second chance replacement scheme the threshold that determines the victim log block was 

fixed to 0 because only single erasure of the victim log block is done on the garbage 

collection. The performance of each scheme was measured with the simulator that models 

NAND-based storage. The simulator assumes that the latencies of read, write, and erase 

operations of a NAND page and a NAND block are 25 us, 200 us, 2 ms, respectively and that 

the NAND based storage organizes multiple NAND flash memory chips in 2-channel & 4-

way structure. A physical NAND page is 2KB in size, and a physical block is 128 KB in size. 

Transferring 2KB data via a channel is assumed to take 70 us. The performance measure of 

each scheme is the total I/O time, which is calculated using the following formula: (total 

elapsed time = page read count × page read latency + page write count × page write latency + 

block erase count × block erase latency) [2, 3]. Two realistic workloads that were collected in 

a PC environment while performing internet browsing, document editing, and so on were 

used. The partitions were formatted with NTFS file system. The partition size of the NTFS1 

trace was 32 GB, and the partition size of the NTFS2 trace was 80 GB. 

Figure 1 shows the result. The x-axis denotes the log block ratio, which is varied from 1 % 

to 9 % of the total NAND blocks. The y-axis denotes the total I/O time in seconds. FAST 

denotes the original FAST scheme, and FAST-SC denotes the FAST scheme that deploys the 

presented second chance replacement scheme. The result shows that the second chance 

replacement scheme that considers the number of valid pages of the log blocks is effective in 

all the configurations considered in the both traces. The improvement increases as more 

NAND blocks are used as the log blocks. When the log block ratio is 9 %, the performance 

improvement is about 4.4 % in NTFS1 and about 5.0 % in NTFS2 trace. 
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Figure 1. Elapsed Time Varying Log Block Ratio (NTFS1 & NTFS2) 

5. Conclusion 

In this paper, we presented a new replacement policy of log block for the FAST FTL 

scheme. When selecting the victim log block on the garbage collection, the presented scheme 

considered the number of valid pages of the candidate log block. If the number of valid pages 

was more than the predefined threshold, it got another chance, and the next block in the FIFO 

list became the candidate. If the candidate already had got another change, it became the 

victim regardless of the number of valid pages. In the simulation, the predefined threshold 

was fixed to 0 because single erasure of the victim is sufficient if the victim log block is fully 

invalidated. The simulation result showed that the presented replacement scheme was 

effective in all the configurations considered. The improvement increased as more NAND 

blocks were used as log blocks. In the considered configurations, the maximum improvement 

was about 5.0 %. 
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