
International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

273

Low-cost Checkpointing-based Rollback Recovery Algorithm

Considering Scalability

Jinho Ahn
1

Dept. of Computer Science, Kyonggi University, Suwon-si, Gyeonggi-do, Korea

jhahn@kgu.ac.kr

Abstract

In this paper, we design a low-cost checkpointing-based rollback recovery algorithm to

address the traditional scalability problem of synchronous checkpointing in the completely

different point of view compared with existing ones. This algorithm enables a cluster-wide set

of processes to take their semi-global checkpointing procedure while a small set of cluster

heads monitor local commit of their respective administrative areas and always observe the

global consistency condition. It can considerably lower communication overhead that may

occur in the previous ones. This feature can enormously decrease the frequency of cluster-to-

cluster communications especially in large-scale hierarchical multi-cluster systems.

Keywords: Multi-cluster systems, Resiliency, Rollback recovery, Synchronous

checkpointing

1. Introduction

Checkpointing-based recovery is a well-known method to allow the current faulty state of

a fail-stop processors system [13] to be rolled back to a globally consistent state of the system

recorded on stable storage before its failure [9, 10, 12]. For this purpose, every process should

periodically take its own checkpoint on stable storage with the information needed for

tracking recoverability of the entire system. It classifies two checkpointing-based recovery

algorithms, synchronous checkpointing and asynchronous checkpointing, whether

checkpointing synchronization actions occur during normal operation or not [4]. As each

process takes its local checkpoint periodically without any synchronization with other

processes in asynchronous checkpointing, this approach allows the process the maximum

autonomy and reduces checkpointing overhead during failure-free execution. However, if

processes in the system fail, the approach may suffer from the domino effect, in which

processes roll back recursively until the system has a globally consistent state. Therefore, it

may complicate recovery and result in high recovery overhead. Additionally, it forces

processes to take some useless checkpoints that will never be part of any globally consistent

state. Moreover, the approach should maintain multiple checkpoints of each process in the

stable storage and remove periodically the useless checkpoints among them using a special

garbage collection mechanism. In contrast, synchronous checkpointing eliminating all of the

disadvantages of the first approach can be very attractive to be used in inexpensive multi-

cluster systems with a lot of commodity computers more vulnerable to process failures for

executing numerous long-running applications [1, 5]. However, the only drawback of the

synchronous checkpointing is the scalability constraint that may happen when the

checkpointing initiator takes a global checkpoint with the others. The previous synchronous

checkpointing algorithms have been attempting to solve this problem by selecting one of the

1 Corresponding author: Tel.: +82 31 249-9674, FAX: +82 31 249-9673

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

274

two following methods. The first tries to force only a small set of related processes to take

their respective checkpoints [3, 7, 8], reducing the number of checkpointing-induced

messages and stable storage recording overhead. In the second method, some processes

continue to aggressively progress their normal operations while others perform their

checkpointing operations [6, 14]. A checkpointing algorithm [11] has attempted to gain all the

advantages of both methods in the extreme, which can never exist [2]. Therefore, if someone

intends to get more beneficial features of one between the two methods, he or she can take

only fewer advantageous ones of the other. Assuming multi-cluster systems become more

complex, hierarchical and large-scale, the two dimensional settlement may not be enough to

alleviate the important overhead. In particular, its disappointed performance results may

prevent the synchronous checkpointing approach from being used in real-world application

fields [5].

This paper presents a low-cost checkpointing-based rollback recovery algorithm to

address the traditional scalability problem of synchronous checkpointing in the

completely different point of view compared with existing ones. This algorithm enables

a cluster-wide set of processes to take their semi-global checkpointing procedure while

a small set of cluster heads monitor local commit of their respective administrative

areas and always observe the global consistency condition. It can considerably lower

communication overhead that may occur in the previous ones. This feature can

enormously decrease the frequency of cluster-to-cluster communications especially in

large-scale hierarchical multi-cluster systems.

The rest of the paper is organized as follows. Section 2 describes our new synchronous

checkpointing-based recovery algorithm. In sections 3 and 4, we compare related works and

summary this paper in order.

2. New Synchronous Checkpointing-based Recovery Algorithm

2.1 Limitation of Traditional Approaches

 They force checkpointing initiator to directly contact every other participant because

they don't consider any physical or logical network topology while performing its

checkpointing actions. Let us explain the checkpointing procedure in details as follows;

first, the initiator sends every other process a checkpointing request message. Then,

receiving the message, the latter takes its local tentative checkpoint on stable storage

and sends its checkpointing reply message back to the initiator. If the participating

process receives an application message from another process before getting the

checkpointing request message from the initiator, the following validation process

should be performed not in order to make the application message the orphan one like

in figure 1; if the checkpointing sequence number(csn) included in the application

message is greater than the process's csn, csnp, p must take its tentative checkpoint

before delivering the application message to its application. Afterwards, if the initiator

obtains each a positive checkpointing reply message from all other processes, it sends

them checkpointing confirmation messages. In this case, every process makes its

tentative checkpoint permanent on stable storage. If any checkpointing participant gives

a negative checkpointing reply message to the initiator, the latter forces every other

process to remove its tentative checkpoint from the stable storage. Thus, this feature

may result in significantly high latency traffic onto inter-cluster networks if the number

of processes executing a large-scale multi-cluster based distributed application is

greatly growing.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

275

Figure 1. Illustration of Orphan Message Occurrence

2.2 Our Solution

A new topology-aware aggressive synchronous checkpointing algorithm is designed to

solve this scalability problem of the traditional synchronous checkpointing algorithm by

dividing a whole flat-style cluster network into a set of multiple clusters according to a

particular criterion such as geographical topology, data dependency, inter-process

communication frequency and so forth like in Figure 2. Like in Figure 3, an area consists of a

small set of processes and has a cluster head, which is elected among the processes based on

availability of their computing and networking resources or importance of their location. In

our algorithm, the cluster head for each area should fill the following two roles, cluster area

and virtual head area checkpointing orchestrations to significantly enhance scalability of

synchronous checkpointing.

Figure 2. Main Design Rationale of our Checkpointing Algorithm

In other words, when the checkpointing initiator in figure 3 attempts to send out its

checkpointing control messages, it communicates only with cluster heads, not every other

participating process. This behavior may tremendously reduce the inter-network traffic unlike

the traditional ones. Moreover, each cluster head pretends to be the checkpointing initiator to

its local processes by executing the checkpointing orchestration. For example, the global

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

276

checkpointing initiator sends inter-cluster checkpointing request messages to each a cluster

head for area A. Then, the cluster head forwards the message to its local members inside this

area. Similarly, the initiator and cluster head for area B also transmits the message to its local

members. Receiving the message, each local member tries to take its local checkpoint.

Depending on its checkpointing result, it transmits a checkpointing reply message with the

result to its cluster head. In this case, the cluster head informs the initiator of its area level

decision on checkpointing. If the initiator gets each a positive checkpointing reply message

from all the cluster heads, it gives them back global checkpointing confirmation messages for

having each participating process change its tentative checkpoint to the permanent one. When

receiving this message, each cluster head forwards it to its local processes.

Figure 3. An Execution of our Algorithm in a Multi-cluster System

3. Discussion

Most of traditional synchronous checkpointing algorithms attempt to reduce their

coordination overhead by using both two optimization methods or one of both;

minimizing the number of participating processes and having the checkpointing process

and the normal computation execute in parallel. Koo and Toueg in [8] presented an

efficient checkpointing algorithm which forces only the minimum number of processes

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

277

to take their local checkpoints. This behavior may reduce the number of checkpoints

and checkpointing control messages. But, this algorithm should give up the entire

checkpointing procedure when any participant fails to take a local checkpoint. In order

to address this drawback, Kim and Park's min-process algorithm [7] was proposed to

enable a part of participating processes to complete their checkpointing actions even if

the others fail. However, all the algorithms mentioned earlier make every participating

process's normal computation blocked for not a short time, which may considerably

decrease performance of the entire system, in particular, a large sensor network-based

system. Moreover, if exchanging messages are cascaded linked with each other or

follow data parallel pattern, they may not all actually reduce the number of

checkpointing processes and even generate much more synchronization messages [5].

To avoid the disadvantage of the min-process approach, a non-block checkpointing

algorithm [6] was designed to be able to progress each process's normal computation

while executing its synchronous checkpointing procedure. But, the algorithm requires

all processes in the system to participate in its checkpointing. Silva and Silva in [14]

introduced a similar algorithm with a difference that some processes not exchanging

messages with the others after taking their latest checkpoints can be exempted from

their new checkpointing requirement.

The first algorithm [11] was proposed to attempt to require only a minimum number

of processes to take checkpoints with the same feature of the non-blocking ones. But,

the algorithm may incur inconsistency problems in some checkpointing and

communication patterns [2]. Cao and Singhal in [1] presented some hybrid algorithms

to keep one of both conditions to a maximum while losing the other at minimum.

However, the algorithms are very complex and may have some drawbacks of both min-

process and non-blocking checkpointing approaches.

All the above synchronous checkpointing algorithms haven't even consider any

physical or logical network topology, which may raise serious core network traffic

problems. Furthermore, as the current sensor network-based distributed systems based

on many connected networks scale up tremendously, their entire performance may be

getting increasingly worse due to the inefficiency of the algorithms.

4. Conclusion

In this paper, we proposed a topology-aware synchronous checkpointing-based

recovery algorithm to address the traditional scalability problem of synchronous

checkpointing in the completely different point of view compared with existing ones.

Each cluster head monitors the checkpointing process executing inside its

administrative area mostly on an edge network, reducing checkpointing initiator’s load

of the global synchronization activities greatly. Therefore, the initiator has only to

control global checkpointing actions with cluster heads, significantly decreasing high

latency traffic generated across clusters. We believe that this algorithm can be used as

an efficient reliability enhancing method for large-scale hierarchical multi-cluster

systems.

References

[1] G. Cao and M. Singhal, “Checkpointing with Mutable Checkpoints”, Theoretical Computer Science, 290

(2003).

[2] G. Cao and M. Singhal, “On coordinated checkpointing in distributed systems”, IEEE Transactions on

Parallel Distributed System, 9, 12 (1998).

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

278

[3] Y. Deng and E. K. Park, “Checkpointing and rollback-recovery algorithms in distributed systems”, Journal of

Systems and Software, 4 (1994).

[4] E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B. Johnson, “A Survey of Rollback-Recovery Protocols in

Message-Passing Systems”, ACM Computing Surveys, 34, 3 (2002).

[5] E. N. Elnozahy and J. Plank, “Checkpointing for Peta-Scale Systems: A Look into the Future of Practical

Rollback-Recovery”, IEEE Transactions on Dependable and Secure Computing, 1, 2 (2004).

[6] E. N. Elnozahy, D. B. Johnson and W. Zwaenepoel, “The performance of consistent checkpointing”, Proc.

11th Symp. on Reliable Distributed Systems, (1992).

[7] J. L. Kim and T. Park, “An Efficient protocol for checkpointing recovery in distributed systems”, IEEE Trans.

Parallel Distributed Systems, 5, 8 (1993).

[8] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed systems”, IEEE Transactions on

Software Engineering, 13, 1 (1987).

[9] H. F. Li, Z. Wei and D. Goswami, “Quasi-atomic recovery for distributed agents”, Parallel Computing, 32

(2006).

[10] Y. Luo and D. Manivannan, “FINE: A Fully Informed aNd Efficient communication-induced checkpointing

protocol for distributed systems”, J. Parallel Distrib. Comput., 69 (2009).

[11] R. Prakash and M. Singhal, “Low-cost checkpointing and failure recovery in mobile computing systems”,

IEEE Trans. Parallel Distributed System, 7, 10 (1996).

[12] J. T. Rough and A. M. Goscinski, “The development of an efficient checkpointing facility exploiting

operating systems services of the GENESIS cluster operating system”, Future Generation Computer Systems,

20, 4 (2004).

[13] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: an approach to designing fault-tolerant

distributed computing systems”, ACM Transactions on Computer Systems, 1 (1985).

[14] L. M. Silva and J.G. Silva, “Global checkpointing for distributed programs”, Proc. 11th Symp. on Reliable

Distributed Systems, (1992).

Authors

Jinho Ahn

He received his B.S., M.S. and Ph.D. degrees in Computer

Science and Engineering from Korea University, Korea, in 1997,

1999 and 2003, respectively. He has been an associate professor in

Department of Computer Science, Kyonggi University since 2003.

He has published more than 70 papers in refereed journals and

conference proceedings and served as program or organizing

committee member or session chair in several domestic/international

conferences and editor-in-chief of journal of Korean Institute of

Information Technology and editorial board member of journal of

Korean Society for Internet Information. His research interests

include distributed computing, fault-tolerance, sensor networks and

mobile agent systems.

