
International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

235

A Buffer Management Scheme for Mobile Computers with Hybrid

Main Memory and Flash Memory Storages

Yeonseung Ryu

Department of Computer Engineering, Myongji University

Nam-dong, Yongin, Gyeonggido, Korea

E-mail: ysryu@mju.ac.kr

Abstract

Recently DRAM and PRAM hybrid main memory organization has been studied in order to

address the high levels of energy dissipation in DRAM based main memory. It is expected that

this new memory architecture will be used soon in mobile computers which use NAND Flash

memory based storages. In such computers, legacy operating system functionalities like file

system and memory system should be modified in order efficiently to manage heterogeneous

memory organization. In this paper, we study a new buffer cache scheme which considers

DRAM/PRAM hybrid main memory and flash memory based storages. The goal of proposed

buffer cache scheme is to minimize the number of write operations on PRAM and the number

of erase operations on flash memory while maintaining the cache hit ratio. In order to

evaluate proposed scheme, we performed trace-driven simulation.

Keywords: Buffer Cache, Buffer Replacement, Flash Memory, DRAM/PRAM Hybrid Main

Memory

1. Introduction

For several decades, DRAM has been used as the main memories of computer systems.

However, recent studies have shown that DRAM-based main memory spends a significant

portion of the total system power and the total system cost with the increasing size of the

memory system. Fortunately, various non-volatile memories such as PRAM (Phase change

RAM), FRAM (Ferroelectric RAM) and MRAM (Magnetic RAM) have been developed as a

next generation memory technologies. Among these non-volatile memories, PRAM is rapidly

becoming promising candidates for large scale main memory because of their high density

and low power consumption. In order to tackle the energy dissipation in DRAM-based main

memory, some studies introduced PRAM-based main memory organization [1] and

DRAM/PRAM hybrid main memory organization [2, 3].

Figure 1 illustrates the system configuration considered in this paper. Our system uses

DRAM and PRAM hybrid main memory and uses flash memory as storage device. Modern

operating system (OS) supports a buffer cache mechanism to enhance the performance that is

limited by slow secondary storage. When OS services a read request, it copies the data from

storage to the buffer cache in the main memory and serves the next read operations from the

faster main memory. Similarly, when OS services a write request, it stores data to the buffer

cache and later flushes several data together to the storage. If the flash memory is used as

storage device, OS usually employs a software layer called flash translation layer (FTL) [5-7].

An FTL receives read and write requests from the file system and maps a logical address to a

physical address in the NAND flash. Recently, there have been studies on buffer cache

management scheme that use flash memory as secondary storage. However, there are few

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

236

researches on buffer cache schemes that consider both hybrid main memory and flash

memory-based storage device.

Figure 1. System Configuration

In this paper, we propose a new buffer cache management scheme called PABL (PRAM

aware Block-based LRU) for hybrid main memory and flash storage devices. Proposed PABL

scheme tries to minimize both the number of write operations on PRAM and the number of

erase operations on flash memory. When PABL allocates a buffer to accommodate requested

data, it allocates DRAM or PRAM according to the type of request. If the request type is read,

the PABL tries to allocate buffer from PRAM. Otherwise, it tries to allocated buffer from

DRAM. During the buffer replacement procedure, PABL considers merge operations

performed in FTL in order to minimize the number of erase operations. Trace-driven

simulation results show that PABL outperforms the legacy buffer cache schemes like LRU.

The rest of this paper is organized as follows. Section 2 gives an overview of the non-

volatile memory, flash translation layer and the previous flash aware buffer cache

management schemes. Section 3 explains the design and operation of the proposed scheme.

Section 4 presents the experimental results. Finally, Section 5 concludes the paper.

2. Background and Previous Works

2.1. Non-volatile Memories

A NAND flash memory is organized in terms of blocks, where each block is of a

fixed number of pages. A block is the smallest unit of erase operation, while reads and

writes are handled by pages [4]. Flash memory cannot be written over existing data

unless erased in advance. The number of times an erasure unit can be erased is limited.

The erase operation can only be performed on a full block and is slow that usually

decreases system performance.

A PRAM cell uses a special material, called phase change material, to represent a bit.

PRAM density is expected to be much greater than that of DRAM (about four times).

Further, because the phase of the material does not change after power-off, PRAM has

negligible leakage energy regardless of the size of the memory. Though PRAM has

attractive features, the write access latency of PRAM is not comparable to that of

DRAM. Also, PRAM has a worn-out problem caused by limited write endurance. Since

the write operations on PRAM significantly affect the performance of system, it should

be carefully handled.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

237

2.2. Flash Translation Layer (FTL)

FTL is a kind of device driver in OS (see Figure 1). Most FTL schemes use a log

block mechanism for storing updates [6, 7]. A log block scheme, called block

associative sector translation (BAST), was proposed in [6]. In the BAST scheme, flash

memory blocks are divided into data blocks and log blocks. Data blocks represent the

ordinary storage space and log blocks are used for storing updates. When an update

request arrives, the FTL writes the new data temporarily in the log block, thereby

invalidating the corresponding data in the data block. Whenever the log block becomes

full or the free log blocks are exhausted, garbage collection is performed in order to

reclaim the log block and the corresponding data block. During the garbage collection,

the valid data from the log block and the corresponding data block should be copied

into an empty data block. This is called a merge operation. After the merge operation,

two erase operations need to be performed in order to empty the log block and the old

data block. When the data block is updated sequentially starting from the first page to

the last page, the FTL can apply a simple switch merge, which requires only one erase

operation and no copy operations. That is, the FTL erases the data block filled with

invalid pages and switches the log block into a data block. The former merge operation

is called a full merge as compared to the switch merge.

2.3. Previous Buffer Cache Schemes

In [8], CFLRU (Clean first LRU) was proposed to exploit the asymmetric

performance of flash memory read and write operations. CFLRU maintains the page list

of buffer cache by LRU order and divides the page list into two regions, namely the

working region and clean-first region. In order to reduce the write cost, CFLRU first

evicts clean pages in the clean-first region by the LRU order, and if there are no clean

pages in the clean-first region, it evicts dirty pages by their LRU order. CFLRU can

reduce the number of write and erase operations by delaying the flush of dirty pages in

the buffer cache.

In [11, 12], block-level replacement schemes called FAB (Flash Aware Buffer

management) and BPLRU (Block Padding LRU) were proposed, which consider the

block merge cost in the log block FTL schemes like BAST. These block-level

replacement schemes maintain the block list by LRU order. When a page in the buffer

cache is referenced, all pages in the same block are moved to the MRU position. When

buffer cache is full, FAB scheme searches a victim block from the LRU position which

has the largest number of pages in the buffer cache. Then, all the pages of the selected

block are passed to the FTL to flush into the flash memory. BPLRU scheme also evicts

all the pages of a victim block like FAB, but it simply selects the victim block at the

LRU position. In addition, it writes a whole block into a log block by the in-place

scheme using the page padding technique. Therefore, all log blocks can be merged by

the switch merge.

These legacy schemes only focused on reducing the number of write operations to

flash memory and did not address the write problem of PRAM.

3. Proposed Scheme

In this paper, we propose a new block-level buffer management scheme called PABL

(PRAM aware Block-based LRU) for hybrid main memory and flash memory storage

devices. Proposed PABL scheme tries to minimize both the number of write operations

on PRAM and the number of erase operations on flash memory.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

238

The PABL scheme maintains a LRU list based on the block-level as shown in Figure

2. The LRU list consists of block headers. Each block header manages buffers of

affiliated pages which are loaded from flash memory. When a page p of block b in the

flash memory is first referenced, the PABL allocates a new buffer and stores page p in

the allocated buffer. If the block header for block b does not exist, the PABL allocates a

new block header and attaches the buffer of page p to the header of block b. Further, b

is placed at the MRU position of LRU list. Whenever a page in the buffer cache is

referenced, all pages in the same block are moved to the MRU position.

Figure 2. Buffer Cache Structure of PABL.

When PABL allocates a new buffer, it allocates DRAM or PRAM according to the type of

request. If the request type is read, the PABL tries to allocate buffer from PRAM. Otherwise,

it tries to allocated buffer from DRAM. If all free buffers are used up, the PABL must

perform buffer replacement procedure. During the buffer replacement procedure, the PABL

will select a victim block from the LRU position. If the victim block contains dirty pages,

then the PABL performs page padding technique when it flushes the victim block to the flash

memory in order to consider block merge overhead. If the victim block contains no dirty

pages, the PABL can make the pages of the victim block free without write operations to the

flash memory (no flushing).

4. Simulation Results

In order to evaluate the proposed scheme, we compared PABL with two of the

existing schemes using simulation: LRU and CFLRU. We assume that the hybrid main

memory consists of DRAM and PRAM, which are divided by a memory address. The

memory which has the low memory address is DRAM and the high section is allocated

to PRAM. In case of previous schemes, we assume that they allocates buffer from

DRAM and PRAM alternately. We also assume that medium of storage device is flash

memory. The flash memory model used in the simulation was the Samsung 16GB

NAND flash memory [4]. The page size is 4 KB and the number of pages in a block is

64. We implement BAST scheme as an FTL scheme of flash memory because it is a

representative and basic log block scheme. In BAST scheme, 100 log blocks were used.

We ignored the map block update cost in the BAST implementation.

For the workload for our experiments, we extracted disk I/O traces (we call it PC)

from Microsoft Windows XP-based notebook PC, running several applications, such as

document editors, web browsers, media player and games. In workload PC, read/write

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

239

(a) Hit ratio

 (b) Erase count on Flash (c) Write count on PRAM

Figure 3. Performance Comparison Varying Buffer Cache Size

ratio is “67%/33%. We measured the hit ratio, the required number write operations on

PRAM and the required number of erase operations on flash memory while varying the

buffer cache size from 4 to 20MB. As the hit ratio of CFLRU is affected by the window

size, in this experiment, we set it to 30% of maximum capacity of buffer cache.

Figure 3 shows experiment results. According to Figure 3(a), cache hit ratio of the PABL

is slightly less than other two schemes. This is because the PABL is a block-based buffer

cache schemes. Since the block-based schemes replace all pages of the victim block, it

manifests lower cache hit ratio but it can reduce erase overhead as shown in Figure 3(b).

According to Figure 3(b), the erase count of the PABL is less than other two schemes. The

reason is that the PABL performs block padding like BPLRU to reduce merge overhead when

it evicts victim block. Further, if the victim block contains no dirty pages, the PABL evicts

the victim block free without write operations to the flash memory. Figure 3(c) shows that the

PABL is much better than other two schemes in terms of write count on PRAM. This is

because the PABL allocates DRAM buffer for write requests.

5. Conclusion

In this paper, we propose a new buffer management scheme called PABL (PRAM aware

Block-based LRU) for mobile computers with DRAM/PRAM hybrid main memory and flash

storage devices. Proposed PABL scheme minimizes both the number of write operations on

PRAM and the number of erase operations on flash memory. We show through trace-driven

International Journal of Multimedia and Ubiquitous Engineering

Vol. 7, No. 2, April, 2012

240

simulation that the PABL outperforms the legacy buffer cache schemes like LRU and

CFLRU.

Acknowledgements

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and

Technology(2010-0021897).

References

[1] M. K. Qureshi, V. Srinivasan and J. A. Rivers, “Scalable High Performance Main Memory System Using

Phase-Change Memory Technology”, Proceedings of International Symposium on Computer Architecture,
(2009).

[2] G. Dhiman, R. Ayoub and T. Rosing, “PDRAM: A Hybrid PRAM and DRAM Main Memory System”,

Proceedings of Design Automation Conference, (2009).

[3] H. Park, S. Yoo and S. Lee, “Power Management of Hybrid DRAM/PRAM-based Main Memory”,

Proceedings of Design Automation Conference, (2011).

[4] Samsung Electronics, K9XXG08UXM.1G x 8 Bit/2G x 8 bit NAND Flash Memory.

[5] Gal and S. Toledo, “Algorithms and data structures for flash memories”, ACM Computing Surveys, 37, 2

(2005).

[6] J. Kim, J. Kim, S. Noh, S. Min and Y. Cho, “A space-efficient flash translation layer for compactflash
systems”, IEEE Transactions on Consumer Electronics, 48, 2 (2002).

[7] Y. Ryu, “SAT: switchable address translation for flash memory storages”, Proceedings of IEEE Computer
Software and Applications Conference, (2010).

[8] S. Park, D. Jung, J. Kang, J. Kim and J. Lee, “CFLRU: a replacement algorithm for flash memory”,

Proceedings of the 2006 International Conference on Compilers, Architecture and Synthesis for Embedded
Systems, (2006).

[9] Y. Yoo, H. Lee, Y. Ryu and H. Bahn, “Page replacement algorithms for NAND flash memory storages”,
Proceedings of International Conference on Computational Science and its Applications, (2007).

[10] Z. Li, P. Jin, X. Su, K. Cui and L. Yue, “CCF-LRU: A new buffer replacement algorithm for flash memory”,

IEEE Transactions on Consumer Electronics, 55, 3 (2009).

[11] H. Jo, J. Kang, S. Park and J. Lee, “FAB: Flash aware buffer management policy for portable media players”,
IEEE Transactions on Consumer Electronics, 48, 2 (2006).

[12] H. Kim and S. Ahn, “BPLRU: A buffer management Scheme for improving random writes in flash storage”,
Proceedings of USENIX Conference on File and Storage Technologies, (2008).

Author

Yeonseung Ryu received his BS degree in Computer Science and

Statistics from Seoul National University, Korea, in 1990, and his

MS and PhD degrees in Computer Science from Seoul National

University in 1992 and 1996, respectively. In 1996 he joined

Samsung Electronics, Co. as a senior researcher. Since 2003, he has

been with Myongji University, Korea, where he is currently a full

professor in the Computer Engineering Department. From March

2009 to February 2010, he was a visiting scholar at the University of

Minnesota, USA. His research interests include network protocol,

network storage systems, and operating systems.

