
International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

29

Querying Relational MPEG-7 Image Database with MPEG Query

Format

Mohammad Al-zoubi, Alaa’ Al-zoubi

Dept. of Computer Graphics and Animation,

Princess Sumaya University for Technology, Jordan

mzoube@psut.edu.jo

Dept. of CIS, Irbid University, Irbid, Jordan

alzou3bi@gmail.com

Abstract

The growth of multimedia is increasing the need for standards to access and search

distributed repositories. Recently, the Moving Picture Experts Group (MPEG) has developed

the MPEG Query Format (MPQF) to make multimedia access and search easier and

interoperable across search engines and repositories. Since MPQF is not supported by any

database products including native XML databases and relational databases, a translation of

MPQF to the multimedia database query language is required. This paper presents a system

for querying relational MPEG-7 image database with MPQF. A translation of selected query

types from MPQF to SQL is proposed based on an especially designed relational schema that

preserves typed data of the image descriptions.

Keywords: MPQF, MPEG-7, Image database

1. Introduction

The use of multimedia has grown massively in recent years. Thus, the need for

description, management and retrieval solutions has become ever more imperative for

users to be able to access these multimedia resources effectively. The Moving Picture

Experts Group (MPEG) addressed the description challenge by developing the MPEG-7

standard which provides a rich set of tools for completely describing multimedia

content [1]. MPEG-7 offers a comprehensive set of multimedia description tools to

create so-called descriptions, which can be used by applications that enable quality

access to content. MPEG-7 distinguishes itself from other relevant metadata standards

in its support for a range of abstraction levels, from low-level signal characteristics to

high-level semantic information. The user can combine low-level descriptors and high

level semantic information in a single description in a structured way, laying explicit

links between these types of data features, and can choose among different descriptors

and combine of them into meaningful sets of description units for each application.

Basically, MPEG-7 descriptions are XML documents that rely on an extension of

XML Schema, called Description Definition Language. Thus, it is an obvious idea to

employ XML database solutions for an efficient management of MPEG-7 descriptions.

There are many different XML database approaches on the market with different

capabilities, commercial, as well as open source or research prototypes. This includes

native XML database solutions that develop XML storage solutions from scratch [2],

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

30

and XML extensions that use the extensibility services of modern databases such as

those given in [3].

However, a detailed analysis of the mentioned approaches has shown that neither

native XML databases nor XML database extensions provide full support for managing

MPEG-7 descriptions with respect to their requirements [4]. This is mainly because

these solutions store and treat simple element content and the content of attribute values

of MPEG-7 descriptions largely as text, regardless of the actual content type. This is

inappropriate because in MPEG-7 many description schemes consist of non-textual data

like numbers, vectors, and matrices. It is desirable that applications can access and

process these schemes according to their real type and not as text. The problem of the

inspected solutions is that they do not sufficiently make use of schema and type

information offered within MPEG-7 descriptions. The majority of these approaches

ignores schema definitions for the storage of XML documents, and uses them for

validating XML documents only. To overcome these problems, a second approach

concentrates on how to map XML schema to an equivalent relational database schemes

specifically designed for that content [5, 6].

Recently, a new query language was developed by MPEG standardization

committee to query MPEG-7 Data or other multimedia metadata. This query language is

called the MPEG Query format (MPQF), which aims to provide a standardized interface

for multimedia content retrieval systems, and to facilitate and unify access to

distributed multimedia repositories [7]. To achieve this goal, the MPQF standard

specifies precise input and output parameters to express multimedia requests and to

allow clients easy interpretation and processing of result sets. Moreover, the

management component of the MPQF covers searching and the choice of the desired

multimedia services for retrieval. For this purpose, the standard provides a means to

describe service capabilities and to undertake service discovery.

MPQF is based on XML, and therefore, is platform independence. So, developers

can write their applications involving multimedia queries independently of the system

used, which fosters software reusability and maintainability. However, this requires a

translation of MPQF to the multimedia DBMS query language, i.e., mapping MPQF to

SQL in the case of relational database.

In this context, this article presents a method to translate an MPQF query to SQL

and an implementation of selected query types of MPQF within Oracle’s relational

database management system. The reset of the paper is organized as follows: Section 2

presents the MPEG-7 relational database schema. Section 3 presents the details of the

mapping algorithm from MPQF to SQL, while Section 4 gives an example. Section 5

presents related work, and finally, Section 6 concludes the paper.

2. Design of Relational MPEG-7 Database

In this section, we present a design method of relational database schema that

makes use of MPEG-7 schema, to manage the MPEG-7 descriptions into RDBMS. The

method depends on the fact that MPEG-7 document can be viewed as tree graph. In

this graph, actual values are stored in the leaf nodes (nodes at the end of the tree). A

detailed description of this method can be found in [8], and here we present an

overview of the main steps.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

31

Figure 1: Relational database schema used to manage MPEQ-7 image
descriptions.

First, an XPath expression is generated for every leaf node (element/attribute)

defined in the XML schema. Second, a relational table is created for all items that have

the same direct parent element. The names of tables and columns are specified as

defined in the MPEG-7 schema. Third, columns data types (and constraints) are

selected from Oracle DBMS types that are equivalent to the original data types defined

in the schema (constraints are added when needed). Forth, an extra table is created to

store unique IDs for the MPEG-7 documents, this table is named Document. And

finally, an extra two columns are added for every table (generated up to this point); the

order column which is used to preserve the order of elements as they appear in the

original document, and the DID column, which is a foreign key references to the

primary key in the Document table.

In addition, a second set of tables is created to store further information about the

elements and attributes in the MPEG-7 description. This set consists of two tables; the

Path table and the Data table. The Path table stores the XPath expressions generated in

the first step above. Each expression is identified by a unique ID, while the Data table

stores the node name, the parent node name, the name of the table that stores the node,

the name of a complex data type defined in the metadata schema, and a reference to the

PathID in the Path table.

Figure1 shows the relational schema generated to manage the MPEG-7 image

descriptions which are created manually using Caliph & Emir image annotation tool

[9]. Each description contains Media Information, Creation Information, Text

Annotation, and Visual descriptors (dominant color and edge histogram descriptors)

description tools. These description tools will enable us to perform various types of

query conditions as will be illustrated in rest of the paper.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

32

3. Mapping MPQF to SQL

MPQF is an XML-based multimedia query language that defines the format of

queries requests and responses. The key elements of the MPQF are shown in Figure 2.

A detailed explanation of these elements can be found in [10]. In the following

subsections, we present a detailed description of our mapping approach for the Input

Query Format, which represents the query request, to SQL that a RDBMS can execute

based on the relational schema presented in Section 2.

Figure 2: The main elements of MPQF and Input query

3.1. Output Description

The OutputDescription element enables the user to select information and its

structure that the result set must contain. It also allows limiting the maximum number

of items per output page and the overall items number. Besides, it allows the users to

use aggregation and sorting processes. The OutputDescription element consists of the

four major elements: ReqField, ReqAggregateID, GroupBy, and SortBy. In order to

explain how to map these elements to SQL format, consider the following query

sample:

<MpegQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Query>

 <Input>

 <OutputDescription >

 <ReqField typeName =" PersonType">Name/GivenName</ReqField>

 <ReqAggregateID>MaxPercentage</ReqAggregateID>

 <GroupBy>

 <Aggregate xsi:type="MAX" aggregateID="MaxPercentage" >

 <Field>Value/Percentage</Field>

 </Aggregate>

 </GroupBy>

 <SortBy xsi:type="SortByAggregateType" order="descending">

 <AggregateID>MaxPercentage</AggregateID>

 </SortBy>

 </OutputDescription>

 </Input>

 </Query>

</MpegQuery>

The ReqField element describes a data path within the item’s metadata , which a

user asks to be returned. Paths are specified using absolute XPath expressions, which

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

33

refer to the root of the item’s metadata. ReqField element has an optional attribute

named typeName which is used to specify the name of the complex data type defined in

the schema. Mapping ReqField element to SQL is performed by the following steps:

1) Extract the name of the element (or attribute) and the name of its relational table

by matching the absolute XPath expressions and the value typeName attribute

(if present) in the ReqField element with values of the Path and Data tables.

2) Append the name of the element (or attribute) in the SELECT statement, and the

corresponding relational tables in the FROM statement.

The ReqAggregateID element describes the ID of the aggregate operation, the

requester asks to be returned. When one or more ReqAggregateIDs are used, the

aggregate ID should be in the GroupBy element. Mapping this element to SQL is

achieved by following steps:

1) Get the name of the aggregate function from the GroupBy element that has the

same value in the aggregateID attribute of the Aggregate element. The name of

the aggregate function is specified in the xsi:type attribute. (From the example

above, the name of the aggregate function in the example is MAX.)

2) Get the element that will be used as attribute of this function from the Field

element. (From example above the field name is Percentage.)

3) Apend the aggregate function in the SELECT statement, and use the value of

the aggregateID attribute as an alias for that column.

4) Append the name relational table of the element in the aggregate function into

the FROM statement, then insert all the elements in the SELECT statement that

are not listed in the aggregate function into the GROUP BY statement.

The SortBy element describes the sort operation the user wants to apply on the

query results. In MPQF, the SortBy is performed by either using SortByFieldType or by

using SortByAggregateType. Mapping this element to SQL format is performed by the

following steps:

1) When the sorting is performed using SortByFieldType, the element of that field

is appended to the ORDER BY statement. While when using

SortByAggregateType the name and the element of the aggregate function are

specified by the value of the AggregateID element, then the aggregate function

is appended to the ORDER BY statement.

2) The type of sorting, whether ascending or descending, is determined by the

order attribute of the SortBy element. The appropriate SQL format for sorting

order (ASC or DESC) is appended to the ORDER BY statement.

After applying the steps above, all the tables in the FROM statement are joined in

the WHERE statement on the DID (Document ID) field, and the complete SQL

statement for the MPQF above will be:

SELECT [Name].[GivenName], MAX([Value].[Percentage]) AS MaxPercentage

FROM [Name], [Value]

WHERE ([Name].DID = [Value].DID)

GROUP BY [Name].[GivenName]

ORDER BY MAX ([Value].[Percentage]) DESC

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

34

3.2. Query Condition

The QueryCondition element is the part of the Input Query Format where the user

specifies the properties of the media or the metadata to be retrieved. QueryCondition

element has an optional Path element, TargetMediaType element, and a choice between

Condition or a Join element. The following subsections will illustrate how to translate

these elements to an equivalent SQL.

3.2.1. Condition element: The Condition element is a placeholder for a Boolean

expression type and may result in a filter tree. The filter tree can be constructed by

three main constructs, namely comparison expressions, Boolean operators, and query

types (Figure 3).

Figure 3: Component for construction condition element.

Usually, a comparison expression is defined by an operation and two operands. The

operations defined include: GreaterThan, GreaterThanEqual, LessThan,

LessThanEqual, Equal, NotEqual and Contains. The two operands should belong to the

same OperandClass within a comparison expression. OperandClass denotes a

representation of a specific data type, such as Boolean, String, Arithmetic, DateTime or

Duration. Every element of an OperandClass can be described by a value of the data

type, an XPath expression pointing to a value of the specific data type, or a

corresponding expression resulting to a value of the specific datatype.

Arithmetic expressions allow performing arithmetic operations on arithmetic

operands. These operations are: Add, Subtract, Multiply, Divide, Modulus, Abs, Ceiling,

Floor and Round. Arithmetic Operands allow specifying one element which has

arithmetic value content. The name of such element is specified by the ArithmeticField

element. The value to be compared with is set by either DoubleValue, LongValue

elements, or another Arithmetic expression. Aggregate expressions are subclass of

arithmetic expressions that perform aggregate operations such as: AVG, StdDev,

Variance, SUM, Count, MAX and MIN.

Boolean expressions allow building expressions, using Boolean operators (AND,

OR, NOT, XOR), which evaluate to a Boolean value. The Boolean Operands allow

specifying one element which has Boolean value content (true or false). The name of

such element is specified by the BooleanField element. The value to be compared with

is specified by the BooleanValue element, or by another Boolean Expression. Finally,

the purpose of string expression type is to facilitate case insensitive processing of

String Operands. These types include: UpperCase and LowerCase. The String Operands

allow specifying one element which has String value content. The name of such a field

is specified by the StringField element. The value to be compared with is specified by

the StringValue element or another String Expression.

To map the Condition element to SQL, a recursive algorithm is implemented to

traverse the condition tree and translate it to WHERE clause of the SQL statement as

illustrated in the following pseudo code:

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

35

Read the attributes of the QueryCondition Element

Call ReadNext()

ReadNext()

{

Read next element

Case operandField: // gets the names or values of the operands

 Call OperandsFunction()

Case ConditionElement:

 Read the value of the xsi:type attribute

 If the value is one of ComparisonExpressionTypes (GreaterThan,

GreaterThanEqual, LessThan, LessThanEqual, Equal, NotEqual, Contains)

then

 Call ComparisonExpressionFunction()

 Else if the value is one of the BooleanExpressionTypes (AND, OR, NOT,

XOR) then

 Call BooleanExpressionFunction()

Case ArithmeticExpression:

 Call ArithmeticExpressionFunction()

Case StringExpression:

 Call StringExpressionFuntion()

Case End of QueryCondition element:

 Append the condition to the WHERE statement and tables to the FROM

statement

}

ComparisonExpressionFunction()

{

Read next element

If element is ArithmeticExpression then

 Apply the ComparisonExpression between the value returned by

ArithmeticExpressionFunction () and ReadNext()

Else if element is operandField then

 Apply the ComparisonExpression between the value returned by

OperandsFunction() and ReadNext()

Else if element is StringExpression then

 Apply the ComparisonExpression between the value returned by

StringExpressionFunction () and ReadNext()

}

ArithmeticExpressionFunction()

{

Read the value of the xsi:type attribute

 If type is one of (Add, Subtract, Multiply, Divide, Modulus, Abs, Ceiling, Floor,

Round) then

 Read next element

 If element is operandField then

 return the expression as

ArithmeticExpressionOperation(OperandsFunction())

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

36

 Else if element is ArithmeticExpression then

 return the expression as

ArithmeticExpressionOperation(ArithmeticExpressionFunction())

 Else if the type is (AVG, StdDev, Variance, SUM, Count, MAX, MIN) then

 call AggregateExpressionFunction()

}

AggregateExpressionFunction()

{

Read the value of the field element

Find the relational table of this field from the dataTable and path table

 Return the expression in the form of

 AggregateExpressionOperation([Table Name].[Element Name])

}

StringExpressionFunction()

{

Read the value of the type attribute to specify the StringExpression operation

Read next element

If element is StringValue or StringField then

 Return the expression in the form of

StringExpressionOperation(OperandsFunction())

Else If element is StringExpression then /

 Return the expression as

StringExpressionOperation(StringExpressionFunction())

}

OperandsFunction()

{

 Case operands that specifies a field element in the description (ArithmeticField,

BooleanField, StringField, TimeField, DurationField)

 Get the relational element name and the relational table name from the dataTable and

path table

 Return the operand in the form of [Table Name].[Element Name]

Case operands that specifies a value (DoubleValue, BooleanValue …)

 Return the value of the element

}

BooleanExpressionFunction()
{

Case AND, OR:

 Apply the operator between all the Conditions belong to this expression

Case XOR:

 Apply the operator between the two conditions belong to this expression

 Case NOT:

 Apply the operator to the condition that belongs to this expression

}

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

37

As an example, consider the following query portion:

<Condition xsi:type="OR">

 <Condition xsi:type="Equal">

 <BooleanField>MediaProfile/@master</BooleanField>

 <BooleanValue>true</BooleanValue>

 </Condition>

 <Condition xsi:type="Equal">

 <StringField>Name/GivenName</StringField>

 <StringValue>Salma</StringValue>

 </Condition>

</Condition>

Mapping this query will result in the following SQL WHERE statement:

WHERE ([MediaProfile].[master] = 'true') OR ([Name].[GivenName] = 'Salma')

As another example:

<Condition xsi:type="Equal">

 <ArithmeticExpression xsi:type="Abs">

 <ArithmeticField>width</ArithmeticField>

 </ArithmeticExpression>

 <LongValue>500</LongValue>

</Condition>

will map to: WHERE (ABS([Frame].[width])=500)).

And Finally,

<Condition xsi:type="GreaterThan ">

 <ArithmeticField>Frame/@width</ArithmeticField>

 <LongValue>500</LongValue>

</Condition>

will map to: WHERE ([Frame].[width]>500).

3.3. Query Types

MPQF provides the following query types: QueryByMedia, QueryByDescription,

QueryByFeatureRange, SpatialQuery, TemporalQuery, QueryByXQuery, QueryByFreeText,

QueryByROI, and QueryByRelevanceFeedback. All these types inherit from the QueryType

type which returns a Boolean denoting whether an evaluation item satisfies the condition

specified by the operation or not. In our system, we implemented the most two popular image

query types, namely, QueryByFreeText and QueryByMedia. The following subsections

will present the implementation details.

3.3.1. Query by Free Text: The QueryByFreeText type enables the user to perform a

search based on the use of free-text. It contains a FreeText element containing text

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

38

description as a condition, and an optional choice of fields (SearchField, IgnoreField),

which allow the user to if the search should be performed in specific elements only or if

specific elements should be ignored. Mapping this query to SQL is performed by the

following steps:

1) Get the value from the FreeText element.

2) Get the column name where the free text is stored from the SearchField

element (if the SearchField is not present, we select the FreeTextAnnotation

as the SearchField).

3) Apply the LIKE operator between the values in the first and second steps.

The accumulated condition will be appended to the WHERE statement as:

WHERE Column_Name LIKE Free_Text.

As an example, consider the following query:

<MpegQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Query>

 <Input>

 <OutputDescription outputNameSpace="urn:mpeg:mpeg7:2004">

 <ReqField typeName="ImageType">MediaUri</ReqField>

 </OutputDescription>

 <QueryCondition>

 <Condition xsi:type="QueryByFreeText">

 <FreeText>rose</FreeText>

 <SearchField>TextAnnotation/FreeTextAnnotation</SearchField>

 </Condition>

 </QueryCondition>

 </Input>

 </Query>

</MpegQuery>

From this example, the query text is 'rose', and the relational table and column names

are TextAnnotation and FreeTextAnnotation, respectively. The SQL statement

representing this query is:

SELECT [MediaLocator].[MediaUri]

FROM [MediaLocator], [TextAnnotation]

WHERE ([MediaLocator].DID = [TextAnnotation].DID)

AND ([TextAnnotation].[FreeTextAnnotation] LIKE 'rose')

3.3.2. QueryByMedia: The QueryByMedia type enables the user to perform a search

based on a given example of media resource. It provides an attribute (matchType) to set

the search criteria whether similar-match or exact-match. To illustrate how this query

type is translated to SQL, consider the following query sample:

<MpegQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Query>

 <Input>

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

39

 <OutputDescription outputNameSpace="urn:mpeg:mpeg7:2004">

 <ReqField typeName="ImageType">MediaUri</ReqField>

 </OutputDescription>

 <QueryCondition>

 <Condition xsi:type="QueryByMedia" matchType="similar">

 <MediaResource resourceID="Image001" >

 <MediaResource>

 <MediaUri>file:/D:/Pictures/600.jpg</MediaUri>

 </MediaResource>

 </MediaResource>

 </Condition>

 </QueryCondition>

 </Input>

 </Query>

</MpegQuery>

As indicated by the matchType attribute of the condition element, the value of this

attribute is similar. To implement this query, a set of functions are implemented to

extract low level descriptors, such as dominant color descriptor or edge histogram

descriptor, of the input image and match it with all images in the database.

To map and execute this query, the steps below are followed:

1) The descriptor value for the query image is retrieved using a simple function.

2) The distance between the query image and all images in the database is

calculated and the results are inserted into a temporary table called Similarity

(consists of sim and DID columns).

3) The similarity values are retrieved in ascending order.

The Final SQL statement for the MPQF sample above will be:

SELECT [MediaLocator].[MediaUri]

FROM [MediaLocator], [Similarity]

WHERE ([MediaLocator].DID = [Similarity].DID)

ORDER BY [Similarity].[sim] ASC

However, when the value of the matchType attribute is exact, we define a function

called GetDescription to retrieve the Descriptor value from the database of the query

image, then a simple SQL statement is appended to retrieve the descriptions that mat ch

(exactly) the query Description. The SQL statement for the query above will be as the

following code:

SELECT [MediaLocator].[MediaUri]

FROM [MediaLocator], [BinCounts]

WHERE [BinCounts].[BinCounts] = GetDescription("file:/D:/Pictures/600.jpg")

ORDER BY [Similarity].[sim] ASC

where the descriptor values are stored in the BinCounts column of the BinCounts table.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

40

3.4. Target Media Type

The TargetMediaType element is part of the QuertCodition element that contains

MIME type descriptions of media formats, which are the targets for retrieval. A MIME

type is composed of (at least) two parts: a type and a subtype separated by "/". For

instance, the MIME type audio/mp3 would filter all results for audio files depending on

the MP3 format. In our implementation, mapping this type is performed by the

following steps:

1) Extract the MIME type from specified in the TargetMediaType element.

2) Identify the type and subtype and determine the relational table that store each

value. (Note: in our image database, we assumed that the main type is in the

href of the Content element and the subtype is in the Name element of in the

FileFormat parent element).

3) Append tables names to the FROM statement, and append the appropriate

condition(s) in the WHERE statement.

To illustrate these steps, consider the following query sample:

<MpegQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Query>

 <Input>

 <OutputDescription outputNameSpace="urn:mpeg:mpeg7:2004">

 <ReqField>MediaUri</ReqField>

 </OutputDescription>

 <QueryCondition>

 <TargetMediaType>image/JPEG</TargetMediaType>

 </QueryCondition>

 </Input>

 </Query>

</MpegQuery>

Based on the steps above, the resultant SQL statement will be:

SELECT [MediaLocator].[MediaUri]

FROM [MediaLocator], [Content], [FileFormat]

WHERE ([MediaLocator].DID = [Content].DID) AND ([MediaLocator].DID =

[FileFormat].DID)

AND ([Content].DID = [FileFormat].DID) AND (([Content].[href] = 'image')

AND ([FileFormat].[Name] = 'JPEG'))

4. Experimental Results

To test our system, a database based on Oracle 10g is created as specified in Section 2,

and a set of images were annotated and stored in this database. We aim here to test the

mapping algorithm not the efficiency of retrieval process. The Example below presents a

query that combines the use of QueryByMedia, QueryByFreeText, and the TargetMediaType,

to retrieve images URIs of all types that have either "rose" or "yellow" as a free text and

have been created after 2002-05-30 and similar to the following query image:

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

41

<MpegQuery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Query>

 <Input>

 <OutputDescription outputNameSpace="urn:mpeg:mpeg7:2004">

 <ReqField>MediaUri</ReqField>

 </OutputDescription>

 <QueryCondition>

 <TargetMediaType>image/*</TargetMediaType>

 <Condition xsi:type="AND">

 <Condition xsi:type="GreaterThan">

 <DateTimeField>Date/TimePoint</DateTimeField>

 <DateTimeValue>2002-05-30</DateTimeValue>

 </Condition>

 <Condition xsi:type="QueryByMedia" matchType="similar">

 <MediaResource resourceID="Image001">

 <MediaResource>

 <MediaUri>file:/D:/Pictures/600.jpg</MediaUri>

 </MediaResource>

 </MediaResource>

 </Condition>

 <Condition xsi:type="OR">

 <Condition xsi:type="QueryByFreeText">

 <FreeText>rose</FreeText>

 <SearchField>TextAnnotation/FreeTextAnnotation</SearchField>

 </Condition>

 <Condition xsi:type="QueryByFreeText">

 <FreeText>yellow</FreeText>

 <SearchField>TextAnnotation/FreeTextAnnotation</SearchField>

 </Condition>

 </Condition>

 </Condition>

 </QueryCondition>

 </Input>

 </Query>

</MpegQuery>

Based on the mapping technique discussed in Section 3, the SQL statement is:

SELECT [MediaLocator].[MediaUri]

FROM [MediaLocator], [Content], [Date], [Similarity], [TextAnnotation]

WHERE ([MediaLocator].DID = [Content].DID) AND ([MediaLocator].DID = [Date].DID

) AND ([MediaLocator].DID = [Similarity].DID) AND ([MediaLocator].DID =

[TextAnnotation].DID) AND ([Content].DID = [Date].DID) AND ([Content].DID =

[Similarity].DID) AND ([Content].DID = [TextAnnotation].DID) AND ([Date].DID =

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

42

[Similarity].DID) AND ([Date].DID = [TextAnnotation].DID) AND ([Similarity].DID =

[TextAnnotation].DID)

AND

(([Date].[TimePoint] > '2002-05-30') AND (([TextAnnotation].[FreeTextAnnotation] LIKE

'rose')

OR ([TextAnnotation].[FreeTextAnnotation] LIKE 'yellow'))) AND ([Content].[href] =

'image')

ORDER BY [Similarity].[sim] ASC

Executing this query resulted in the following output which is according to the Output query

format of the MPQF specifications:

<MpegQuery xmlns:xsi="www.w3.org/2001/XMLSchema-instance">

 <Query>

 <Output CurrPage = "1" totalPages = "1">

 <ResultItem recordNumber="1">

 <Description xmlns:mpeg7="urn:mpeg:mpeg7:2004">

 <mpeg7:Mpeg7>

 <mpeg7:DescriptionUnit >

 <mpeg7:MediaUri>file:/D:/Pictures/600.jpg</mpeg7:MediaUri>

 </mpeg7:DescriptionUnit>

 </mpeg7:Mpeg7>

 </Description>

 </ResultItem>

 <ResultItem recordNumber="2">

 <Description xmlns:mpeg7="urn:mpeg:mpeg7:2004">

 <mpeg7:Mpeg7>

 <mpeg7:DescriptionUnit >

 <mpeg7:MediaUri>file:/D:/Pictures/633.jpg</mpeg7:MediaUri>

 </mpeg7:DescriptionUnit>

 </mpeg7:Mpeg7>

 </Description>

 </ResultItem>

 <ResultItem recordNumber="3">

 <Description xmlns:mpeg7="urn:mpeg:mpeg7:2004">

 <mpeg7:Mpeg7>

 <mpeg7:DescriptionUnit >

 <mpeg7:MediaUri>file:/D:/Pictures/628.jpg</mpeg7:MediaUri>

 </mpeg7:DescriptionUnit>

 </mpeg7:Mpeg7>

 </Description>

 </ResultItem>

 <ResultItem recordNumber="4">

 <Description xmlns:mpeg7="urn:mpeg:mpeg7:2004">

 <mpeg7:Mpeg7>

 <mpeg7:DescriptionUnit >

 <mpeg7:MediaUri>file:/D:/Pictures/609.jpg</mpeg7:MediaUri>

 </mpeg7:DescriptionUnit>

 </mpeg7:Mpeg7>

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

43

 </Description>

 </ResultItem>

 <ResultItem recordNumber="5">

 <Description xmlns:mpeg7="urn:mpeg:mpeg7:2004">

 <mpeg7:Mpeg7>

 <mpeg7:DescriptionUnit >

 <mpeg7:MediaUri>file:/D:/Pictures/615.jpg</mpeg7:MediaUri>

 </mpeg7:DescriptionUnit>

 </mpeg7:Mpeg7>

 </Description>

 </ResultItem>

 </Output>

 </Query>

</MpegQuery>

The result above encloses five records, where each record is represented by the

ResultItem element. The ResultItem element includes the image information that satisfies the

query conditions, i.e., an image which is created after 2002-05-30 and similar to the query

image. The result shows that our system is capable of searching similar images, contrary to

other implementations, and this the main advantage of our system. However, implementing

this query requires a preprocessing step to calculate the similarity vector between the query

image and the database. This is not efficient, because the search is linear, and requires further

investigation.

5. Related Work

To the best of our knowledge there are two implementations of MPQF over

relational-based MPEG-7 databases. The first implementation [11] is based on Oracle’s

object-relational database management system, where the implemented query types

operate on one table containing all inserted MPEG-7 documents as XMLTypes. The

system implements the following query types: QueryByFreeText, QueryByXQuery,

QueryByDescription, and QueryByMedia (exact match only), and it is possible to

generate complex combinations of these query types by using AND and OR operators

through assembly of the individual parts with SQL intersect and union operations.

The second implementation [12] relies on MS SQL Server 2005 which provides an

automatically mapping process of XML schema to an equivalent database schema, and

provides SQL-based extensions which allow the user to embed XPath/XQuery

expressions in SQL statements. Two query types were implemented: QueryByFreeText

and QueryByMedia (exact match only). QueryByFreeText translated into XQuery

expressions embed in SQL statement. QueryByMedia implemented by using both

XQuery expression and SQL functions.

The major limitation of both systems is that MPEG-7 document is stored in one

table and one column of XMLType, and hence, typed data are stored as text. This is not

useful because in MPEG-7 many description schemes consist of non textual data like

numbers, vectors, and matrices, and hence, incurs limitations in processing query types

which requires numerical calculations, such as QueryByMedia with similar attribute.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 6, No. 4, October, 2011

44

6. Conclusions

In this paper, we presented a system which provides a means for storing and

querying MPEG-7 image descriptions with MPQF. A relational database schema is

designed to store and manage these descriptions, which preserve the typed data of the

visual descriptors. This method provides the flexibility to perform queries which

requires processing of numerical data. However, it will make it difficult to implement

queries which rely on XML structure such as QueryByDescription, since the XML

structure of the description is lost by the mapping process.

Then, based on this schema, an MPQF query processing algorithm for mapping the

MPQF input query and translate it to equivalent SQL statement is implemented. The

system features implementations of the two query types: QueryByFreeText, and

QueryByMedia (exact and similar match), and it is possible to combine them with

intricate constraints on any element or attribute value using AND, OR, NOT, and XOR

operators.

In a future work, we will try to improve the efficiency of the system, for example,

splitting the query to speed up the retrieval process.

 References

[1] Manjunath, T.S.B.S. and Salembier, P. Introduction to MPEG-7: Multimedia Content

Description Interface, Wiley, Chichester, England, ISBN: 978-0-471-48678-7, 2002.

[2] Jagadish, H.V., Al-Khalifa, S., and Chapman, A. et al. TIMBER: a native XML database.

VLDB Journal, 11 (4), 274–291. 2002.

[3] Kosch, H. Distributed Multimedia Database Technologies Supported by MPEG-7 and MPEG-

21, CRC Press, Boca Raton, FL, 248, ISBN: 0-849-31854-8, 2003.

[4] Westermann, U. and Klas, W. An analysis of XML database solutions for the management of

MPEG-7 media descriptions. ACM Computer Surveys, 35 (4), 331–373, 2003.

[5] Chu, Y., Chia, L.-T., and Bhowmick, S.S. Mapping, indexing and querying of MPEG-7

descriptors in RDBMS with IXMDB. Journal of Data and Knowledge Engineering (DEK) , 63

(2), 224–257, 2007.

[6] Westermann, U. and Klas, W. PTDOM: a schema-aware XML database system for MPEG-7

media descriptions. Software: Practice and Experience, 36 (8), 785–834, 2006.

[7] Doller, M., Tous, R., Gruhne, M. et al. The MPEG Query Format: on the way to unify the

access to Multimedia Retrieval Systems. IEEE Multimedia, 15 (4), 82–95, 2008.

[8] Alaa’ Alzoubi and Mohammad Alzoubi . Automatic Mapping of MPEG-7 Descriptions to

Relational Database, will appear in The International Arab Journal of Information Technology.

[9] Mathias Lux, Caliph & Emir: MPEG-7 photo annotation and retrieval, Proceedings of the

seventeen ACM international conference on Multimedia, October 19-24, Beijing,

China [doi>10.1145/1631272.1631456] , 2009.

[10] ISO/IEC 15938-12 FCD Query Format,

http://www.chiariglione.org/mpeg/working_documents.htm#MPEG-7

[11] M. Döller, R. Tous, M. Gruhne, M. Choi, T.-B. Lim, J. Delgado and A. N. Ndjafa Yakou;

Semantic MPEG Query Format Validation and Processing; IEEE Multimedia 16(4):22-34,

October-December 2009.

[12] Zhang Shaolong; Wu ZhiHua, An implementation of MPEG Query Format over relational-

based multimedia database, 2nd International Conference on Future Computer and

communication (ICFCC) , pp. V1-614 - V1-617, Wuhan ,China, 2010.

http://portal.acm.org/citation.cfm?id=1631456&CFID=29195976&CFTOKEN=27943281
http://portal.acm.org/citation.cfm?id=1631456&CFID=29195976&CFTOKEN=27943281
http://portal.acm.org/citation.cfm?id=1631456&CFID=29195976&CFTOKEN=27943281
http://doi.acm.org/10.1145/1631272.1631456
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5487607

