
International Journal of Multimedia and Ubiquitous Engineering
Vol. 5, No. 3, July 2010

15

Dynamically Self-adapting and Growing Intrusion Detection System

1
Longy O. Anyanwu, M.S.; Ed.D.,

2
Jared Keengwe Ph.D.,

3
Gladys A. Arome, Ph.D.; MPH.

1
Dept. of Math and Computer Science, Fort Hays State University, Kansa, USA

2
Dept. of Teaching and Learning, University of North Dakota, North Dakota, USA

3
College of Educ., Ldrshp, & Tech., Valdosta State University, Georgia, USA

1
loanyanwu@fhsu.edu,

2
jared.keengwe@und.edu,

3
gaarome@valdosta.edu

Abstract

The ever-growing use of the Internet comes with a surging escalation of communication and

data access. Most existing intrusion detection systems have assumed the one-size-fits-all

solution model. Such IDS is not as economically sustainable for all organizations.

Furthermore, studies have found that Recurrent Neural Network out-performs Feed-forward

Neural Network, and Elman Network. This paper, therefore, proposes a scalable

application-based model for detecting attacks in a communication network using recurrent

neural network architecture. Its suitability for online real-time applications and its

ability to self-adjust to changes in its input environment cannot be over-emphasized.

Keywords: Communication, Security, Scalable, Neural, Network, Intrusion, Detection,

System

1. Introduction

The ever-growing use of the Internet comes with a surging escalation of communication and

data access. Coupled with this communication escalation, is the rapid proliferation of

networks and their compounding management complexities. This ubiquity of the Internet

undoubtedly poses serious concerns on computer infrastructure, network traffic and the

integrity of sensitive data. Consequently, Network security and effective fire-walling have

emerged to be a hot area of increasing attention in the computing industry. A variety of

studies have been carried out in communication and network security, and nefarious attack

detection and resolution, [1], [2], [3].

Most existing intrusion detection systems (IDS) have assumed the one-size-fits-all solution

model. Obviously, such IDS are not as economically sustainable for all organizations with

unique levels of financial buoyancy, operational complexity, and network traffic. Popular

approaches to network intrusion detection basically assume that an intruder's behavior will be

noticeably different from normal network use. Network misuse detection, and Network

anomaly detection are two general classifications of network intrusion detection. Misuse

detection systems tend to scan the system for the occurrences of network misuses. Such IDS

seeks to identify deviations from HTTP commands by comparing them to known database of

signatures of attacks [3]. This method of detection is also the weakness of this approach since it

has no answer to new signatures. Anomaly detection systems observe significant deviations

from typical or expected behavior of the systems. This detection model, on the other hand,

seeks abnormal network traffic, [2], [4]. The problem with this method is in the criteria and

International Journal of Multimedia and Ubiquitous Engineering
Vol. 5, No. 3, July 2010

16

technique of deciding when an element of network traffic is abnormal without invoking the

weaknesses of the misuse technique. It is the very dynamic and ever-changing nature of

computer network attacks that makes an approach based on neural networks an efficient course

of action, since neural networks excel in pattern recognition, and parallel computing[5]-[6],

[7], and also, recent studies [8] have applied them to globally-efficient systems.

An important component of this scalable system is the utility of DGSOT algorithm to

organize and access data in a hierarchical way. Using the dynamically growing self-

organizing tree algorithm, we organize a set of data or records into layers of clusters of one or

more records. Notably, several techniques to do this are available, such as the hierarchical

agglomerative clustering algorithm (HAC) [9], the self-organizing map (SOM) [10], the self-

organizing tree algorithm (SOTA) [11], and so on. In this study, we will exploit a new

algorithm, dynamically growing self-organizing tree (DGSOT) algorithm, to construct a

hierarchy from top to bottom rather than bottom up, as in HAC. We have observed that this

algorithm constructs a hierarchy with better precision and recall than a hierarchical

agglomerative clustering algorithm [12]. Hence, we believe that false positives and false

negatives, akin to precision and recall area in IR, are reduced with the use of our new

algorithm as compared to HAC. Furthermore, it works top-down fashion. We can stop tree

growing earlier and it can be entirely combined with SVM training.

In this paper, we propose a scalable intrusion detection with recurrent neural networks. The

proposed method is the detection of network-based anomalies, using the dynamically growing self-

organizing tree algorithm (DGSOT) for clustering and scalability, and augmented with a

combination of Support Vector Machines (SVM) for classification because it has been proved

to overcome the drawbacks of traditional hierarchical clustering algorithms such as the

hierarchical agglomerative clustering. The SVM is one of the most successful classification

algorithms in the data mining area, but its long training time limits its use. We present a new

approach of the combination of SVM and DGSOT, which starts with an initial training set

and expands it gradually using the clustering structure produced by the DGSOT algorithm.

The comparison is made between the proposed approach and the Rocchio Bundling technique

and random selection in terms of accuracy loss and training time gain using a single

benchmark real data set. Next, is a brief description of the mathematical foundations of the

articulation of the SVM.

2. SVM with clustering for training

SVM are learning systems that use a hypothesis space of linear functions in a high

dimensional feature space, trained with a learning algorithm from optimization theory. SVM

are based on the idea of a hyper-plane classifier, or linear separability. Suppose we have N

training data points {(x1, y1), (x2,y2), (x3, y3), . . . , (xN , yN)}, where xi belong to R
n
 and yi ∈

{+1,−1}. Consider a hyper-plane defined by (w, b), where w is a weight vector and b is a bias,

see fig.1. Details of SVM can be found in [13]. We can classify a new object x with

Note that the training vectors xi occur only in the form of a dot product; there is a Lagrangian

multiplier αi for each training point. The Lagrangian multiplier values αi reflect the

importance of each data point. When the maximal margin hyper-plane is found, only points

that lie closest to the hyper-plane will have αi > 0 and these points are called support vectors.

International Journal of Multimedia and Ubiquitous Engineering
Vol. 5, No. 3, July 2010

17

All other points will have αi = 0, see Figure 1. This means that only those points that lie

closest to the hyper-plane give the representation of the hypothesis/classifier, optimized with

minx ||w||
2
/2 subject to yi(xi•w+b) ≥ 1.

Figure 1: Linear Separation of the SVM

Figure 2: Separation of the Support Vector points and Non-support Vector points

(adapted in part from [12])

These most important data points serve as support vectors. Figure1 shows two classes and

their boundaries, i.e., margins. The support vectors are represented by solid objects, while the

empty objects are nonsupport vectors. Notice that the margins are only affected by the

support vectors, i.e., if we remove or add empty objects, the margins will not change.

Meanwhile any change in the solid objects, either adding or removing objects, could change

the margins. Fig.1B shows the effects of adding objects in the margin area. As we can see,

adding or removing objects far from the margins, e.g., data point 1 or −2, does not change the

margins. However, adding and/or removing objects near the margins, e.g., data point 2 and/or

−1, has created new margins. Once this setup, a hierarchy of clustering tree is dynamically

constructed.

2.1 Clustering tree based on SVM, CT-SVM

In this approach, we build a hierarchical clustering tree for each class in the data set (for

simplicity and without loss of generality, we assume binary classification) using the DGSOT

algorithm. The DGSOT algorithm, top-down clustering, builds the hierarchical tree iteratively

in several epochs. After each epoch, new nodes are added to the tree based on a learning

process. To avoid the computation overhead of building the tree, we do not build the entire

hierarchical trees. Instead, after each epoch we train SVM on the nodes of both trees. We use

the support vectors of the classifier as prior knowledge for the succeeding epoch in order to

control the tree growth. Specifically, support vectors are allowed to grow, while non-support

International Journal of Multimedia and Ubiquitous Engineering
Vol. 5, No. 3, July 2010

18

vectors are stopped. This has the impact of adding nodes in the boundary areas between the

two classes, while eliminating distant nodes from the boundaries. Figure 3 diagrammatically

outlines the steps of this approach. First, assuming binary classification, we generate a

hierarchical tree for each class in the data set. Initially, we allow the two trees to grow until a

certain size of the trees is reached. Basically, we want to start with a reasonable number of

nodes. First, if a tree exhibits convergence earlier (i.e., fewer number of nodes), one option is

to train SVM with these existing nodes. If the result is unsatisfactory, we will adjust the

threshold (profile and radius thresholds). Reducing thresholds may increase number of

clusters and nodes. Second, we will train SVM on the nodes of the trees, and compute the

support vectors. Third, on the basis of stopping criteria, we either stop the algorithm or

continue growing the hierarchical trees. In the case of growing the tree, we use prior

knowledge, which consists of the computed support vector nodes, to instruct the DGSOT

algorithm to grow support vector nodes, while non-support vector nodes are not grown. By

growing a node in the DGSOT algorithm, we mean that we create two children nodes for each

support vector node [14].

Figure 3: Logic Flow diagram of the Approach

Flow diagram, Figure 3, of clustering trees growth of the hierarchical trees. This process has

the impact

of growing the tree only in the boundary area between the two classes, while stopping the tree

from growing in other areas. Hence, we save extensive computations that would have been

carried out without any purpose or utility. We can stop at a certain size/level of tree, upon

reaching a certain number of nodes/support vectors, and/or when a certain accuracy level is

attained. For accuracy level, we can stop the algorithm if the generalization accuracy over a

validation set exceeds a specific value (say 98%). For this accuracy estimation, support

vectors will be tested with the existing training set based on proximity. In our

implementation, we adopt the second strategy (i.e., a certain number of support vectors) so

that we can compare our procedure with the Rocchio Bundling algorithm which reduces the

data set into a specific size. We do not wait until DGSOT finishes. Instead, after each

epoch/iteration of the DGSOT algorithm, we train the SVM on the generated nodes. After

each training process we can control the growth of the hierarchical tree from top to bottom

because non-support vector nodes will be stopped from growing, and only support vector

nodes will be allowed to grow.

International Journal of Multimedia and Ubiquitous Engineering
Vol. 5, No. 3, July 2010

19

Figure 4: Hierarchy construction using a DGSOT algorithm

Figure 5 shows the growth of one of the hierarchical trees using this approach. The bold

nodes represent the support vector nodes. Notice that nodes 1, 2, 3, 5, 6, and 9 are allowed to

expand because they are support vector nodes. Meanwhile, we stop nodes 4, 8, 7, and 10 from

growing because they are not support vector nodes.

Figure 5: Selective Growth of the Tree (adapted from [12] and modified)

Growing the tree is very important in order to increase the number of points in the data set so

as to obtain

a more accurate classifier. Fig. 4 shows an illustrative example of growing the tree up to

certain

size/level and in which we have the training set (+3, +4, +5, +6 + 7, −3, −4, −5, −6, −7). The

dashed nodes represent the clusters’ references which are not support vectors. The bold nodes

represent the support vector references. Hence, we add the children of the support vector

nodes +4 and +7 to the training set. The same applies to the support vector nodes −5 and −7.

The new data set now is (+3, +11, +12, +5, +6, +14, +15, −3, −4, −10, −11, −6, −12, −13).

Notice that expanded nodes, such as +4 and +7, are excluded because their children nodes are

added to the training set. Note that adding new nodes in the boundary area of the old

classifier, represented by dashed lines, is corrected and the new classifier, solid lines, is more

accurate now than the old one. By doing so, the classifier is adjusted accordingly, creating a

more accurate classifier. Beside the selective growth of the tree, the incorporation of the

Recurrent Neural Networks (RNN)’s high accuracy in pattern recognition is a critical

International Journal of Multimedia and Ubiquitous Engineering
Vol. 5, No. 3, July 2010

20

component of this IDS. Notably, RNN on a comparative basis, out-performed both the feed-

forward neural networks and the Elman recurrent neural networks.

2.2 Feed-forward neural networks

A complete network structure in the simplest level of complexity consists of layers of neurons

interconnected in such a way that the output of a neuron in any given position is biased by the

inputs it receives, modified by its own weight wk, and which come from many or all of the

neurons in the preceding layer. Due to the fact that network connections limit the flow of

information within its architecture to a forward direction, without any sort of feedback paths,

this kind of network is known as a feed-forward network [15]. Such a network is capable of

classifying and identifying patterns of a non-linear network, but its performance across time is

limited due to its inability to keep previous states at the beginning of the training. The training is

performed following an algorithm for weight update known as Back-propagation [16].

2.3 Elman recurrent neural networks

An option in terms of neural network architecture is the Elman network. The main difference

between this kind of network and a feed-forward model is the fact that there exist simple

feedback paths from a layer to its preceding counterpart, thus enabling the network to store

information across time and improve its performance. The Elman network is called a simple

recurrent network (SRN) because it is similar to a fully connected network, but the number and

complexity of interconnections is lower than in a RNN [15], [17].

2.4 Recurrent Neural Networks (RNN)

An improvement of SRN, fully connected RNN models have feedback connections between all

neurons in a layer to the preceding layers, and even feedback connections from a neuron to itself.

This increased complexity allows the neuron to store the state of its outputs from the moment the

training sequence began up the present. The benefits of this are manifold, as such a network

will require less training input vectors to reach a state where it will be suitable for testing

patterns it has not been exposed to before, and the fact that it holds a memory of past events will

make it easier for the network to classify certain patterns as normal or abnormal with a

smaller probability of error. Nevertheless, RNN systems should be trained with a particular kind

of algorithm: the Real-Time Recurrent Learning Algorithm (RTRL) [6], [7], [18].

The inputs of an RRN from the first layer are propagated to the layer after it, called the first

hidden layer, but also to all other processing elements in all other layers. This means that the

outputs of any given neuron in a layer are connected to every other neuron and thus what

happens in one affects the changes in the others, specifically modifying the weight parameter.

After each output, as well, there is a brief stage of delays purposed to give the network memory

of past events in order to use all available information to identify, generalize and predict when

faced with new input sequences. The output is passed through a threshold function of sigmoid

nature when the process is over and thus the final output yk is obtained.

2.5 Real-time recurrent learning algorithm

As its name implies, this training algorithm makes the neural network able to learn and

subsequently perform in an online, real-time mode. As opposed to the back-propagation

algorithm, RTRL requires significantly greater processing resources: standard back-propagation

International Journal of Multimedia and Ubiquitous Engineering
Vol. 5, No. 3, July 2010

21

techniques call for computational resources equal to O(n
2
), where n is the number of neurons in

the entire system, while RTRL calls for O(n
4
) [7]—a comparatively big difference that has

significant impact on larger neural networks, sometimes overriding their inherent benefits.

For medium and small networks, nevertheless, this additional processing cost is within

acceptable ranges of performance goals [16]. The RTRL algorithm essentially gives a network

the capability to use all the information on past outputs since the moment it began training plus

the current input to predict the next output sequence.

3. Characteristic features of the proposed system

The utility of real-time recurrent learning algorithm avails the neural network’s ability to learn

and subsequently perform in an online, real-time mode. This feature cannot be overemphasized,

given the dynamic and ever-changing nature of computer network attacks. The noted

excellence of neural networks in pattern recognition and parallel computing is an added

advantage [5],[6],[7]. Notably, recent studies [19] have shown this feature to be successful even

in global efficient systems. A potential deterrent of the incorporation of RTRL algorithm is

fourth order crunching time and computing resources. Since most problematic scenarios fall

within small to medium levels of complexity, this approach becomes indeed plausible. The effect

of this technique is the capability of the network to use all previously acquired information on

attacks or network traffic from the initial training along with all presently acquired

information to predict the next output sequence. The hyper-plane linear separability of the

SVM, coupled with the hierarchically top-down and dynamically growing self-organizing

tree (DGSOT) algorithm, not only enable the scalability of the system, but also reduce the

false positives and false negatives associated with the precision and recall area in IR and

HAC. Furthermore, its top-down functionality enables a selective halting of the growth of the

tree when needed by system training.

4. Conclusion

The one-size-fits-all format adopted by most existing intrusion detection systems, has not

succeeded in eradicating network attacks that are ever-changing in their nature. Furthermore,

such IDS is not as economically sustainable for all organizations with unique levels of

financial buoyancy, operational complexity, and network traffic. Nevertheless, a scalable

IDS, with its several over-reaching advantages that range from adjustable economic costs to

easy architectural design and applicability, from fast communication traffic to improved

management of IDS, meets the match of the ever-changing nature of network attacks, as well

as meeting unique sizes and economic buoyancy of organizations. . It is highly suitable for

online real-time applications and its ability to self-adjust to changes in its input

environment cannot be overemphasized The limitation of this proposal, however, is its

extensive consumption of computing resources for detection systems with large number of

neurons.

5. Reference

[1] A. Bivens, C. Palagiri, R. Smith, B. Szymanski, and M. Embrechts, Network-Based Intrusion Detection Using

Neural Networks, Intelligent Engineering Systems through Artificial Neural Networks, Proc. Of

ANNIE-2002, vol. 12, ASME Press, New York, 2002 pp. 579-584.

[2] C. Manikopoulos, C. and S. Papavassiliou, Network Intrusion and Fault Detection: A Statistical Anomaly

Approach, IEEE Communications Magazine, October 2002, pp. 76-82.

International Journal of Multimedia and Ubiquitous Engineering
Vol. 5, No. 3, July 2010

22

[3] J. P. Planquart, Application of Neural Networks to Intrusion Detection, SANS Institute, July 2001.

[4] V. Alarcon-Aquino, J. A. Barria, Anomaly Detection in Communication Networks Using Wavelets, lEE-

Proceedings-Communications, Vol.148, No.6; Dec. 2001; p.355-362.

[5] R. P. Lippmann, An Introduction to Computing with Neural Nets, in Neural Networks: Theoretical

Foundations and Analysis, Edited by Clifford Lau, IEEE Press, 1992.

[6] S. Haykin, Neural Networks^ Prentice Hall, 1998. pp. 274 – 298

[7] J. Willams, D. Zipser, Gradient-Based Learning Algorithm for Recurrent Connectionist Networks. La Jolla,

CA Press. California, 1990. pp 1-5

[8] W. Lisheng, X. Zongben, Sufficient and Necessary Conditions for Global Exponential Stability of Discrete-

time Recurrent Neural Networks, IEEE Transactions on Circuits and Systems I, Vol. 5, Issue 6, June 2006.

[9] Voorhees, E.M.: Implementing agglomerative hierarchic clustering algorithms for use in document retrieval,

Inform Process Manage. 22(6), 465–476 (1986).

[10] Markey MK, Lo JY, Tourassi GD, Floyd CE Jr., Self-organizing map for cluster analysis of a breast cancer

database, Artif Intell Med, 2003 Feb;27(2):113-27.

[11] H. C. Wang, J. Dopazo, L. G. de la Fraga, Y. P. Zhu, and J. M. Carazo, Self-organizing tree-growing network

for the classification of protein sequences, Protein Science, 1998 December; 7(12): 2613–2622.

[12] Latifur Khan, Mamoun Awad, Bhavani Thuraisingham, A new intrusion detection system using support

vector machines and hierarchical clustering, The VLDB Journal (2007), DOI 10.1007/s00778-006-0002-5.

[13] Hisashi Koga, Tetsuo Ishibashi, Toshinori Watanabe, Fast agglomerative hierarchical clustering algorithm

using Locality-Sensitive Hashing, Knowledge and Information Systems, Volume 12 , Issue 1, (May 2007)

Pages: 25 – 53.

[14] Feng Luo, Latifur Khan, Farokh Bastani, I-Ling Yen and Jizhong Zhou,A dynamically growing self-

organizing tree (DGSOT) for hierarchical clustering gene expression profiles, Bioinformatics, vol. 20 issue 16,

2004.

[15] Vicente Alarcon-Aquino, Carlos A. Oropeza-Clavel, Jorge Rodriguez-Asomoza, Oleg Starostenko, Roberto Rosas-

Romero, Intrusion Detection and Classification of Attacks in High-Level Network Protocols Using Recurrent Neural

Networks, CISSE 2008 Proceedings.

[16] M. Embrechts, MetaNeura/"" - Hands-on. Rensselaer Polytechnic Institute, Troy NY. 1993. pp. 1- 5, 8 –

13.

[17] M. Mak, K. Ku, Y. Lu, On the improvement of the Real-Time Recurrent Learning Algorithm for Recurrent

Neural Networks, Department of Electronic Engineering, Hong Kong Polytechnic University, Hong Kong,

1998. pp. 1-4.

[18] M. Mak, Application of A Fast Real Time Recurrent Learning Algorithm to Text-to-Phoneme Conversion,

Department, of Electronic Engineering, Hong Kong Polytechnic University, Hong Kong, 1995. pp. 1- 5.

[19] V. Alarcon-Aquino, J. A. Barria, Multi-resolution FIR Neural-Network-Based Learning Algorithm Applied to

Network Traffic Prediction, IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and

Review, Vol. 36, Issue No. 2, March 2006. pp. 208-220.

