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Abstract 
 

The ever-growing use of the Internet comes with a surging escalation of communication and 

data access. Most existing intrusion detection systems have assumed the one-size-fits-all 

solution model. Such IDS is not as economically sustainable for all organizations. 

Furthermore, studies have found that Recurrent Neural Network out-performs Feed-forward 

Neural Network, and Elman Network. This paper, therefore, proposes a scalable 

application-based model for detecting attacks in a communication network using recurrent 

neural network architecture. Its suitability for online real-time applications and its 

ability to self-adjust to changes in its input environment cannot be over-emphasized. 
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1. Introduction 
 

The ever-growing use of the Internet comes with a surging escalation of communication and 

data access. Coupled with this communication escalation, is the rapid proliferation of 

networks and their compounding management complexities. This ubiquity of the Internet 

undoubtedly poses serious concerns on computer infrastructure, network traffic and the 

integrity of sensitive data. Consequently, Network security and effective fire-walling have 

emerged to be a hot area of increasing attention in the computing industry. A variety of 

studies have been carried out in communication and network security, and nefarious attack 

detection and resolution, [1], [2], [3]. 

 

Most existing intrusion detection systems (IDS) have assumed the one-size-fits-all solution 

model. Obviously, such IDS are not as economically sustainable for all organizations with 

unique levels of financial buoyancy, operational complexity, and network traffic. Popular 

approaches to network intrusion detection basically assume that an intruder's behavior will be 

noticeably different from normal network use. Network misuse detection, and Network 

anomaly detection are two general classifications of network intrusion detection. Misuse 

detection systems tend to scan the system for the occurrences of network misuses. Such IDS 

seeks to identify deviations from HTTP commands by comparing them to known database of 

signatures of attacks [3]. This method of detection is also the weakness of this approach since it 

has no answer to new signatures. Anomaly detection systems observe significant deviations 

from typical or expected behavior of the systems. This detection model, on the other hand, 

seeks abnormal network traffic, [2], [4].  The problem with this method is in the criteria and 
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technique of deciding when an element of network traffic is abnormal without invoking the 

weaknesses of the misuse technique. It is the very dynamic and ever-changing nature of 

computer network attacks that makes an approach based on neural networks an efficient course 

of action, since neural networks excel in pattern recognition, and parallel computing[5]-[6], 

[7], and also, recent studies [8] have applied them to globally-efficient systems. 

 

An important component of this scalable system is the utility of DGSOT algorithm to 

organize and access data in a hierarchical way. Using the dynamically growing self-

organizing tree algorithm, we organize a set of data or records into layers of clusters of one or 

more records. Notably, several techniques to do this are available, such as the hierarchical 

agglomerative clustering algorithm (HAC) [9], the self-organizing map (SOM) [10], the self-

organizing tree algorithm (SOTA) [11], and so on. In this study, we will exploit a new 

algorithm, dynamically growing self-organizing tree (DGSOT) algorithm, to construct a 

hierarchy from top to bottom rather than bottom up, as in HAC. We have observed that this 

algorithm constructs a hierarchy with better precision and recall than a hierarchical 

agglomerative clustering algorithm [12]. Hence, we believe that false positives and false 

negatives, akin to precision and recall area in IR, are reduced with the use of our new 

algorithm as compared to HAC. Furthermore, it works top-down fashion. We can stop tree 

growing earlier and it can be entirely combined with SVM training. 

 

In this paper, we propose a scalable intrusion detection with recurrent neural networks. The 

proposed method is the detection of network-based anomalies, using the dynamically growing self-

organizing tree algorithm (DGSOT) for clustering and scalability, and augmented with a 

combination of Support Vector Machines (SVM) for classification because it has been proved 

to overcome the drawbacks of traditional hierarchical clustering algorithms such as the 

hierarchical agglomerative clustering. The SVM is one of the most successful classification 

algorithms in the data mining area, but its long training time limits its use. We present a new 

approach of the combination of SVM and DGSOT, which starts with an initial training set 

and expands it gradually using the clustering structure produced by the DGSOT algorithm. 

The comparison is made between the proposed approach and the Rocchio Bundling technique 

and random selection in terms of accuracy loss and training time gain using a single 

benchmark real data set. Next, is a brief description of the mathematical foundations of the 

articulation of the SVM. 

 

2. SVM with clustering for training 

 
SVM are learning systems that use a hypothesis space of linear functions in a high 

dimensional feature space, trained with a learning algorithm from optimization theory. SVM 

are based on the idea of a hyper-plane classifier, or linear separability. Suppose we have N 

training data points {(x1, y1), (x2,y2), (x3, y3), . . . , (xN , yN )}, where xi belong to R
n
 and yi ∈ 

{+1,−1}. Consider a hyper-plane defined by (w, b), where w is a weight vector and b is a bias, 

see fig.1. Details of SVM can be found in [13]. We can classify a new object x with 

 
Note that the training vectors xi occur only in the form of a dot product; there is a Lagrangian 

multiplier αi for each training point. The Lagrangian multiplier values αi reflect the 

importance of each data point. When the maximal margin hyper-plane is found, only points 

that lie closest to the hyper-plane will have αi > 0 and these points are called support vectors. 
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All other points will have αi = 0, see Figure 1. This means that only those points that lie 

closest to the hyper-plane give the representation of the hypothesis/classifier, optimized with  

minx ||w||
2
/2  subject to yi(xi•w+b) ≥ 1. 

  

 
 

Figure 1: Linear Separation of the SVM 

 

 
 

Figure 2: Separation of the Support Vector points and Non-support Vector points 

(adapted in part from [12]) 

 

These most important data points serve as support vectors. Figure1 shows two classes and 

their boundaries, i.e., margins. The support vectors are represented by solid objects, while the 

empty objects are nonsupport vectors. Notice that the margins are only affected by the 

support vectors, i.e., if we remove or add empty objects, the margins will not change. 

Meanwhile any change in the solid objects, either adding or removing objects, could change 

the margins. Fig.1B shows the effects of adding objects in the margin area. As we can see, 

adding or removing objects far from the margins, e.g., data point 1 or −2, does not change the 

margins. However, adding and/or removing objects near the margins, e.g., data point 2 and/or 

−1, has created new margins. Once this setup, a hierarchy of clustering tree is dynamically 

constructed. 
 

2.1 Clustering tree based on SVM, CT-SVM 

 

In this approach, we build a hierarchical clustering tree for each class in the data set (for 

simplicity and without loss of generality, we assume binary classification) using the DGSOT 

algorithm. The DGSOT algorithm, top-down clustering, builds the hierarchical tree iteratively 

in several epochs. After each epoch, new nodes are added to the tree based on a learning 

process. To avoid the computation overhead of building the tree, we do not build the entire 

hierarchical trees. Instead, after each epoch we train SVM on the nodes of both trees. We use 

the support vectors of the classifier as prior knowledge for the succeeding epoch in order to 

control the tree growth. Specifically, support vectors are allowed to grow, while non-support 
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vectors are stopped. This has the impact of adding nodes in the boundary areas between the 

two classes, while eliminating distant nodes from the boundaries. Figure 3 diagrammatically 

outlines the steps of this approach. First, assuming binary classification, we generate a 

hierarchical tree for each class in the data set. Initially, we allow the two trees to grow until a 

certain size of the trees is reached. Basically, we want to start with a reasonable number of 

nodes. First, if a tree exhibits convergence earlier (i.e., fewer number of nodes), one option is 

to train SVM with these existing nodes. If the result is unsatisfactory, we will adjust the 

threshold (profile and radius thresholds). Reducing thresholds may increase number of 

clusters and nodes. Second, we will train SVM on the nodes of the trees, and compute the 

support vectors. Third, on the basis of stopping criteria, we either stop the algorithm or 

continue growing the hierarchical trees. In the case of growing the tree, we use prior 

knowledge, which consists of the computed support vector nodes, to instruct the DGSOT 

algorithm to grow support vector nodes, while non-support vector nodes are not grown. By 

growing a node in the DGSOT algorithm, we mean that we create two children nodes for each 

support vector node [14].  

 
 

Figure 3: Logic Flow diagram of the Approach 

 

Flow diagram, Figure 3, of clustering trees growth of the hierarchical trees. This process has 

the impact 

of growing the tree only in the boundary area between the two classes, while stopping the tree 

from growing in other areas. Hence, we save extensive computations that would have been 

carried out without any purpose or utility. We can stop at a certain size/level of tree, upon 

reaching a certain number of nodes/support vectors, and/or when a certain accuracy level is 

attained. For accuracy level, we can stop the algorithm if the generalization accuracy over a 

validation set exceeds a specific value (say 98%). For this accuracy estimation, support 

vectors will be tested with the existing training set based on proximity. In our 

implementation, we adopt the second strategy (i.e., a certain number of support vectors) so 

that we can compare our procedure with the Rocchio Bundling algorithm which reduces the 

data set into a specific size. We do not wait until DGSOT finishes. Instead, after each 

epoch/iteration of the DGSOT algorithm, we train the SVM on the generated nodes. After 

each training process we can control the growth of the hierarchical tree from top to bottom 

because non-support vector nodes will be stopped from growing, and only support vector 

nodes will be allowed to grow.  
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Figure 4: Hierarchy construction using a DGSOT algorithm 

 

Figure 5 shows the growth of one of the hierarchical trees using this approach. The bold 

nodes represent the support vector nodes. Notice that nodes 1, 2, 3, 5, 6, and 9 are allowed to 

expand because they are support vector nodes. Meanwhile, we stop nodes 4, 8, 7, and 10 from 

growing because they are not support vector nodes. 

 

 
 

Figure 5: Selective Growth of the Tree (adapted from [12] and modified) 

 

Growing the tree is very important in order to increase the number of points in the data set so 

as to obtain 

a more accurate classifier. Fig. 4 shows an illustrative example of growing the tree up to 

certain 

size/level and in which we have the training set (+3, +4, +5, +6 + 7, −3, −4, −5, −6, −7). The 

dashed nodes represent the clusters’ references which are not support vectors. The bold nodes 

represent the support vector references. Hence, we add the children of the support vector 

nodes +4 and +7 to the training set. The same applies to the support vector nodes −5 and −7. 

The new data set now is (+3, +11, +12, +5, +6, +14, +15, −3, −4, −10, −11, −6, −12, −13). 

Notice that expanded nodes, such as +4 and +7, are excluded because their children nodes are 

added to the training set. Note that adding new nodes in the boundary area of the old 

classifier, represented by dashed lines, is corrected and the new classifier, solid lines, is more 

accurate now than the old one. By doing so, the classifier is adjusted accordingly, creating a 

more accurate classifier. Beside the selective growth of the tree, the incorporation of the 

Recurrent Neural Networks (RNN)’s high accuracy in pattern recognition is a critical 
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component of this IDS. Notably, RNN on a comparative basis, out-performed both the feed-

forward neural networks and the Elman recurrent neural networks.  
 

2.2 Feed-forward neural networks 

 

A complete network structure in the simplest level of complexity consists of layers of neurons 

interconnected in such a way that the output of a neuron in any given position is biased by the 

inputs it receives, modified by its own weight wk, and which come from many or all of the 

neurons in the preceding layer. Due to the fact that network connections limit the flow of 

information within its architecture to a forward direction, without any sort of feedback paths, 

this kind of network is known as a feed-forward network [15]. Such a network is capable of 

classifying and identifying patterns of a non-linear network, but its performance across time is 

limited due to its inability to keep previous states at the beginning of the training. The training is 

performed following an algorithm for weight update known as Back-propagation [16]. 
 

2.3 Elman recurrent neural networks 

 

An option in terms of neural network architecture is the Elman network. The main difference 

between this kind of network and a feed-forward model is the fact that there exist simple 

feedback paths from a layer to its preceding counterpart, thus enabling the network to store 

information across time and improve its performance. The Elman network is called a simple 

recurrent network (SRN) because it is similar to a fully connected network, but the number and 

complexity of interconnections is lower than in a RNN [15], [17]. 
 

2.4 Recurrent Neural Networks (RNN) 

 

An improvement of SRN, fully connected RNN models have feedback connections between all 

neurons in a layer to the preceding layers, and even feedback connections from a neuron to itself. 

This increased complexity allows the neuron to store the state of its outputs from the moment the 

training sequence began up the present. The benefits of this are manifold, as such a network 

will require less training input vectors to reach a state where it will be suitable for testing 

patterns it has not been exposed to before, and the fact that it holds a memory of past events will 

make it easier for the network to classify certain patterns as normal or abnormal with a 

smaller probability of error. Nevertheless, RNN systems should be trained with a particular kind 

of algorithm: the Real-Time Recurrent Learning Algorithm (RTRL) [6], [7], [18]. 

 

The inputs of an RRN from the first layer are propagated to the layer after it, called the first 

hidden layer, but also to all other processing elements in all other layers. This means that the 

outputs of any given neuron in a layer are connected to every other neuron and thus what 

happens in one affects the changes in the others, specifically modifying the weight parameter. 

After each output, as well, there is a brief stage of delays purposed to give the network memory 

of past events in order to use all available information to identify, generalize and predict when 

faced with new input sequences. The output is passed through a threshold function of sigmoid 

nature when the process is over and thus the final output yk is obtained. 
 

2.5 Real-time recurrent learning algorithm 
 

As its name implies, this training algorithm makes the neural network able to learn and 

subsequently perform in an online, real-time mode. As opposed to the back-propagation 

algorithm, RTRL requires significantly greater processing resources: standard back-propagation 
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techniques call for computational resources equal to O(n
2
), where n is the number of neurons in 

the entire system, while RTRL calls for O(n
4
) [7]—a comparatively big difference that has 

significant impact on larger neural networks, sometimes overriding their inherent benefits. 

For medium and small networks, nevertheless, this additional processing cost is within 

acceptable ranges of performance goals [16]. The RTRL algorithm essentially gives a network 

the capability to use all the information on past outputs since the moment it began training plus 

the current input to predict the next output sequence. 

 

3. Characteristic features of the proposed system 

 
The utility of real-time recurrent learning algorithm avails the neural network’s ability to learn 

and subsequently perform in an online, real-time mode. This feature cannot be overemphasized, 

given the dynamic and ever-changing nature of computer network attacks. The noted 

excellence of neural networks in pattern recognition and parallel computing is an added 

advantage [5],[6],[7]. Notably, recent studies [19] have shown this feature to be successful even 

in global efficient systems. A potential deterrent of the incorporation of RTRL algorithm is 

fourth order crunching time and computing resources. Since most problematic scenarios fall 

within small to medium levels of complexity, this approach becomes indeed plausible. The effect 

of this technique is the capability of the network to use all previously acquired information on 

attacks or network traffic from the initial training along with all presently acquired 

information to predict the next output sequence. The hyper-plane linear separability of the 

SVM, coupled with the hierarchically top-down and dynamically growing self-organizing 

tree (DGSOT) algorithm, not only enable the scalability of the system, but also reduce the 

false positives and false negatives associated with the precision and recall area in IR and 

HAC. Furthermore, its top-down functionality enables a selective halting of the growth of the 

tree when needed by system training. 
 

4. Conclusion 

 
The one-size-fits-all format adopted by most existing intrusion detection systems, has not 

succeeded in eradicating network attacks that are ever-changing in their nature. Furthermore, 

such IDS is not as economically sustainable for all organizations with unique levels of 

financial buoyancy, operational complexity, and network traffic. Nevertheless, a scalable 

IDS, with its several over-reaching advantages that range from adjustable economic costs to 

easy architectural design and applicability, from fast communication traffic to improved 

management of IDS, meets the match of the ever-changing nature of network attacks, as well 

as meeting unique sizes and economic buoyancy of organizations. . It is highly suitable for 

online real-time applications and its ability to self-adjust to changes in its input 

environment cannot be overemphasized The limitation of this proposal, however, is its 

extensive consumption of computing resources for detection systems with large number of 

neurons. 
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