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Abstract 

This paper deals with one of the new emerging multimedia data types, namely, handwritten 

cursive text. The paper presents two indexing methods for searching a collection of cursive 

handwriting. The first index, called word-level index, treats word as pictogram and uses 

global features for representing the cursive words and their retrieval. Each word (or stroke) 

can be described with a set of features and, thus, can be stored as points in the feature 

space. The Karhunen-Loѐve transform is then used to minimize the number of features used 

(data dimensionality) and thus the index size. Feature vectors are stored in an R-tree. The 
second index, called stroke-level index, treats the word as a set of strokes.  

We implemented both indexes and carried many simulation experiments to measure the 

effectiveness and the cost of the search algorithm. The proposed indexes achieve substantial 

saving in the search time over the sequential search. Moreover, the proposed indexes 

improve the matching rate up to 46% over the sequential search. The word-level index is 

suitable for large collection of cursive text. The stroke-level index is more accurate than the 

word-level index, but the stroke-level index is more costly than the word-level index in terms 

of the search time. 

 
 

1. Introduction 
 

The widespread of tablet computers and Personal Digital Assistants (PDA) like iphone 

has resulted in an increase interest in manipulating handwritten text and cursive writing.  

Recent researches focus on the efficient storage and retrieval of handwritten notes and on 

formulating queries based on handwritten databases. For example, searching a large 

database which contains one or more handwritten fields (e.g., verifying signature of the 

bank accounts). One way to handle the handwritten text is to translate it first into ASCII-

equivalent characters using pattern recognition techniques and then to store it as ASCII text. 

Similarly, the search algorithm translates the query string into a sequence of ASCII 

characters and then performs a traditional search through the database. Thus, the recognition 

phase is an intermediate step between the input device (pen and tablet) and the storage 

device. But this is not practical because of the latency delay introduced by the recognition 

step. Also, research results show that the accuracy of the recognition of cursive writing is 

low and thus will result in high error rate. It is difficult even to identify letter boundaries in 

the cursive string. Moreover, by translating the handwritten string into a sequence of 

predefined symbols (alphabet), we lose much information, such as the particular shape of 

the letter "allograph", the writing style, etc. Another disadvantage to this method is that the 

recognition phase renders the system sensitive to the underlying language.  

The other alternative is to treat it as a first-class data type. The handwritten string is 

treated as a pictographic pattern without an attempt to understand it. This is a more natural 

way to handle the handwritten text. In this approach the query string is compared to 

database strings using an appropriate distance function. This gives the user more expressive 

power; he can use non-ASCII symbols, drawings, equations, other languages, etc. Searching 
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in handwritten cursive text is a challenging problem. A word 
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support online retrieval and fast response time. 
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of handwritten text. We proposed two indexes for retrieving handw

the word level by treating the whole word as an image. The other index breaks the 

handwritten word into strokes. 

large collection of cursive text. 

in terms of execution time; however, it is 

early results of this project have been 

as follow. Section 2 presents background information on the underlying multimedia index 

that is used. It also presents a sequent

describes the proposed word-level index while section 

index. Prior works related to cursive handwriting is briefly described in 

Section 6 we show experiments for measuring the response t

the proposed indexes. Section 7

 

2. Background  
 

This section introduces some background information about the distance function and the 

underlying index that are used in the proposed technique. Section

well know multimedia index, R

as a distance function to measure the similarity between two strings. Prior works related to 

the retrieval of cursive handwriting is outlined in 

     

2.1. R-trees  

 

In this section, we provide a brief description of R

multidimensional index. The R

objects.  

 

 

 

Figure 1: Data rectangles R
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A geometric object is represented by its minimum bounding rectangle (MBR). Non-leaf 

nodes contain entries of the form (ptr,R) where ptr is a pointer to a child node in the R-tree; 

R is the MBR that covers all rectangles in the child node. Leaf nodes contain entries of the 

form (obj-id, R) where obj-id is a pointer to the object description, and R is the MBR of the 

object. One of the main features of the R-tree is that it allows nodes to overlap. In this way, 

the R-tree can guarantee at least 50% space utilization and at the same time remain 

balanced. Figure 1 illustrates data rectangles (in black) organized in an R-tree with a fanout 

value of three. On the other hand, excessive overlap between nodes penalizes the search 

performance. A worst-case scenario would require retrieval of the whole tree, but this rarely 

happens with practical datasets. 

 

Subsequent work on R-trees includes: the packed R-tree [17] and Hilbert-packed R-trees 

[11] for static databases; and the R*-tree 0, and the Hilbert R-tree [12] for dynamic 

databases. The last of these can increase space utilization to any desired value by employing 

the concept of deferred splitting (local rotation). 

 

2.2. Sequential Search in Handwritten Database 

 

Although much research has been done in searching handwritten text, not much work has 

been done in indexing handwritten text. [14] proposed a sequential algorithm for searching a 

very long cursive string in order to locate all the occurrences of a small cursive string. A set 

of points that are drawn without raising the pen is called a stroke. The idea is to define a 

constant alphabet for the strokes. Each stroke can be one of 64 different stroke types (or 

code books). The problem is then reduced to the traditional ASCII text comparison, but with 

using a different alphabet (alphabet of strokes).  

We can use the edit distance [20] to compare two cursive strings. The "edit distance" 

aligns the two strings and transforms one string into the other using the following 

operations: delete a symbol, insert a symbol, and substitute one symbol for another. Each of 

these operations has a predefined cost associated with it. The "edit distance" technique uses 

a dynamic programming algorithm to minimize the cost of the transformation. Any 

substring that is similar to the query string is reported as an answer.  

Although reducing each stroke vector to one of 64 alphabet symbols makes the 

comparison much simpler and saves space, nonetheless, valuable information about the 

proximity between the different strokes is lost. In addition, it becomes necessary to search 

the whole database sequentially in order to inspect each substring. We call this method the 

VUE algorithm.  

 

3. The Proposed Word-level Index 
 

In this section we propose a two-step indexing schema to index a large repository of 

handwritten cursive text. The proposed index treats each word as a pictogram (or an image) 

and it consists of two steps, the filtering step and the refinement step. In the first step we use 

a coarse index that filters out most of the unwanted pictograms and produces a set of pic-

tograms called the candidate set. The second step uses a sequential algorithm that operates 

on the candidate set to find the best k matches to the query word which are reported as the 

final answer.  

The filtering step uses global features to characterize the different pictograms (words). A 

set of features f1, f2, …, fx (described in Section 3.2) are calculated for each pictogram in the 

database as well as for the queries. Thus, each pictogram can be represented as a 

multidimensional point in x-dimensional space. A good set of features maps two instances 
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of the same pictogram to points that are close in the multidimensional space. At the same 

time, two different pictograms should be positioned as far apart as possible.  

These points are organized in a multidimensional index. We choose the R-tree because of 

its ability to prune the search space at early levels of the tree structure and because of the 

guarantee of good space utilization.  
 

To find the pictograms that are similar to a given query pictogram, we map the 

query to a point in the x-dimensional space, by extracting x global features. Then, we 

perform a similarity search. The length along each axis is a function of the 

characteristics of the user's handwriting (Section 3.1). The candidate set is formed by 

the multidimensional points (i.e., pictograms) returned by the query.  
 

 

 

Figure 2: Flow diagram that shows our proposed 
word-level indexing schema. 

 

Edit distance: is a distance function that quantifies the similarity between two text 

strings. The edit distance used in [14] aligns the two strings and transforms one string into 

the other using the following operations:  

• Deletion of a symbol.  

• Insertion of a symbol.  

• Substitution of a symbol by another one.  

• Splitting of a symbol into two.  

• Merging two symbols into one.  

Each of these operations has a predefined cost associated with it. The weighted cost of 

the transformation is used as a distance between the two strings. We call this metric edit 

distance ED.  

 

Inflection distance: we define the inflection distance in the same way the edit distance 

is defined. Ink can also be represented by a sequence of codewords that represent the 

inflection points of the pictogram. An inflection point marks the change of direction in the 

pictogram, e.g., going from an upwards direction to a downwards direction, or from a left-
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ward direction to a rightward one. We define eight inflection symbols. Using the inflection 

representation, we can also compute an edit distance between two pictograms. For this, we 

assume that only insertions and deletions are allowed and that each operation (insertion or 

deletion) has an associated cost of 1. We call this inflection distance (ID).  

In the refinement step, Figure 2, we apply a sequential algorithm to the candidate set to 

find the best k matches to the query word. We use a combination of the two metrics ID and 

ED. Our experiments show that the cost of the ID comparison is about 5 times less than the 

cost of ED comparison. Thus, we use the ID as a second stage filter in the retrieval process. 

The procedure is as follows. First, we perform pair wise comparison (sequential search) of 

the query against each of the retrieved pictograms by using ID. This results in a ranked set S 

of pictograms. Then, we take the best m (in the experiments we set m = 20%) elements of S 

and use the metric ED+ID to perform another round of sequential comparison. We call this 

procedure EID. Increasing m improves the retrieval rate but it increases the total response 

time. The value of m can be determined experimentally. After that, the best k matches are 

presented to the user.  

 

3.1. The Size of the Hyper-rectangle  

 

Two instances of the same word will have two different values �� , �́� for feature fi. 

To accommodate for this variability, the length li of the query hyper-rectangle along 

feature (axis) fi should satisfy:  

�� � |��	�́�| 
There is a clear trade-off in the value of li. Larger values of li will introduce more false 

alarms and increase the size of the candidate set and consequently, the total response time. 

On the other hand, small li values will be more likely to miss the correct answer and 

consequently, reduce the retrieval rate. Since the value li is a writer dependent, we ask the 

user to write small sample of pictograms (around 30) twice. We use this sample as a 

measure for the variance in the values of 
�, 1 �  � �. For each feature i we calculate the 

differences in the corresponding pictograms in the sample set. The values of �� , 1 �  � �, is 
selected so that it covers the differences in the sample set.  

 

3.2. Global Features  

 

Extracting good global features is not an easy task. A good global feature should assign 

different instances of the same word to close-by values in the feature domain. Features 

might be correlated and dependent. Adding a new feature could produce no improvement in 

the performance if the feature is redundant (covered by other features in use.) Using a large 

number of features not only increases the size of the index but also adversely affects the 

search performance. This is known as "dimensionality curse" problem.  

This section lists the eight global features are used in our indexing scheme. Our model 

for the cursive string is as follows. A cursive string is read from the tablet as a sequence of 

points in real time. Each point is represented by the tuple (x, y) where x, y are the 

coordinates of the point in two-dimensional space. (Points are taken at equal time intervals, 

so the time information is also available.) These points are grouped into strokes. Strokes are 

defined by local minima in the x-y coordinates. A new stroke starts at each local minimum. 

(This method is known as local minima segmentation.) The minimum rectangle that 

encloses the stroke is called Minimum Bounding Rectangle (MBR).  

Some of the features we collected use aggregate functions over the set of strokes that 

constitute the string. Some of the resulting strokes are very small and do not contribute to 

the final image of the string. We also noticed that these small strokes can be produced 

simply by pressing or raising the pen. In the evaluation of the following features, we filtered 
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out such strokes from both the database and the query strings and only included strokes 

whose MBR area is larger than 15 points (where the point is the unit distance in the tablet 

device).  

•••• Number of strokes: that constitutes the string.  

•••• Number of points: in the string.  

•••• Number of vertical inversions: an inversion occurs when either the y-coordinate of the 

point decreases after it was increasing or the y-coordinate of the point increases after it 

was decreasing. 

•••• Total-change-MBR-height: the accumulation of the absolute differences between the 

height of a stroke's MBR and that of its predecessor, i.e., :  

�|������� 	 ������ 	 1�|
�

���
 

where s is the total number of strokes in the string.  

• Avg-weighted-MBR-area: the average weighted area of stroke's MBRs, i.e., :  

 
∑ ������ � ����

  

where s is the total number of strokes in the string.  

• Number of thin strokes: thin strokes are defined as those stroke with height >1.5 � 

width. 

• X-centroid: the position of the centroid of the stroke areas, calculated as follows: 

 
∑  � ���������!

∑ ���������!
 

where s is the total number of strokes in the string.  

• Y-centroid: the position of the centroid of the stroke areas in the y-direction, 

calculated as: 

∑ �"� 	 "#� � ���������!
∑ ���������!

 

Where "�  is the highest y-value for the ith
 stroke,  "# is the y-value for the first point of the 

string, and s is the number of strokes.  

 

This word-level index is suitable for searching large number of cursive handwriting. In 

Section 6, we perform simulation experiments to measure the effectiveness of the proposed 

index in filtering unwanted pictograms and identifying the most similar word. 

 

 

4. The proposed stroke-level index  
 

In this section, we propose an index that is suitable for small database of cursive 

handwriting. Unlike the word-level index, the stroke-level index compares text at the stroke 

level rather than word level. Thus, this index is more costly than the word-level index but it 

is more accurate in identifying the query work. The stroke-level index allows fast retrieval 

of similar strings and can handle insertion, deletion, m-n substitution errors and substring 

matching. This index is dynamic in the sense that insertion and deletion operations can be 
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intermixed in real time with the search operations. Given a search query string, the answer 

would be a set of the strings or substrings that look like the query string. 

 

4.1. The basic idea 
 

We model the cursive string as a sequence of strokes. Each stroke is described by a set of 

features and thus can be represented by a point in the multidimensional feature space. We 

propose to store these points in a multi-dimensional index, and more specifically, the R-tree 

because of its ability to prune the search space at early levels of the tree structure and 

because of the guarantee of good space utilization. A cursive string is read from the tablet as 

a sequence of points in real time. Each point is represented by the tuple (x, y, t) where x, y 

are the coordinates of the point in two-dimensional space and t is the time at which the point 

is printed. These points are grouped into strokes. A stroke ends and a new one starts at each 

local minimum in the x-y coordinates. This method is known as local minima segmentation.  
 

 

 

 

Figure 3: Outline of the word-level index 

 

We describe each stroke with a set of 11 features. The features, which have been 

described in [18], describe the geometric properties of the stroke, e.g., the length of the 

stroke, the total angle traversed, and the angle and length of the bounding box diagonal. The 

features are selected so that strokes that look alike tend to have similar vector values 

according to some distance functions. Due to the variability in handwriting, the feature 

vectors that correspond to different instances of one stroke tend to vary slightly. Vectors that 

represent different instances of the same stroke form a cluster in the feature space. Thus, 

strokes that look similar will have their representative clusters close to each other or even 

overlapping in the multi-dimensional space. 
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Figure 4: (a) shows a pictogram of the cursive word “low” (b) the representation of the cursive 

word “low” in the feature space. 

 

Given a string S, the stroke segmentation program decomposes S into a sequence of t 

stokes. Each stroke Si , 1 < i < t , is represented as a point in an 11-dimensional space 

formed by the features f1, f2, ... , f11. The string S is represented by t points in the space. 

These multi-dimensional points (strokes) are stored in an R-tree index. Each R-tree node 

occupies one disk page. Non-leaf nodes, which are small in number, are kept in main 

memory, while leaf nodes are stored on the disk. Figure 3 shows an example of the 

proposed index assuming two features only (in two dimensional space). A set of points that 

are close to each other will be stored in the same leaf node (level 0 in the tree). Each entry in 

the leaf node is in the form of (word-id, P) contains the coordinates of a point P (stroke) and 

a word-id for the pictographic description of the string that contains (owns) this stroke. Non-

leaf nodes in level i, where i > 0, have entries of the form (ptr, R) where ptr points to a child 

node and R is the Minimum Bounding Rectangle (MBR) that encloses all the entries in the 

child node. 

 

Figure 4 shows an example of three cursive words "node, row, below." For the sake of 

this illustration and to simplify the presentation and the drawing of the example, let us 

assume that each stroke is described with only two features, namely f1 and f2. For simplicity 

of the presentation, let us assume that each stroke represents one letter in the string. Note 

that in practice, each letter is represented by several strokes but we make this assumption to 

simplify the explanation. Figure 4 shows the representation of the three strings in the multi-

dimensional space. Each string is represented by several points (equal to the number of 

strokes/characters in the string) in the two-dimensional space. Strokes that represent the 

same letter tend to form a cluster. The shaded area in Figure 4 shows the cluster for each 

letter (stroke). Letters that are written in a similar way (e.g. r, n) might have clusters close to 

each other or even overlapping. 

 

4.2. Similarity search queries  
 

To search for a string Q, we treat the query string in a manner similar to that described in 

the previous section. The set of strokes ql, q2, … , qx: are extracted from Q. Since it is 

impossible to write the same word twice identically, we need similarity queries. For each 

stroke qi, a range query in the form of a hyper-rectangle is formed in the 11-dimensional 

space. The center of the hyper-rectangle is the query point, and the length along each axis is 

a ratio (2 x p) of the standard deviation of the data along that axis.  
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The output of each query would be a set of word-ids for those words which contain a 

stroke similar to the query stroke. We call this set the candidate set C. We then apply a 

simple voting algorithm as follows. Each word-id takes a score that indicates how many 

times it has appeared as an answer for the queries qi, 1 < i < x. The set of word-ids that have 

the highest scores are reported as the answer. Note that we did not use any expensive 

operations, nor we accessed any of the pictographic representation of the strings from the 

database.  

 

Algorithm Search (node Root, string Q):  

S1. Preprocessing:  

Use Q to build the set of strokes qi, q2, … , qx.  

Extract the set of features for each qi, 1 < i < x.  

S2. Search the index:  

For each stroke qi, perform a range query.  

Form the candidate sets.  

S3. Voting algorithm:  

Words with the highest score are the answer. 

 

4.3. Feature space dimensionality 
 

Our goal here is to reduce the number of features needed to describe the stroke by 

transforming the data points into another space with smaller dimensions. This problem is 

known as dimensionality reduction. Until now, we used 11 highly correlated features to 

describe each stroke. We use the Karhunen-Loѐve transform [5], also known as Hotelling 

transform or Principal Component Analysis) to reduce the dimensionality of the feature 

space. The transform maps a set of vectors to a new space with an orthogonal uncorrelated 

axis. The Karhunen-Loѐve transform consigns most of the discrimination power to the first 

few axes. Hopefully, using only k axes, k < 11, we lose little information while reducing the 

index size significantly.  

The axes of the new feature space are the Eigen vectors of the auto correlation 

(covariance) matrix for the set of data points. The Karhunen-Loѐve transform sorts the 

eigenvectors in decreasing order according to the eigen values and approximates each data 

vector with its projections on the first k eigenvectors, k < 11.  

We collect a small sample from the writer in advance and apply the Karhunen-Loѐve 

transform to calculate the vector transformation matrix. All strokes (vectors) are mapped to 

the new space and then inserted in the index.  

 

4.4. Reducing the candidate set size  
 

Two strings are similar if they have similar strokes in the same order. The output of the 

search query gives a set of strings which has strokes similar to the query stroke but they do 

not necessarily occur in the same location. The candidate set is thus large because it contains 

many false candidates. Moreover, the voting algorithm does not take into consideration the 

location of the stroke.  

To make use of the stroke location and to reduce the size of the candidate set, we store 

the location of the stroke inside the string as one more dimension in the feature space. Each 

stroke is then represented by k features f1, f2, ... , fk and by its location stkloc inside the string 

in (k + 1) dimensional space.  

Two instances of the same string will not, in general, have equal number of strokes. The 

difference, however, is expected to be small. Thus, the answer to the range query that 

corresponds to stroke qi should include strings that have similar strokes not only in the 
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position i but also in a window of length w around i. We found experimentally that w = 3 

gives the best results (thus covering stroke numbers i - 1, i, and i + 1).  

In substring matching, however, we want to allow the query string to start at any position 

inside the database string. In this case, a partial match query rather than a range is used. In a 

partial match query, the extent of the query rectangle is specified for all axes f1, f2, ... , fk as 

before. For the stroke location stkloc axis, the extent is left open (-∞, +∞) to allow the query 

string to start at any position inside the database string. Otherwise, the algorithm is similar 

to that for similarity query.  

 

5. Prior work 
 

There are many researches on modeling, retrieval, and annotation of cursive handwriting. 

However, there are not many works on indexing cursive handwritten text. Research included 

handling different languages like Arabic [1], Chinese [15], and Indian languages [4] and on-

line handwriting [16]. 

[4] proposed a technique that is based on an additive fusion resulted after a novel 

combination of two different modes of word image normalization and robust hybrid feature 

extraction. They employ two types of features in a hybrid fashion. The first one, divides the 

word image into a set of zones and calculates the density of the character pixels in each 

zone. In the second type of features, they calculate the area that is formed from the 

projections of the upper and lower profile of the word.  

[22] proposed a method for generating a large database of cursive handwriting. 

Synthesized data are used to enlarge the training set. He proposed method learns the shape 

deformation characteristics of handwriting from real samples; then used for handwriting 

synthesis. 

[18] also proposed a method to synthesize cursive handwriting of the user's personal 

handwriting style, by combining shape and physical models together. In the training 

process, some sample paragraphs written by the user are collected and these cursive 

handwriting samples are segmented into individual characters by using a two-level writer-

independent segmentation algorithm. Samples for each letter are then aligned and trained 

using shape models. 

[7] word-spotting system operates on a database containing a number of handwritten 

pages. The method used for word matching is based on a string matching technique, called 

Dynamic Time Warping (DTW). The following three features are computed at each sample 

point in the word, resulting in a sequence of feature vectors: The height (y) of the sample 

point: This is the distance of the sample point from the base of the word; the stroke 

direction; and the curvature of the stroke at point p. The word to be compared is first scaled 

so that it is of the same size (height) as the keyword, and translated so that both words have 

the same centroid. The DTW technique then aligns the feature vector sequence from a 

database word to that of the keyword using a dynamic programming-based algorithm. The 

algorithm computes a distance score for matching points by finding the Euclidean distance 

between corresponding feature vectors and penalizes missing or spurious points in the word 

being tested. 

 

6. Experimental results 
 

This section presents experimental results that show the effectiveness of our proposed 

indexes. The two proposed methods are implemented in C. Our database consists of 8,000 

handwritten cursive words produced by one writer. The same writer then recreated 100 

words to be used as queries. Since our data is static (no insertion nor deletion) we used the 

Hilbert packed R-tree [11] because of its high space utilization. For dynamic data, other R-



 

 

tree variants that allow insertions and deletions can be used (
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tree variants that allow insertions and deletions can be used (such as R*-tree [0

lobal features 

In this section we evaluate how good the set of global features, listed in Section

in pruning the search space and retrieving the most similar set of words. We store the leaf 

nodes (which account for the large portion of the R-tree) on the disk and keep the non

leaf nodes occupy about 50 K-bytes for 8000 words).

shows the percentage of the database that is filtered out by the R-tree as a function of the 

database size. Notice that the pruning capability is increasing with increasing the database 

size. The reason for this is that the query size is constant regardless of the database size 

(recall that the query size is defined by the characteristics of the user handwriting.) 

The percentage of the 
database filtered out by the R-tree 

Figure 6. The retrieval rate of the R
tree only 

To see how good the global features are in describing the cursive handwriting, we show 

percentage of cases in which the correct answer to queries are in the 

tree retrieval rate). The graph show high retrieval rate 86% -

decreases with increasing the size of the database.  

Comparison between the proposed Index and the Sequential Scan 

In this section we compare the proposed schema (R-tree + EID) with ED 

shows the total search time per query for various database sizes. The above R

age stored the tree in main-memory; thus, we had to simulate each disk access with 

delay. For our method (marked as "R-tree + EID"), it shows the time per query 

tree and screening the resulting subset of pictograms with EID. We 

compared our method with the ED sequential algorithm. The figure also shows the time it 

takes to perform sequential search over the entire database using our EID sequential 

tree+ EID" outperforms ED sequential search in the entire range 

of database sizes. For 8,000 pictograms the ratio of search times is 12:1. We included in the 

graph the performance of our sequential EID (no R-tree) which also outperform ED. Note 

that, for small databases 1000 or less, EID is little faster than "R-tree + EID". This is 

of the R-tree (the relative cost of node access increases with 

decreasing the database size).  As expected the sequential search times grow linearly with 

the size of the database, while for our method "R-tree + EID" the search times grow sub
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Figure 7. Total search time

Figure 8 and Figure 9 plot the matching rates obtained when showing the best 

= 5 pictograms respectively. As we can see, the match

those of sequential search. 
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Figure 11 shows the percentage of blocks retrieved by the

database size. Again, since the relative size of the retrieved subset decreases, so does the 

percentage of blocks brought to memory.
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Figure 9. Matching rate (top 3) 

shows the percentage of blocks retrieved by the tree search as a function of the 

database size. Again, since the relative size of the retrieved subset decreases, so does the 

percentage of blocks brought to memory.  
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6.3. Evaluation of the Stroke

 

We implemented the proposed 

carried several experiments to evaluate the performance of our proposed index and compare 

it with the VUE algorithm. Due to the space limitation, we do not show all the results. We 

asked one writer to produce 200 handwritten cursive words. The same wr

74 words to be used as search strings. In all the experiments, the stroke location was stored 

as additional feature as explained in 

w was set at 3 and the value of 

Since the data used in the experiments were static, we used the Hilbert

as an underlying multi-dimensional index. For data that has dynamic nature (where data can 

be inserted or deleted at any time), the R

be used. Node size was fixed at one KByte. 

 

 

Figure 12. Response time of our 
proposed index versus the VUE 

algorithm 

The segmentation algorithm cuts the stroke once it encounters a local minimum. During 

our experiments, we noticed that some of the resulting strokes are tiny and do not contribute 

to the final image of the string, and thus considered noise. These tiny strokes can be 

produced simply by pressing or raising the pen. These strokes not only increase the size of 

the database but might also adversely affect the retrieval performance. We filtered out such 

strokes from both the database and the query strings. We only included strokes whose MBR 

diagonal is larger than 15 points (where the point is the unit distance in the tablet device.) 

 

Table 1. Matching rates for ind

Voting algo, 

Rank 

first  

top 2  

top 3  

 

Figure 12 compares the search time of our proposed index with the search time of the 

VUE algorithm for different database sizes. As expected the VUE algorithm time increases 

linearly with the database size. Our proposed index achieves substantial saving in response 

time over the VUE. Note that the VUE algorithm is faster than the index for small database 
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Evaluation of the Stroke-based Index 

proposed stroke-based index and the VUE algorithm 

carried several experiments to evaluate the performance of our proposed index and compare 

it with the VUE algorithm. Due to the space limitation, we do not show all the results. We 

asked one writer to produce 200 handwritten cursive words. The same writer then recreated 

74 words to be used as search strings. In all the experiments, the stroke location was stored 

as additional feature as explained in Section 4.4. For the experiments shown here, the value 

was set at 3 and the value of s was set at 1 (each stroke was stored as a separate point.) 

Since the data used in the experiments were static, we used the Hilbert-packed R-

dimensional index. For data that has dynamic nature (where data can 

be inserted or deleted at any time), the R-tree [6], Hilbert R-tree [12] or the R*-tree

be used. Node size was fixed at one KByte.  

 

Response time of our 
proposed index versus the VUE 

Figure 13. Matching rate of our 
proposed index versus VUE algorithm

The segmentation algorithm cuts the stroke once it encounters a local minimum. During 

our experiments, we noticed that some of the resulting strokes are tiny and do not contribute 

of the string, and thus considered noise. These tiny strokes can be 

produced simply by pressing or raising the pen. These strokes not only increase the size of 

the database but might also adversely affect the retrieval performance. We filtered out such 

rokes from both the database and the query strings. We only included strokes whose MBR 

diagonal is larger than 15 points (where the point is the unit distance in the tablet device.) 

Matching rates for index that uses all 11 features vs. index that uses 6 
features only 

Matching rate 

11 features  6 features  

80  73  

85  82.5  

89  84  

compares the search time of our proposed index with the search time of the 

VUE algorithm for different database sizes. As expected the VUE algorithm time increases 

linearly with the database size. Our proposed index achieves substantial saving in response 

time over the VUE. Note that the VUE algorithm is faster than the index for small database 
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 [14]. We 

carried several experiments to evaluate the performance of our proposed index and compare 

it with the VUE algorithm. Due to the space limitation, we do not show all the results. We 

iter then recreated 

74 words to be used as search strings. In all the experiments, the stroke location was stored 

For the experiments shown here, the value 

was set at 1 (each stroke was stored as a separate point.) 

-trees [11] 

dimensional index. For data that has dynamic nature (where data can 

tree [3] can 

 

Matching rate of our 
proposed index versus VUE algorithm 

The segmentation algorithm cuts the stroke once it encounters a local minimum. During 

our experiments, we noticed that some of the resulting strokes are tiny and do not contribute 

of the string, and thus considered noise. These tiny strokes can be 

produced simply by pressing or raising the pen. These strokes not only increase the size of 

the database but might also adversely affect the retrieval performance. We filtered out such 

rokes from both the database and the query strings. We only included strokes whose MBR 

diagonal is larger than 15 points (where the point is the unit distance in the tablet device.)  

ndex that uses 6 

compares the search time of our proposed index with the search time of the 

VUE algorithm for different database sizes. As expected the VUE algorithm time increases 

linearly with the database size. Our proposed index achieves substantial saving in response 

time over the VUE. Note that the VUE algorithm is faster than the index for small database 
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(less than 15 words) because of the constant overhead of the R-tree. The saving in time, 

when using the index, increases with the database size.  

We also compared the matching rate of the proposed index and the VUE algorithm. 

Figure 13 shows the number of times the correct answer (matching rate) is ranked among 

top two for different database sizes. We also carried experiments that show the matching 

rate when the answer is ranked the first (received highest score) and among the top 5 for 

different database sizes (not shown for space limitation). The common observation is that 

the matching rate of our proposed index is consistently higher than that of the VUE 

algorithm. The improvement in the matching rate is up to 46%.  

To evaluate the index when it uses the reduced feature space (as discussed in Section 

4.4), we carried out two sets of experiments, one using the full set of features ( = 11 ). In the 

second set of experiments we applied the Karhunen-Loѐve transform to a sample of 30 

words to calculate the transformation matrix, and then all words in the database were 

mapped to the new six-dimensional space. The queries were also mapped using the same 

transformation matrix before searching the tree. Our experiments measured matching rate. 

We count the number of search words that were ranked first (received the highest score), 

among top two, and among top three by the voting algorithm. As we see in Table 1 the 

matching rate is about 84% when reporting strings with the highest three scores. As 

expected, the matching rate decreased as we used a smaller number of dimensions. The 

good news is that, although we cut the space required to store a stroke to nearly half, we 

nevertheless achieved about 93% of the matching power of the index that used all 11 

features.  

 

7. Conclusions  
 

This paper introduced two indexing schemes for cursive handwriting. The first index 

works at the word-level and suitable for large database of cursive handwritten text. While 

the second index, which works at the stroke level is more accurate but it is also more costly. 

The word-level index uses a set of global “word” features that provides an effective way 

of reducing searching cost. The experimental results showed that the proposed index, which 

is using R-trees followed by EID clearly outperforms the ED and EID sequential searches. 

The space overhead incurred by the R-tree is low. The sequential algorithm EID 

outperforms ED. Another important contribution is the identification of a small set of global 

features (eight features) that can be used to characterize cursive handwriting. 

In the second index, each string is divided into a set of strokes; each stroke is described 

with a feature vector. Subsequently, the feature vectors can be stored in any multi-

dimensional access method, such as the R-tree. A similarity search can be performed by 

executing a few range queries and by then applying a simple voting algorithm to the output 

to select the most similar strings. The stroke-level index is resilient to the errors resulting 

from segmentation errors, such as insertion, stroke deletion, or m-n substitution. Our 

experiments showed that the extra effort we spent in mapping the data to lower 

dimensionality space pays off. The stroke-level index achieves substantial saving in search 

time over the VUE algorithm and improves the matching rate up to 46% over the VUE 

algorithm. With a sacrifice of less than 10% of the matching accuracy we saved almost half 

of the space required to represent a stroke.  

Our results showed that the word-level index is less accurate than the stroke level index, 

however it is much faster. The stroke-level index, on the other hand, is more accurate than 

the word-level index, but it is more costly than the word level index in terms of the search 

time. Thus the word-level index can be used as a filter to reduce the size of the candidate 

set. Then the stroke-level index can be used on a smaller data set to produce the final results. 
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