
International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

39

On Indexing Handwritten Text

Ibrahim Kamel
Dept. of Electrical and Computer Engineering

University of Sharjah

kamel@sharjah.ac.ae

Abstract

This paper deals with one of the new emerging multimedia data types, namely, handwritten

cursive text. The paper presents two indexing methods for searching a collection of cursive

handwriting. The first index, called word-level index, treats word as pictogram and uses

global features for representing the cursive words and their retrieval. Each word (or stroke)

can be described with a set of features and, thus, can be stored as points in the feature

space. The Karhunen-Loѐve transform is then used to minimize the number of features used

(data dimensionality) and thus the index size. Feature vectors are stored in an R-tree. The
second index, called stroke-level index, treats the word as a set of strokes.

We implemented both indexes and carried many simulation experiments to measure the

effectiveness and the cost of the search algorithm. The proposed indexes achieve substantial

saving in the search time over the sequential search. Moreover, the proposed indexes

improve the matching rate up to 46% over the sequential search. The word-level index is

suitable for large collection of cursive text. The stroke-level index is more accurate than the

word-level index, but the stroke-level index is more costly than the word-level index in terms

of the search time.

1. Introduction

The widespread of tablet computers and Personal Digital Assistants (PDA) like iphone

has resulted in an increase interest in manipulating handwritten text and cursive writing.

Recent researches focus on the efficient storage and retrieval of handwritten notes and on

formulating queries based on handwritten databases. For example, searching a large

database which contains one or more handwritten fields (e.g., verifying signature of the

bank accounts). One way to handle the handwritten text is to translate it first into ASCII-

equivalent characters using pattern recognition techniques and then to store it as ASCII text.

Similarly, the search algorithm translates the query string into a sequence of ASCII

characters and then performs a traditional search through the database. Thus, the recognition

phase is an intermediate step between the input device (pen and tablet) and the storage

device. But this is not practical because of the latency delay introduced by the recognition

step. Also, research results show that the accuracy of the recognition of cursive writing is

low and thus will result in high error rate. It is difficult even to identify letter boundaries in

the cursive string. Moreover, by translating the handwritten string into a sequence of

predefined symbols (alphabet), we lose much information, such as the particular shape of

the letter "allograph", the writing style, etc. Another disadvantage to this method is that the

recognition phase renders the system sensitive to the underlying language.

The other alternative is to treat it as a first-class data type. The handwritten string is

treated as a pictographic pattern without an attempt to understand it. This is a more natural

way to handle the handwritten text. In this approach the query string is compared to

database strings using an appropriate distance function. This gives the user more expressive

power; he can use non-ASCII symbols, drawings, equations, other languages, etc. Searching

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

40

in handwritten cursive text is a challenging problem. A word

people cannot look exactly the same. Moreover, a person cannot recreate perfectly even his

own previously drawn word. Hence, exact match q

similarity (or approximate string matching) would be more suitable in this case. The search

algorithm should look for all strings which are "similar" to the query string. One additional

requirement for pen-based and/or pers

support online retrieval and fast response time.

In this paper we address the problem of searching for a given cursive string in a database

of handwritten text. We proposed two indexes for retrieving handw

the word level by treating the whole word as an image. The other index breaks the

handwritten word into strokes.

large collection of cursive text.

in terms of execution time; however, it is

early results of this project have been

as follow. Section 2 presents background information on the underlying multimedia index

that is used. It also presents a sequent

describes the proposed word-level index while section

index. Prior works related to cursive handwriting is briefly described in

Section 6 we show experiments for measuring the response t

the proposed indexes. Section 7

2. Background

This section introduces some background information about the distance function and the

underlying index that are used in the proposed technique. Section

well know multimedia index, R

as a distance function to measure the similarity between two strings. Prior works related to

the retrieval of cursive handwriting is outlined in

2.1. R-trees

In this section, we provide a brief description of R

multidimensional index. The R

objects.

Figure 1: Data rectangles R

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

in handwritten cursive text is a challenging problem. A word that is written by two different

people cannot look exactly the same. Moreover, a person cannot recreate perfectly even his

own previously drawn word. Hence, exact match query will not be appropriate and

similarity (or approximate string matching) would be more suitable in this case. The search

algorithm should look for all strings which are "similar" to the query string. One additional

based and/or personal digital assistant environment is the need to

support online retrieval and fast response time.

In this paper we address the problem of searching for a given cursive string in a database

We proposed two indexes for retrieving handwritten text, one works at

the word level by treating the whole word as an image. The other index breaks the

handwritten word into strokes. The word-level index, which is the faster one, is suitable for

large collection of cursive text. On the other hand, the stroke-level index is more expensive

in terms of execution time; however, it is more accurate than the word-level index

project have been presented in [9][10]. The rest of the paper is organized

presents background information on the underlying multimedia index

that is used. It also presents a sequential search algorithm for cursive handwriting.

level index while section 4 presents the proposed stroke

index. Prior works related to cursive handwriting is briefly described in Section

we show experiments for measuring the response time and the matching rate of

7 gives our conclusions and future work.

This section introduces some background information about the distance function and the

ndex that are used in the proposed technique. Section 2.1 describes briefly a

well know multimedia index, R-tree. Section 2.2 describes the VUE technique that is used

as a distance function to measure the similarity between two strings. Prior works related to

retrieval of cursive handwriting is outlined in Section 5.

n this section, we provide a brief description of R-trees, which will be the underlying

The R-tree [6] is an extension of the B+-tree for multidimensional

Data rectangles R-tree with fanout value of three

written by two different

people cannot look exactly the same. Moreover, a person cannot recreate perfectly even his

uery will not be appropriate and

similarity (or approximate string matching) would be more suitable in this case. The search

algorithm should look for all strings which are "similar" to the query string. One additional

onal digital assistant environment is the need to

In this paper we address the problem of searching for a given cursive string in a database

ritten text, one works at

the word level by treating the whole word as an image. The other index breaks the

is suitable for

more expensive

level index. Some

The rest of the paper is organized

presents background information on the underlying multimedia index

 Section 3

the proposed stroke-level

ection 5. In

ime and the matching rate of

This section introduces some background information about the distance function and the

describes briefly a

describes the VUE technique that is used

as a distance function to measure the similarity between two strings. Prior works related to

trees, which will be the underlying

tree for multidimensional

 International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

41

A geometric object is represented by its minimum bounding rectangle (MBR). Non-leaf

nodes contain entries of the form (ptr,R) where ptr is a pointer to a child node in the R-tree;

R is the MBR that covers all rectangles in the child node. Leaf nodes contain entries of the

form (obj-id, R) where obj-id is a pointer to the object description, and R is the MBR of the

object. One of the main features of the R-tree is that it allows nodes to overlap. In this way,

the R-tree can guarantee at least 50% space utilization and at the same time remain

balanced. Figure 1 illustrates data rectangles (in black) organized in an R-tree with a fanout

value of three. On the other hand, excessive overlap between nodes penalizes the search

performance. A worst-case scenario would require retrieval of the whole tree, but this rarely

happens with practical datasets.

Subsequent work on R-trees includes: the packed R-tree [17] and Hilbert-packed R-trees

[11] for static databases; and the R*-tree 0, and the Hilbert R-tree [12] for dynamic

databases. The last of these can increase space utilization to any desired value by employing

the concept of deferred splitting (local rotation).

2.2. Sequential Search in Handwritten Database

Although much research has been done in searching handwritten text, not much work has

been done in indexing handwritten text. [14] proposed a sequential algorithm for searching a

very long cursive string in order to locate all the occurrences of a small cursive string. A set

of points that are drawn without raising the pen is called a stroke. The idea is to define a

constant alphabet for the strokes. Each stroke can be one of 64 different stroke types (or

code books). The problem is then reduced to the traditional ASCII text comparison, but with

using a different alphabet (alphabet of strokes).

We can use the edit distance [20] to compare two cursive strings. The "edit distance"

aligns the two strings and transforms one string into the other using the following

operations: delete a symbol, insert a symbol, and substitute one symbol for another. Each of

these operations has a predefined cost associated with it. The "edit distance" technique uses

a dynamic programming algorithm to minimize the cost of the transformation. Any

substring that is similar to the query string is reported as an answer.

Although reducing each stroke vector to one of 64 alphabet symbols makes the

comparison much simpler and saves space, nonetheless, valuable information about the

proximity between the different strokes is lost. In addition, it becomes necessary to search

the whole database sequentially in order to inspect each substring. We call this method the

VUE algorithm.

3. The Proposed Word-level Index

In this section we propose a two-step indexing schema to index a large repository of

handwritten cursive text. The proposed index treats each word as a pictogram (or an image)

and it consists of two steps, the filtering step and the refinement step. In the first step we use

a coarse index that filters out most of the unwanted pictograms and produces a set of pic-

tograms called the candidate set. The second step uses a sequential algorithm that operates

on the candidate set to find the best k matches to the query word which are reported as the

final answer.

The filtering step uses global features to characterize the different pictograms (words). A

set of features f1, f2, …, fx (described in Section 3.2) are calculated for each pictogram in the

database as well as for the queries. Thus, each pictogram can be represented as a

multidimensional point in x-dimensional space. A good set of features maps two instances

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

42

 ED + ID

 Sequential Algo.

 ED

 Sequential Algo.

Set S

Candidate Set

R-tree

Index

Query

Filter step

Refinement step

K best matches

EID Algorithm

of the same pictogram to points that are close in the multidimensional space. At the same

time, two different pictograms should be positioned as far apart as possible.

These points are organized in a multidimensional index. We choose the R-tree because of

its ability to prune the search space at early levels of the tree structure and because of the

guarantee of good space utilization.

To find the pictograms that are similar to a given query pictogram, we map the

query to a point in the x-dimensional space, by extracting x global features. Then, we

perform a similarity search. The length along each axis is a function of the

characteristics of the user's handwriting (Section 3.1). The candidate set is formed by

the multidimensional points (i.e., pictograms) returned by the query.

Figure 2: Flow diagram that shows our proposed
word-level indexing schema.

Edit distance: is a distance function that quantifies the similarity between two text

strings. The edit distance used in [14] aligns the two strings and transforms one string into

the other using the following operations:

• Deletion of a symbol.

• Insertion of a symbol.

• Substitution of a symbol by another one.

• Splitting of a symbol into two.

• Merging two symbols into one.

Each of these operations has a predefined cost associated with it. The weighted cost of

the transformation is used as a distance between the two strings. We call this metric edit

distance ED.

Inflection distance: we define the inflection distance in the same way the edit distance

is defined. Ink can also be represented by a sequence of codewords that represent the

inflection points of the pictogram. An inflection point marks the change of direction in the

pictogram, e.g., going from an upwards direction to a downwards direction, or from a left-

 International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

43

ward direction to a rightward one. We define eight inflection symbols. Using the inflection

representation, we can also compute an edit distance between two pictograms. For this, we

assume that only insertions and deletions are allowed and that each operation (insertion or

deletion) has an associated cost of 1. We call this inflection distance (ID).

In the refinement step, Figure 2, we apply a sequential algorithm to the candidate set to

find the best k matches to the query word. We use a combination of the two metrics ID and

ED. Our experiments show that the cost of the ID comparison is about 5 times less than the

cost of ED comparison. Thus, we use the ID as a second stage filter in the retrieval process.

The procedure is as follows. First, we perform pair wise comparison (sequential search) of

the query against each of the retrieved pictograms by using ID. This results in a ranked set S

of pictograms. Then, we take the best m (in the experiments we set m = 20%) elements of S

and use the metric ED+ID to perform another round of sequential comparison. We call this

procedure EID. Increasing m improves the retrieval rate but it increases the total response

time. The value of m can be determined experimentally. After that, the best k matches are

presented to the user.

3.1. The Size of the Hyper-rectangle

Two instances of the same word will have two different values �� , �́� for feature fi.

To accommodate for this variability, the length li of the query hyper-rectangle along

feature (axis) fi should satisfy:

�� � |��	�́�|
There is a clear trade-off in the value of li. Larger values of li will introduce more false

alarms and increase the size of the candidate set and consequently, the total response time.

On the other hand, small li values will be more likely to miss the correct answer and

consequently, reduce the retrieval rate. Since the value li is a writer dependent, we ask the

user to write small sample of pictograms (around 30) twice. We use this sample as a

measure for the variance in the values of
�, 1 � � �. For each feature i we calculate the

differences in the corresponding pictograms in the sample set. The values of �� , 1 � � �, is
selected so that it covers the differences in the sample set.

3.2. Global Features

Extracting good global features is not an easy task. A good global feature should assign

different instances of the same word to close-by values in the feature domain. Features

might be correlated and dependent. Adding a new feature could produce no improvement in

the performance if the feature is redundant (covered by other features in use.) Using a large

number of features not only increases the size of the index but also adversely affects the

search performance. This is known as "dimensionality curse" problem.

This section lists the eight global features are used in our indexing scheme. Our model

for the cursive string is as follows. A cursive string is read from the tablet as a sequence of

points in real time. Each point is represented by the tuple (x, y) where x, y are the

coordinates of the point in two-dimensional space. (Points are taken at equal time intervals,

so the time information is also available.) These points are grouped into strokes. Strokes are

defined by local minima in the x-y coordinates. A new stroke starts at each local minimum.

(This method is known as local minima segmentation.) The minimum rectangle that

encloses the stroke is called Minimum Bounding Rectangle (MBR).

Some of the features we collected use aggregate functions over the set of strokes that

constitute the string. Some of the resulting strokes are very small and do not contribute to

the final image of the string. We also noticed that these small strokes can be produced

simply by pressing or raising the pen. In the evaluation of the following features, we filtered

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

44

out such strokes from both the database and the query strings and only included strokes

whose MBR area is larger than 15 points (where the point is the unit distance in the tablet

device).

•••• Number of strokes: that constitutes the string.

•••• Number of points: in the string.

•••• Number of vertical inversions: an inversion occurs when either the y-coordinate of the

point decreases after it was increasing or the y-coordinate of the point increases after it

was decreasing.

•••• Total-change-MBR-height: the accumulation of the absolute differences between the

height of a stroke's MBR and that of its predecessor, i.e., :

�|������� 	 ������ 	 1�|
�

���

where s is the total number of strokes in the string.

• Avg-weighted-MBR-area: the average weighted area of stroke's MBRs, i.e., :

∑ ������ � ����

where s is the total number of strokes in the string.

• Number of thin strokes: thin strokes are defined as those stroke with height >1.5 �

width.

• X-centroid: the position of the centroid of the stroke areas, calculated as follows:

∑ � ���������!

∑ ���������!

where s is the total number of strokes in the string.

• Y-centroid: the position of the centroid of the stroke areas in the y-direction,

calculated as:

∑ �"� 	 "#� � ���������!
∑ ���������!

Where "� is the highest y-value for the ith
 stroke, "# is the y-value for the first point of the

string, and s is the number of strokes.

This word-level index is suitable for searching large number of cursive handwriting. In

Section 6, we perform simulation experiments to measure the effectiveness of the proposed

index in filtering unwanted pictograms and identifying the most similar word.

4. The proposed stroke-level index

In this section, we propose an index that is suitable for small database of cursive

handwriting. Unlike the word-level index, the stroke-level index compares text at the stroke

level rather than word level. Thus, this index is more costly than the word-level index but it

is more accurate in identifying the query work. The stroke-level index allows fast retrieval

of similar strings and can handle insertion, deletion, m-n substitution errors and substring

matching. This index is dynamic in the sense that insertion and deletion operations can be

 International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

45

intermixed in real time with the search operations. Given a search query string, the answer

would be a set of the strings or substrings that look like the query string.

4.1. The basic idea

We model the cursive string as a sequence of strokes. Each stroke is described by a set of

features and thus can be represented by a point in the multidimensional feature space. We

propose to store these points in a multi-dimensional index, and more specifically, the R-tree

because of its ability to prune the search space at early levels of the tree structure and

because of the guarantee of good space utilization. A cursive string is read from the tablet as

a sequence of points in real time. Each point is represented by the tuple (x, y, t) where x, y

are the coordinates of the point in two-dimensional space and t is the time at which the point

is printed. These points are grouped into strokes. A stroke ends and a new one starts at each

local minimum in the x-y coordinates. This method is known as local minima segmentation.

Figure 3: Outline of the word-level index

We describe each stroke with a set of 11 features. The features, which have been

described in [18], describe the geometric properties of the stroke, e.g., the length of the

stroke, the total angle traversed, and the angle and length of the bounding box diagonal. The

features are selected so that strokes that look alike tend to have similar vector values

according to some distance functions. Due to the variability in handwriting, the feature

vectors that correspond to different instances of one stroke tend to vary slightly. Vectors that

represent different instances of the same stroke form a cluster in the feature space. Thus,

strokes that look similar will have their representative clusters close to each other or even

overlapping in the multi-dimensional space.

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

46

Figure 4: (a) shows a pictogram of the cursive word “low” (b) the representation of the cursive

word “low” in the feature space.

Given a string S, the stroke segmentation program decomposes S into a sequence of t

stokes. Each stroke Si , 1 < i < t , is represented as a point in an 11-dimensional space

formed by the features f1, f2, ... , f11. The string S is represented by t points in the space.

These multi-dimensional points (strokes) are stored in an R-tree index. Each R-tree node

occupies one disk page. Non-leaf nodes, which are small in number, are kept in main

memory, while leaf nodes are stored on the disk. Figure 3 shows an example of the

proposed index assuming two features only (in two dimensional space). A set of points that

are close to each other will be stored in the same leaf node (level 0 in the tree). Each entry in

the leaf node is in the form of (word-id, P) contains the coordinates of a point P (stroke) and

a word-id for the pictographic description of the string that contains (owns) this stroke. Non-

leaf nodes in level i, where i > 0, have entries of the form (ptr, R) where ptr points to a child

node and R is the Minimum Bounding Rectangle (MBR) that encloses all the entries in the

child node.

Figure 4 shows an example of three cursive words "node, row, below." For the sake of

this illustration and to simplify the presentation and the drawing of the example, let us

assume that each stroke is described with only two features, namely f1 and f2. For simplicity

of the presentation, let us assume that each stroke represents one letter in the string. Note

that in practice, each letter is represented by several strokes but we make this assumption to

simplify the explanation. Figure 4 shows the representation of the three strings in the multi-

dimensional space. Each string is represented by several points (equal to the number of

strokes/characters in the string) in the two-dimensional space. Strokes that represent the

same letter tend to form a cluster. The shaded area in Figure 4 shows the cluster for each

letter (stroke). Letters that are written in a similar way (e.g. r, n) might have clusters close to

each other or even overlapping.

4.2. Similarity search queries

To search for a string Q, we treat the query string in a manner similar to that described in

the previous section. The set of strokes ql, q2, … , qx: are extracted from Q. Since it is

impossible to write the same word twice identically, we need similarity queries. For each

stroke qi, a range query in the form of a hyper-rectangle is formed in the 11-dimensional

space. The center of the hyper-rectangle is the query point, and the length along each axis is

a ratio (2 x p) of the standard deviation of the data along that axis.

 International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

47

The output of each query would be a set of word-ids for those words which contain a

stroke similar to the query stroke. We call this set the candidate set C. We then apply a

simple voting algorithm as follows. Each word-id takes a score that indicates how many

times it has appeared as an answer for the queries qi, 1 < i < x. The set of word-ids that have

the highest scores are reported as the answer. Note that we did not use any expensive

operations, nor we accessed any of the pictographic representation of the strings from the

database.

Algorithm Search (node Root, string Q):

S1. Preprocessing:

Use Q to build the set of strokes qi, q2, … , qx.

Extract the set of features for each qi, 1 < i < x.

S2. Search the index:

For each stroke qi, perform a range query.

Form the candidate sets.

S3. Voting algorithm:

Words with the highest score are the answer.

4.3. Feature space dimensionality

Our goal here is to reduce the number of features needed to describe the stroke by

transforming the data points into another space with smaller dimensions. This problem is

known as dimensionality reduction. Until now, we used 11 highly correlated features to

describe each stroke. We use the Karhunen-Loѐve transform [5], also known as Hotelling

transform or Principal Component Analysis) to reduce the dimensionality of the feature

space. The transform maps a set of vectors to a new space with an orthogonal uncorrelated

axis. The Karhunen-Loѐve transform consigns most of the discrimination power to the first

few axes. Hopefully, using only k axes, k < 11, we lose little information while reducing the

index size significantly.

The axes of the new feature space are the Eigen vectors of the auto correlation

(covariance) matrix for the set of data points. The Karhunen-Loѐve transform sorts the

eigenvectors in decreasing order according to the eigen values and approximates each data

vector with its projections on the first k eigenvectors, k < 11.

We collect a small sample from the writer in advance and apply the Karhunen-Loѐve

transform to calculate the vector transformation matrix. All strokes (vectors) are mapped to

the new space and then inserted in the index.

4.4. Reducing the candidate set size

Two strings are similar if they have similar strokes in the same order. The output of the

search query gives a set of strings which has strokes similar to the query stroke but they do

not necessarily occur in the same location. The candidate set is thus large because it contains

many false candidates. Moreover, the voting algorithm does not take into consideration the

location of the stroke.

To make use of the stroke location and to reduce the size of the candidate set, we store

the location of the stroke inside the string as one more dimension in the feature space. Each

stroke is then represented by k features f1, f2, ... , fk and by its location stkloc inside the string

in (k + 1) dimensional space.

Two instances of the same string will not, in general, have equal number of strokes. The

difference, however, is expected to be small. Thus, the answer to the range query that

corresponds to stroke qi should include strings that have similar strokes not only in the

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

48

position i but also in a window of length w around i. We found experimentally that w = 3

gives the best results (thus covering stroke numbers i - 1, i, and i + 1).

In substring matching, however, we want to allow the query string to start at any position

inside the database string. In this case, a partial match query rather than a range is used. In a

partial match query, the extent of the query rectangle is specified for all axes f1, f2, ... , fk as

before. For the stroke location stkloc axis, the extent is left open (-∞, +∞) to allow the query

string to start at any position inside the database string. Otherwise, the algorithm is similar

to that for similarity query.

5. Prior work

There are many researches on modeling, retrieval, and annotation of cursive handwriting.

However, there are not many works on indexing cursive handwritten text. Research included

handling different languages like Arabic [1], Chinese [15], and Indian languages [4] and on-

line handwriting [16].

[4] proposed a technique that is based on an additive fusion resulted after a novel

combination of two different modes of word image normalization and robust hybrid feature

extraction. They employ two types of features in a hybrid fashion. The first one, divides the

word image into a set of zones and calculates the density of the character pixels in each

zone. In the second type of features, they calculate the area that is formed from the

projections of the upper and lower profile of the word.

[22] proposed a method for generating a large database of cursive handwriting.

Synthesized data are used to enlarge the training set. He proposed method learns the shape

deformation characteristics of handwriting from real samples; then used for handwriting

synthesis.

[18] also proposed a method to synthesize cursive handwriting of the user's personal

handwriting style, by combining shape and physical models together. In the training

process, some sample paragraphs written by the user are collected and these cursive

handwriting samples are segmented into individual characters by using a two-level writer-

independent segmentation algorithm. Samples for each letter are then aligned and trained

using shape models.

[7] word-spotting system operates on a database containing a number of handwritten

pages. The method used for word matching is based on a string matching technique, called

Dynamic Time Warping (DTW). The following three features are computed at each sample

point in the word, resulting in a sequence of feature vectors: The height (y) of the sample

point: This is the distance of the sample point from the base of the word; the stroke

direction; and the curvature of the stroke at point p. The word to be compared is first scaled

so that it is of the same size (height) as the keyword, and translated so that both words have

the same centroid. The DTW technique then aligns the feature vector sequence from a

database word to that of the keyword using a dynamic programming-based algorithm. The

algorithm computes a distance score for matching points by finding the Euclidean distance

between corresponding feature vectors and penalizes missing or spurious points in the word

being tested.

6. Experimental results

This section presents experimental results that show the effectiveness of our proposed

indexes. The two proposed methods are implemented in C. Our database consists of 8,000

handwritten cursive words produced by one writer. The same writer then recreated 100

words to be used as queries. Since our data is static (no insertion nor deletion) we used the

Hilbert packed R-tree [11] because of its high space utilization. For dynamic data, other R-

tree variants that allow insertions and deletions can be used (

Hilbert R-tree [12]).

6.1. Evaluation of the global

In this section we evaluate how good the set of global features, listed in Section

in pruning the search space and retrieving the most similar set of w

nodes (which account for the large portion of the R

nodes in main memory (non-leaf nodes occupy about 50 K

shows the percentage of the datab

database size. Notice that the pruning capabilit

size. The reason for this is that the query size is constant regardless of the database size

(recall that the query size is defined by the characteristics of the user handwriting.)

Figure 5. The percentage of
database filtered out by the R

To see how good the global features are in de

in Figure 6 the percentage of cases in which the correct answer to queries are in the

candidate sets (R-tree retrieval rate). The graph show high retrieval rate 86%

expected, the retrieval rate decreases with

6.2. Comparison between the

In this section we compare

sequential searches.

Figure 7 shows the total search time per query for various database sizes. The above R

tree package stored the tree in main

a 15 msec delay. For our method (marked as "R

after searching the R-tree and screen

compared our method with the ED sequential algo

takes to perform sequential search over the entire database us

algorithm. Our method "R-tree+ EID" outperforms ED sequential search in the entire range

of database sizes. For 8,000 pictograms t

graph the performance of our sequential EID (no R

that, for small databases 1000 or less, EID is little faster than "R

because of the overhead of the R

decreasing the database size). As ex

the size of the database, while for our method "R

linearly in the entire range.

 International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , ,

tree variants that allow insertions and deletions can be used (such as R*-tree [0

lobal features

In this section we evaluate how good the set of global features, listed in Section

in pruning the search space and retrieving the most similar set of words. We store the leaf

nodes (which account for the large portion of the R-tree) on the disk and keep the non

leaf nodes occupy about 50 K-bytes for 8000 words).

shows the percentage of the database that is filtered out by the R-tree as a function of the

database size. Notice that the pruning capability is increasing with increasing the database

size. The reason for this is that the query size is constant regardless of the database size

(recall that the query size is defined by the characteristics of the user handwriting.)

The percentage of the
database filtered out by the R-tree

Figure 6. The retrieval rate of the R
tree only

To see how good the global features are in describing the cursive handwriting, we show

percentage of cases in which the correct answer to queries are in the

tree retrieval rate). The graph show high retrieval rate 86% -

decreases with increasing the size of the database.

Comparison between the proposed Index and the Sequential Scan

In this section we compare the proposed schema (R-tree + EID) with ED

shows the total search time per query for various database sizes. The above R

age stored the tree in main-memory; thus, we had to simulate each disk access with

delay. For our method (marked as "R-tree + EID"), it shows the time per query

tree and screening the resulting subset of pictograms with EID. We

compared our method with the ED sequential algorithm. The figure also shows the time it

takes to perform sequential search over the entire database using our EID sequential

tree+ EID" outperforms ED sequential search in the entire range

of database sizes. For 8,000 pictograms the ratio of search times is 12:1. We included in the

graph the performance of our sequential EID (no R-tree) which also outperform ED. Note

that, for small databases 1000 or less, EID is little faster than "R-tree + EID". This is

of the R-tree (the relative cost of node access increases with

decreasing the database size). As expected the sequential search times grow linearly with

the size of the database, while for our method "R-tree + EID" the search times grow sub

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

49

0], and the

In this section we evaluate how good the set of global features, listed in Section 3.2, are

e store the leaf

he disk and keep the non-leaf

. Figure 5

tree as a function of the

the database

size. The reason for this is that the query size is constant regardless of the database size

(recall that the query size is defined by the characteristics of the user handwriting.)

The retrieval rate of the R-

scribing the cursive handwriting, we show

percentage of cases in which the correct answer to queries are in the

- 95%. As

ED and EID

shows the total search time per query for various database sizes. The above R-

ulate each disk access with

EID"), it shows the time per query

ing the resulting subset of pictograms with EID. We

thm. The figure also shows the time it

ing our EID sequential

tree+ EID" outperforms ED sequential search in the entire range

he ratio of search times is 12:1. We included in the

tree) which also outperform ED. Note

tree + EID". This is

increases with

pected the sequential search times grow linearly with

EID" the search times grow sub-

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

50

Figure 7. Total search time

Figure 8 and Figure 9 plot the matching rates obtained when showing the best

= 5 pictograms respectively. As we can see, the match

those of sequential search.

Figure 10 and Figure 11 explain the sub

the percentage of pictograms returned by querying the R

size of the subset obtained by searching the tree decreases with incr

database.

Figure

Figure 11 shows the percentage of blocks retrieved by the

database size. Again, since the relative size of the retrieved subset decreases, so does the

percentage of blocks brought to memory.

Figure 10. Percentage of pictograms
retrieved

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Total search time Figure 8. Matching rate (top 5)

plot the matching rates obtained when showing the best k

= 5 pictograms respectively. As we can see, the matching rates for the index outperform

explain the sub-linear behavior of our method. Figure

the percentage of pictograms returned by querying the R-tree. As we can see, the relative

size of the subset obtained by searching the tree decreases with increasing the size of the

Figure 9. Matching rate (top 3)

shows the percentage of blocks retrieved by the tree search as a function of the

database size. Again, since the relative size of the retrieved subset decreases, so does the

percentage of blocks brought to memory.

Percentage of pictograms Figure 11. Percentage of blocks
retrieved

Matching rate (top 5)

k = 3 and k

ndex outperform

Figure 10 shows

tree. As we can see, the relative

easing the size of the

tree search as a function of the

database size. Again, since the relative size of the retrieved subset decreases, so does the

Percentage of blocks

6.3. Evaluation of the Stroke

We implemented the proposed

carried several experiments to evaluate the performance of our proposed index and compare

it with the VUE algorithm. Due to the space limitation, we do not show all the results. We

asked one writer to produce 200 handwritten cursive words. The same wr

74 words to be used as search strings. In all the experiments, the stroke location was stored

as additional feature as explained in

w was set at 3 and the value of

Since the data used in the experiments were static, we used the Hilbert

as an underlying multi-dimensional index. For data that has dynamic nature (where data can

be inserted or deleted at any time), the R

be used. Node size was fixed at one KByte.

Figure 12. Response time of our
proposed index versus the VUE

algorithm

The segmentation algorithm cuts the stroke once it encounters a local minimum. During

our experiments, we noticed that some of the resulting strokes are tiny and do not contribute

to the final image of the string, and thus considered noise. These tiny strokes can be

produced simply by pressing or raising the pen. These strokes not only increase the size of

the database but might also adversely affect the retrieval performance. We filtered out such

strokes from both the database and the query strings. We only included strokes whose MBR

diagonal is larger than 15 points (where the point is the unit distance in the tablet device.)

Table 1. Matching rates for ind

Voting algo,

Rank

first

top 2

top 3

Figure 12 compares the search time of our proposed index with the search time of the

VUE algorithm for different database sizes. As expected the VUE algorithm time increases

linearly with the database size. Our proposed index achieves substantial saving in response

time over the VUE. Note that the VUE algorithm is faster than the index for small database

 International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , ,

Evaluation of the Stroke-based Index

proposed stroke-based index and the VUE algorithm

carried several experiments to evaluate the performance of our proposed index and compare

it with the VUE algorithm. Due to the space limitation, we do not show all the results. We

asked one writer to produce 200 handwritten cursive words. The same writer then recreated

74 words to be used as search strings. In all the experiments, the stroke location was stored

as additional feature as explained in Section 4.4. For the experiments shown here, the value

was set at 3 and the value of s was set at 1 (each stroke was stored as a separate point.)

Since the data used in the experiments were static, we used the Hilbert-packed R-

dimensional index. For data that has dynamic nature (where data can

be inserted or deleted at any time), the R-tree [6], Hilbert R-tree [12] or the R*-tree

be used. Node size was fixed at one KByte.

Response time of our
proposed index versus the VUE

Figure 13. Matching rate of our
proposed index versus VUE algorithm

The segmentation algorithm cuts the stroke once it encounters a local minimum. During

our experiments, we noticed that some of the resulting strokes are tiny and do not contribute

of the string, and thus considered noise. These tiny strokes can be

produced simply by pressing or raising the pen. These strokes not only increase the size of

the database but might also adversely affect the retrieval performance. We filtered out such

rokes from both the database and the query strings. We only included strokes whose MBR

diagonal is larger than 15 points (where the point is the unit distance in the tablet device.)

Matching rates for index that uses all 11 features vs. index that uses 6
features only

Matching rate

11 features 6 features

80 73

85 82.5

89 84

compares the search time of our proposed index with the search time of the

VUE algorithm for different database sizes. As expected the VUE algorithm time increases

linearly with the database size. Our proposed index achieves substantial saving in response

time over the VUE. Note that the VUE algorithm is faster than the index for small database

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

51

 [14]. We

carried several experiments to evaluate the performance of our proposed index and compare

it with the VUE algorithm. Due to the space limitation, we do not show all the results. We

iter then recreated

74 words to be used as search strings. In all the experiments, the stroke location was stored

For the experiments shown here, the value

was set at 1 (each stroke was stored as a separate point.)

-trees [11]

dimensional index. For data that has dynamic nature (where data can

tree [3] can

Matching rate of our
proposed index versus VUE algorithm

The segmentation algorithm cuts the stroke once it encounters a local minimum. During

our experiments, we noticed that some of the resulting strokes are tiny and do not contribute

of the string, and thus considered noise. These tiny strokes can be

produced simply by pressing or raising the pen. These strokes not only increase the size of

the database but might also adversely affect the retrieval performance. We filtered out such

rokes from both the database and the query strings. We only included strokes whose MBR

diagonal is larger than 15 points (where the point is the unit distance in the tablet device.)

ndex that uses 6

compares the search time of our proposed index with the search time of the

VUE algorithm for different database sizes. As expected the VUE algorithm time increases

linearly with the database size. Our proposed index achieves substantial saving in response

time over the VUE. Note that the VUE algorithm is faster than the index for small database

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

52

(less than 15 words) because of the constant overhead of the R-tree. The saving in time,

when using the index, increases with the database size.

We also compared the matching rate of the proposed index and the VUE algorithm.

Figure 13 shows the number of times the correct answer (matching rate) is ranked among

top two for different database sizes. We also carried experiments that show the matching

rate when the answer is ranked the first (received highest score) and among the top 5 for

different database sizes (not shown for space limitation). The common observation is that

the matching rate of our proposed index is consistently higher than that of the VUE

algorithm. The improvement in the matching rate is up to 46%.

To evaluate the index when it uses the reduced feature space (as discussed in Section

4.4), we carried out two sets of experiments, one using the full set of features (= 11). In the

second set of experiments we applied the Karhunen-Loѐve transform to a sample of 30

words to calculate the transformation matrix, and then all words in the database were

mapped to the new six-dimensional space. The queries were also mapped using the same

transformation matrix before searching the tree. Our experiments measured matching rate.

We count the number of search words that were ranked first (received the highest score),

among top two, and among top three by the voting algorithm. As we see in Table 1 the

matching rate is about 84% when reporting strings with the highest three scores. As

expected, the matching rate decreased as we used a smaller number of dimensions. The

good news is that, although we cut the space required to store a stroke to nearly half, we

nevertheless achieved about 93% of the matching power of the index that used all 11

features.

7. Conclusions

This paper introduced two indexing schemes for cursive handwriting. The first index

works at the word-level and suitable for large database of cursive handwritten text. While

the second index, which works at the stroke level is more accurate but it is also more costly.

The word-level index uses a set of global “word” features that provides an effective way

of reducing searching cost. The experimental results showed that the proposed index, which

is using R-trees followed by EID clearly outperforms the ED and EID sequential searches.

The space overhead incurred by the R-tree is low. The sequential algorithm EID

outperforms ED. Another important contribution is the identification of a small set of global

features (eight features) that can be used to characterize cursive handwriting.

In the second index, each string is divided into a set of strokes; each stroke is described

with a feature vector. Subsequently, the feature vectors can be stored in any multi-

dimensional access method, such as the R-tree. A similarity search can be performed by

executing a few range queries and by then applying a simple voting algorithm to the output

to select the most similar strings. The stroke-level index is resilient to the errors resulting

from segmentation errors, such as insertion, stroke deletion, or m-n substitution. Our

experiments showed that the extra effort we spent in mapping the data to lower

dimensionality space pays off. The stroke-level index achieves substantial saving in search

time over the VUE algorithm and improves the matching rate up to 46% over the VUE

algorithm. With a sacrifice of less than 10% of the matching accuracy we saved almost half

of the space required to represent a stroke.

Our results showed that the word-level index is less accurate than the stroke level index,

however it is much faster. The stroke-level index, on the other hand, is more accurate than

the word-level index, but it is more costly than the word level index in terms of the search

time. Thus the word-level index can be used as a filter to reduce the size of the candidate

set. Then the stroke-level index can be used on a smaller data set to produce the final results.

 International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

53

References

[1] Al Aghbari, Z., Brook, S., HAH manuscripts: A holistic paradigm for classifying and retrieving

historical Arabic handwritten documents. In: Journal of Expert Systems with Applications (2009)

[2] Aref, W., Kamel, I., Lopresti, D., “On Handling Handwritten Electronic Ink”, The international Journal of

ACM Computing Survey, Symposium on Multimedia Systems, December 1995, Vol 27, No 4, Pages 564 –

567.

[3] Beckmann, N. etal: The R*-tree: an efficient and robust access method for points and rectangles. In:
Proc. of ACM SIGMOD (1990)

[4] Gatos, B., Pratikakis, I., Perantonis, S.J.: Hybrid Off-Line Cursive Handwriting Word Recognition,

Pattern Recognition, vol. 2, pp. 998—1002 (2006)

[5] Gersha, A., Gray R.: Vector Quantization and Signal Compression. In: Kluwer Academic (1992)

[6] Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proc. of ACM SIGMOD

(1984)
[7] Jain, A., Namboodiri, A.: Indexing and Retrieval of On-line Handwritten Documents. In: Proc. of

the 7th International Conference on Document Analysis and Recognition, p. 655 (2003)

[8] Jawahar, C. V., Balasubramanian, A., Meshesha, M., Namboodiri, A.: Retrieval of online

handwriting by synthesis and matching. In: Pattern Recognition, vol. 42, Issue 7 (July 2009)

[9] Kamel, I., Fast Retrieval of Cursive Handwriting, 5th international Conference on Information and
Knowledge Management CIKM, 1996.

[10] Kamel, I., and Barbara, D., Retrieving Electronic Ink by Content, 1996 International Workshop on

Multimedia Database Management Systems, 1996.

[11] Kamel, I., Faloutsos, C.: On packing Rtrees. In: Proc. of CIKM (1993)

[12] Kamel, I., Faloutsos, C.: Hilbert R-tree: an improved r-tree using fractals. In: VLDB (1994)

[13] Lopresti, D., Tomkins, A.: Pictographic naming. In: Tech. Rep. MITL- TR-21-92, Matsushita

Information Technology Lab, (1992).

[14] Lopresti, D., Tomkins, A.: On the searchability of electronic ink. In: Tech. Rep. MITL- TR-114-94,

Matsushita Information Technology Lab, (1994).

[15] Ma, Y., Zhang, C.: Retrieval of cursive Chinese handwritten annotations based on radical model

United States Patent 6681044 (2004)

[16] Oda, H., Akihito Kitadai, Motoki Onuma, Masaki Nakagawa: A Search Method for On-Line
Handwritten Text Employing Writing-Box-Free Handwriting Recognition. In: Proc. of the 9th

International Workshop on Frontiers in Handwriting Recognition, pp. 545—550 (2004)

[17] Roussopoulos, N., Leifker, D.: Direct spatial search on pictorial databases using packed r-trees. In: ACM

SIGMOD, pp. 17—31 (1985)

[18] Rubine, D.: The automatic recognition of gestures. In: PhD thesis, Carnegie Mellon University (1991)

[19] Varga, T., Bunke, H.: Generation of Synthetic Training Data for an HMM-based Handwriting
Recognition System. In: Proc. of the 7th International Conference on Document Analysis and

Recognition, p.618 (2003)

[20] Wagner, R., Fisher, M.: The string-to-string correction problem. In: Journal of ACM, vol. 21, pp. 168—

173 (1974)

[21] Wang, J., Wu, C., Xu, Y., Harry Shum: Combining shape and physical models for on-line cursive

handwriting synthesis. In: International Journal of Document Analysis and Recognition, vol. 7, No.

4, pp. 219—227 (2005)

[22] Zheng, Y., Doermann, D.: Handwriting Matching and Its Application to Handwriting Synthesis. In:

Proceedings of the 8th International Conference on Document Analysis and Recognition, pp. 861—

865 (2005)

International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering International Journal of Multimedia and Ubiquitous Engineering

Vol. Vol. Vol. Vol. 5555, No. , No. , No. , No. 2222, , , , AprilAprilAprilApril, 20, 20, 20, 2010101010

54

