
International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

41

Parallel Mass Transfer Simulation of Nanoparticles using
Nonblocking Communication

Chantana Chantrapornchai (Phonpensri) 1, Banpot Dolwithayakul1
Kanok Huankumnerd2 and Sergei Gorlatch3

1Dept. of Computing, Faculty of Science, Silpakorn University, Thailand
2Dept. of Computing, Faculty of Science, Silpakorn University, Thailand

3Universität Münster, Institut für Informatik, Münster, Germany
1ctana@su.ac.th, 2kanok_h@hotmail.com, 3gorlatch@math.uni-muenster

Abstract

This paper presents experiences and results obtained in optimizing parallelization of the

mass transfer simulation in the High Gradient Magnetic Separation (HGMS) of nanoparticles
using nonblocking communication techniques in the point-to-point and collective model. We
study the dynamics of mass transfer statistically in terms of particle volume concentration
and the continuity equation, which is solved numerically by using the finite-difference method
to compute concentration distribution in the simulation domain at a given time. In the
parallel simulation, total concentration data in the simulation domain are divided row-wise
and distributed equally to a group of processes. We propose two parallel algorithms based on
the row-wise partitioning: algorithms with nonblocking send/receive and nonblocking
scatter/gather using the NBC library. We compare the performance of both versions by
measuring their parallel speedup and efficiency. We also investigate the communication
overhead in both versions. Our results show that the nonblocking collective communication
can improve the performance of the simulation when the number of processes is large.

Keywords: Message Passing Interface; Parallel Simulation; Nonblocking collective operations; Scatter and

Gather; Communication optimization; High Gradient Magnetic Separation (HGMS)

1. Introduction

High Gradient Magnetic Separation (HGMS) is a powerful method for the removal of
weakly magnetic particles from fluids [8]. In this method, high gradient of magnetic field and
magnetic energy density are produced in the separation process to maximize the magnetic
force that acts on the magnetic particles. HGMS has been applied in many fields including
mineral beneficiation [9], blood separation in biochemistry [10], waste water treatment [11],
and food industry [12]. HGMS can be also used in other research and industrial areas that rely
on the separation of colloidal particles. The mass transfer process is studied via statistical
approach. Sequential simulation of diffusive capture of weakly magnetic nanoparticles in
HGMS had been developed and reported in [13].

To investigate the process of mass transfer in a particular situation, the governing
equations describing the process dynamics are solved to obtain the distribution behavior of
target particles in the considered regions. Equations of a mass transfer process frequently
occur as non-linear partial differential equations of second or higher order which are hard to

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

42

be solved analytically, hence numerical methods are used. The finite-difference method is a
standard approach for that: The distribution configuration of the particles is computed
numerically at many discrete points in the considered regions. The increase the number of
discrete points, the higher is the accuracy of the results the more time is needed to accomplish
the computation. Parallelization is necessary to improve the accuracy of the results and
reduce the computing time.

This paper proposes two parallel algorithms for the parallelization of HGMS. Both
algorithms use nonblocking communications. The first algorithm using point-to-point model
with MPI_Isend/Irecv in a ring communication. The second algorithm uses the nonblocking
collectives Igather/Iscatter from libNBC [22]. We compare the efficiency of both
communication styles. We found that the first algorithm has a small overhead compared to
the second one in our experiments. However, the communication cost of the ring
communications increases as the number of processes increases while the communication
time in the collective style remains quiet constant. Thus, when computing using more number
of processes, the nonblocking collective approach can perform well.

This research paper is organized as followings: next section introduces backgrounds in
HGMS. Section 3 and Section 4 present the both nonblocking algorithms respectively.
Section 5 presents comparative results of the approaches. Section 6 concludes the work.

2. Backgrounds

Our case study is the mass transfer process of weakly-magnetic nanoparticles during

magnetic separation. As a particular application we study the separation of such
particles from static water by a magnetic method. The system consists of static water
with an assembly of monotype weakly-magnetic nanoparticles as a suspension and a
capture center modeled as a long ferromagnetic cylindrical wire of radius. All
compositions of the system are considered as linear isotropic homogeneous magnetic
media. A uniform magnetic field is applied perpendicular to the wire�s axis. We define
the particle volume concentration, denoted by c, as the fraction of particle volume
contained in an infinitesimal volume element of the system. According to the geometry
of the capture center and the symmetry of the problem, the normalized polar
coordinates, as shown in Figure 1, are used. The distance is the radial distance from
the wire�s axis in the unit of wire radius, is the angle defined in a plane perpendicular
to the wire�s axis. The mass transfer process is studied in normalized time domain
which is defined based on real time, particle diffusion coefficient and wire radius. The
governing equation of our case study, derived by Davies and Gerber [16, 17], can be
expressed as

2 2

2 2 2

1 1 r

a a aa a

c c c c G c

r r rr r

r
r

a a a a

G GGc c c
G c

r r r r

(1)

and

2

2 2

1

a aI I Ia II

G Gc c c c

r rr

(2)

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

43

 1

1

1r I

a a a I

G c c

r r r

where functions rG , G and factor 0G depend on the magnetic properties of the wire,

the fluid, the particle, the strength of applied magnetic field and the position in the
region [18]. The equation (1) is used for ordinary discrete points whereas equation (2)
is used for special discrete points that are adjacent to the wire surface or other
impervious surfaces. The governing equations are solved numerically as an initial and
boundary value problem, by using the finite-difference method.

Figure 1. Normalized polar coordinates[15]

Figure 2. Grid construction.

Firstly, a uniform mesh is constructed in an annular region around the wire as shown

in Figure 2. The outer boundary of the region locate at , 10a Lr . Then the particle

volume concentration at ordinary discrete points , ,a i jr and special discrete points

 , ,a I jr at a given normalized time n are computed numerically by using the

following equations (3) and (4), respectively. It is seen that the new value of particle
concentration at any discrete points depends on the old values of particle concentration
at adjacent discrete points. Figure 3(a) shows the representation of Figure 2 in a 2D
representation which stores the concentration data computed from Equations 3-4.
Figures 3(b) and 3(c) show the data dependency pattern from the representation.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

44

2 2 2

1
, ,

,

,,

2 2
1

1

a a in n
i j i j

r i j r

a a a i ji i j i

r r
c c

G GG

r r r

 ,

1,2

1

2 2

r i j n
i j

a aia

G
c

r rr

 ,

1,2

1

2 2

r i j n
i j

a aia

G
c

r rr

,
, 12 2

1

2
i j n

i j
a ia i

G
c

rr

,
, 12 2

1

2
i j n

i j
a ia i

G
c

rr

(3)

1
, ,2 2

,

2
1n n

I j I j
a I jIa I

G
c c

rr

,
, 12 2 2

I j n
I j

a Ia I

G
c

rr

,
, 12 2 2

I j n
I j

a Ia I

G
c

rr

1,
1,2

r I j n
I j

aa

G
c

rr

 2,2

n
I j

a

c
r

(4)

3. Nonblocking Point-to-Point Communication Algorithm

In the process of mass transfer simulation, old and new concentration data at every

discrete point are stored in two identical two-dimensional arrays. In the parallel
simulation based on the distributed memory model, all data are decomposed into equal
parts, by using a row-wise partitioning scheme and distributed to a group of processes.
Consequently, each process holds its subarray. First, the old data at a given point and
the old data of necessary adjacent points are read. Second, the new value of particle
concentration is computed. Let the maximum column and row index of the subarray
occupied by a process be maxi and maxj respectively, and let I be the column index that
contains data at a given special discrete point. The iterative computation in every row
of the subarray can be described in general as follows:

1. Search and specify the column index “ I ” corresponding to the special discrete
 point.
2. Assign the initial concentration in column maxi
3. Iteratively compute the new concentration by using (3), starting from column

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

45

 max 1i down to column 1I .
4. Compute the new concentration, by using Equation (4), at column of index I .

 (a)

(b) (c)

Figure 3. (a) 2D representation. (b)-(c) Patterns of data dependency
among discrete points

Figure 4. The configuration of data distribution and the ring pattern of

data communications between adjacent processes

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

46

Finally, the new data replaces the old data. The simulation continues until the final
value of normalized time is reached. According to data dependences shown in Figure 3,
the computation in row j requires data from adjacent rows of index j-1 and 1j .
Consequently, the computation in the first and last rows of the subarray of each process
requires the data in the subarrays of the two adjacent processes. On the other hand, each
process has responsibility to send its data in the first and last row of its subarray to its
two adjacent processes. Moreover, data exchange between the process 0 and the process
(N-1) is necessary. An individual process communicates to its neighbors in a ring
pattern. Each process uses row arrays called Sent_bottom and Receive_bottom to
exchange data with the lower rank process and uses row arrays Sent_top and
Receive_top to exchange data with the higher rank process.

 Figure 4 shows the row-wise data redistribution and the ring pattern of data
exchanges between processes. Let 0 be the minimum rank and N the maximum rank of
the process. Communication between adjacent processes are performed via non-
blocking MPI_Isend and MPI_Wait communication procedures for process 0 and
MPI_Wait . and MPI_Isend for the remainders. Steps of the parallel algorithm are
rearranged using nonblocking communications as follows:

 Ring 1 Communication
 Ring 2 Communication

Figure 5. Parallel algorithm using nonblocking communications.

Step 1: Start first ring communication using MPI_Isend and MPI_Irecv.
Step 2: Start second ring communication using MPI_Isend and MPI_Wait
 nonblocking communication procedures.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

47

Step 3: Perform iterative computing of new concentration in all rows of index
 max1 1j j
Step 4: Perform MPI_Wait operation to ensure the available of data necessary for
 Iterative computing in the row j = 0.
Step 5: Perform iterative computing of new concentration in the row j = 0.
 Step 6: Perform MPI_Wait operation to ensure the available of data necessary for
 Iterative computing in the row
Step 7: Perform iterative computing of new concentration in the row index
 maxj j .
Then Steps 1-5 are repeated until convergence is achieved.

The idea of using non-blocking communication is to overlap communication with

computation. In the original algorithm, once the data is needed, the communication is
required. In this algorithm, the communication in Step 1 in the previous algorithm is
moved to Step 3 to hide the communication latency. Figure 5 shows the scheme of
parallel simulation by using non-blocking communication. The nonblocking
communication is done first and then computations start. When data is required,
MPI_Wait() is performed to ensure that the needed data arrived. The computation of
rows max1 1j j is used to overlap with the communication. Here, it can be observed
that the overlapped computation depends directly on the size of domain for each
process.

The main title (on the first page) should begin 1 3/16 inches (7 picas) from the top

edge of the page, centered, and in Times New Roman 14-point, boldface type.
Capitalize the first letter of nouns, pronouns, verbs, adjectives, and adverbs; do not
capitalize articles, coordinate conjunctions, or prepositions (unless the title begins with
such a word). Please initially capitalize only the first word in other titles, including
section titles and first, second, and third-order headings (for example, “Titles and
headings” — as in these guidelines). Leave two blank lines after the title.

4. Nonblocking Collective Algorithm

The test of communication algorithms of both blocking ring and blocking

scatter/gather in our recent work [23] indicated that communication algorithm using
scatter/gather provides a better efficiency than the blocking ring approach. Therefore,
we hypothesize that the non-blocking scatter/gather would also be better than non-
blocking ring as well. We then implement our new communication algorithm using non-
blocking collective using libNBC [22].

To compare with the ring communication algorithm, the algorithm is devised in the
same manner. Using the collective style, the root process, 0, collects the necessary
updated data at the end of each iteration using gather and distribute the updated rows to
each relevant process using scatter. We use the buffers Scatter_top, Scatter_bottom, to
hold data scattered from the root for each process. Also, the buffer Gather_top,
Gather_bottom, is used by the root to hold data gathered from the others. After the root
gathers all updated rows from other processes, it needs to update and rearrange the
concentration data before scattering in the next round. We also include the computation
in the root process as well. The iterative process is changed as follows:

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

48

Step 1: Root process, p=0, scatters the arranged data in its scatter_bottom and

scatter_top buffers to receive_top and receive_bottom buffers of every process,
respectively using NBC_Iscatter().

Step 2: Root process, rank p = 0, gathers data in the sent_bottom and sent_top buffers
of each process into its gather_bottom and gather_top buffer respectively using
NBC_Igather().

Step 3: All processes, including the root, perform iterative computation, from the
first row+1 to the last row -1 of its subarray,

Step 4: All processes performs NBC_Wait() for receive_top and receive_bottom
respectively. Then they compute the first row and the last rows accordingly.

Step 5: All processes copy data in the new concentration subarray into the old
concentration subarray.

Step 6: All processes put data in the first and last row into its sent_bottom and
sent_top buffers, respectively.

Step 7: Root process performs NBC_Wait() for gather_bottom, gather_top.
Step 8: Root rearranges data in its gather_bottom and gather_top buffers and then

put the arranged data in the scatter_bottom and scatter_top buffers, respectively. The
pattern of rearrangement is as follows.

Figure 6. The scheme of the scattering operation

From the algorithm, it is seen that Step 1 and Step 2 performs the nonblocking
communications using NBC scatter/gather (similar to Figure 5). The overlapped
computations are in step 3. The number of rows implies the amount of overlapped
computation. In our case, if the number processes are large the number of rows is
reduced, the communications are overlapped less.

5. Experimental Results

In our experiments, we simulate mass transfer of paramagnetic Mn2P2O7 particle of

radius pb = 12 nm. dispersed in static water. The effective magnetic susceptibility of
the system (water + Mn2P2O7 particle) is = +4.73 10-3[17]. The ferromagnetic wire
is homogeneously saturated magnetized perpendicular to its axis by a uniform external
magnetic field 0H = 1106 A/m which is perpendicular to the wire s axis. The factors

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

49

0G = -16.62 and WK = 0.80. The initial concentration at every discrete point is equal to
0C = 0.0010 and the saturation concentration is satC = 0.10 [20]. Grid steps are ar =

0.010, = 0.10 and = 0.0000010. Hence there are in total 3,600 rows and 901
columns in the whole computational domain.

We perform the experiments on a 32 nodes, totally 64 cores Linux cluster, with a
Gigabit Ethernet interconnection at Louisiana Technology University, USA. In the
cluster, each core is Intel Xeon 2.8GHz with 512 MB RAM. The cluster runs LAM-
MPI 7.1 and on Gigabit Ethernet network.

The speedup of parallel simulation is defined as /p 1 pS = t t , where 1t is the average
sequential simulation time and pt is the average parallel simulation time on
p processes. The parallel efficiency is computed by /p pE = S p [21].

Table 1. Speedup results

Number of Processes NBC Ring speedup NBC Collective
speedup

4 4.091502 4.312826
6 5.985637 6.235232
8 7.950379 8.183956
10 8.753601 9.445269
12 11.63329 11.404066
16 14.89231 14.111646
20 17.87601 16.600328

 Table 2. Efficiency results

Number of Processes NBC Ring speedup NBC Collective speedup

4 1.02287556 1.07820639
6 0.99760621 1.03920526
8 0.99379741 1.02299452
10 0.87536013 0.94452691
12 0.9694407 0.95033881
16 0.93076926 0.88197789
20 0.89380027 0.83001640

Table 1 and Table 2 show data of speedup and efficiency of nonblocking ring and

nonblocking collective algorithms, respectively, for various number of processes cases.
In other words, we divide the computation by rowwise according to the given number
of processes. From the data, it is surprising that the nonblocking collective algorithm
performs about the same as the nonblocking ring approach and worse in some case,
unlike in the original collective algorithm which performs better than the traditional
ring approach[23].

From both tables, we discovered that speedup of the algorithm is always higher than
nonblocking ring algorithm when the number of processes is low (less than 12) but
when the processes become higher (greater than 12) nonblocking collective
performance will become lower than ring algorithm. This is because incurring
overheads of libNBC is more than that of the original MPI and when the overlapping

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

50

computation is less as the number of processes grows (see the cases for 12 or more
processes), the overheads cannot be hidden totally.

Table 3. Average communication time comparison

Number of Processes Nonbloking ring Nonblocking

collective
% Diff

4 342.8 606.3 -76.89
6 304.5 620.3 -103.72
8 283.7 606.5 -113.80
10 315.4 827.0 -162.24
12 350.6 665.0 -89.69
16 423.5 666.1 -57.28
20 534.3 685.4 -28.27

0

100

200

300

400

500

600

700

800

900

4 6 8 10 12 16 20

#proc

Lo
g

of
 T

im
e

(s
ec

)

Nonblocking Scatter &
Gather

Nonblocking Ring

Figure 9. Communication time comparison graph

We further inspect the communication overheads of the libNBC approach as in Table

3. The communication time shown here is the total communication time for all
NBC_Iscatter, NBC_Igather, and NBC_wait for the collective case and is the total time
for all MPI_Isend, MPI_Irecv, MPI_Wait for the nonblocking ring case. Figure 9 plots
the comparison of overall times between two schemes. It is seen that the libNBC
approach produces more overheads for each case. However, it is noticed that the
overheads grow very slowly when the number of processes increases. On the contrary,
the overheads grow faster for the nonblocking ring case. The difference of
communication overheads between the two approaches are reduced as the number of
processes increases (see Column ‘%Diff’ in Table 3). Also, in Figure 10, we analyze
the time spent for each libNBC call. It is seen that the time spent most are on wait3,
wait1, wait2, and wait4 calls accordingly. For wait3 call, it is the NBC_Wait for the

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

51

first NBC_Igather. For wait1 call, it is the average waiting time for first NBC_Iscatter
for all processes, and for wait2 call, as well as wait4 call, they are the average waiting
time for the second NBC_Igather, NBC_Iscatter respectively. We can see that for wait4
call, it is the time that the root process requires to gather all updated top rows from
other processes. For wait1 call, every process waits for the root to scatter the updated
top rows in the new iteration.

Figure 10 Details communication time of the nonblocking

collective case

6. Conclusion

We propose the two nonblocking parallel algorithms for High Gradient Magnetic

Separation (HGMS) of nanoparticles. In both scheme, we distribute the domain of
computation equally by row-wise. The first algorithm is based on MPI_Isend/Irecev
ring style communication where the second algorithm is based on NBC_Iscatter/Igather
collective style communication. The results show that in the tested environment, the
nonblocking ring algorithm performs better. This is because the overhead incurred by
the nonblocking MPI calls are less for all the test cases and can be hidden totally in the
overlapped computation. For the nonblocking collective algorithm using libNBC, it has
more communication overheads and needs more overlapped computation time to hide
them.

 We found that communication time of the nonblocking collective algorithm is
always lower than nonblocking ring algorithm when the number of processes is small.
When the number of processes becomes larger higher, the communication time of the
collective style only slightly increases while the communication time of the
nonblocking ring increase at a faster rate. We predict that if we increase more number
of processes and the work size, the collective communication style will perform better
than the nonblocking ring approach. This exploration of communication style and
domain partitioning will be investigated in the next paper.

Acknowledgement

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

52

We would like to thank Assoc. Prof. Dr. Box Leangsuksun for allowing us to use the
cluster for testing the experiment. We also thank Torsten Hoefler from Indiana
University for helpful comments regarding the use of LibNBC.

References

[1] Balay, S., Buschelman K., Jkhout V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L. C., Smith, B.,
Zhang, H.: PETSc Users Manual, Technical Report. ANL-95/11 - Revision 2.3.2.

[2] The ScaLAPACK Project, http://www.netlib.org/scalapack/index.html
[3] Shu, J. W., Lu,Q., Wong, W. O., Huang, H.: Parallelization strategies for Monte Carlo simulations of

thin film deposition. Compu Phys Commun. 144, 34--45 (2002)
[4] Pure QCD Monte Carlo simulation code with MPI, http://insam.sci.hiroshima-u.ac.jp/QCDMPI/
[5] Roy, S., Jin, R. Y., Chaudhary, V., Hase, W. L.: Parallel molecular dynamics simulations of

alkane/hydroxylated α -aluminum oxide interfaces. Comput. Phys. Commun. 128, pp.210--218 (2000).
[6] Xu, J., Ostroumov, P. N., Nolen, J.: A parallel 3D Poisson solver for space charge simulation in

cylindrical coordinates. Comput. Phys. Commun. 178, 290--300 (2008)
[7] Wu, J. S., Hsu, K. H., Li, F. L., Hung, C. T., Jou, S. Y.: Development of a parallelized 3D electrostatic

PIC-FEM code and its applications. Comput. Phys. Commun. 177, 98--101 (2007)
[8] Gerber, R., Birss, R. R.: High Gradient Magnetic Separation. John Wiley& Sons, New York (1983).
[9] Kelland, D. R.: High gradient magnetic separation applied to mineral beneficiation. IEEE Trans. Magn.

9, 307--310 (1973)
[10] Takayasu, M., Kelland, D. R., Minervini, J. V.: Continuous magnetic separation of blood components

from whole blood. IEEE Trans. Appl. Supercond. 10, 927--930 (2000)
[11] Delatour, C.: Magnetic separation in water pollution control. IEEE Trans. Magn. 9, 314--316 (1973)
[12] Safarik, I., Sabatkova, Z., Tokar, O., Safarikova, M.: Magnetic Cation Exchange Isolation of Lysozyme

from Native Hen Egg White. Food Tech. Biotechnol. 45, 355--359 (2007)
[13] Hournkumnuard, K., Natenapit, M.: Diffusive Capture of Magnetic Particles by an Assemblage of

Random Cylindrical Collectors. Sep. Sci. Technol. 43, 3448--3460 (2008)
[14] Bleaney, B. I., Bleaney, B.: Electricity and Magnetism. Claredon Press, Oxford (1965)
[15] Arfken, G. B., Weber, H. J.: Mathematical Method for Physicists. Academic Press, California (1995)
[16] Gerber, R., Takayasu, M., Friedlaender, F. J.: Generalization of HGMS theory: The capture of ultra-fine

particles. IEEE Trans. Magn. 19, 2115--2117 (1983)
[17] Davies, L. P., Gerber, R.: 2-D simulation of ultra-fine particle capture by a single-wire magnetic

collector. IEEE Trans Magn. 26, 1867--1869 (1990)
[18] Hournkumnuard, K.: Diffusive Capture of Magnetic Particles by an Assemblage of Random Cylindrical

Collectors. MSc. Thesis, Chulalongkorn University (2004)
[19] Mitchell, A. R., Griffiths, D. F.: The Finite Difference Method in Partial Differential Equations. John

Wiley& Sons, New York (1980)
[20] Gerber, R.: Magnetic filtration of ultra-fine particles. IEEE Trans. Magn. 20, 1159--1164 (1984)
[21] Quinn, M. J.: Parallel Programming in C with MPI and OpenmP. McGraw-Hill, New York (2003)
[22] Hoefler, T., Squyres, J. M., Bosilca, G., Fagg, G., Lumsdaine, A., Rehm, W.: Non-Blocking Collective

Operations for MPI-2. (2006)
[23] Phongpensri, C., Gorlatch, S., Hoefler, T.: A Parallel Simulation of Mass Transfer in High Gradient

Magnetic Separation of Nanoparticles Using MPI Collective Operations. Proceedings of NCSEC 2009,
Bangkok, Thailand (2009).

