
International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

29

An Efficient Bundle Replacement Algorithm for OSGi Platform

Ibrahim Kamel

Dept. Electrical & Computer Engineering
University Of Sharjah
kamel@sharjah.ac.ae

Abstract

OSGi is a middleware standard for home gateways, designed for smart home applications.

OSGi models services as separate components, called bundles. Smart home applications
might differ in their importance. For example, home security system is more important than
Internet game. Bundles collaborate to provide the required service. This paper proposes a
bundle replacement algorithm that takes into account the priority of the bundle and the
interdependence between different bundles. Thus, given a home gateway that hosts several
applications with different priorities and arbitrary dependencies among them. When the
home gateway runs out of memory, which bundles will be stopped or kicked out of memory to
start a new service. Because of the bundle dependencies, traditional memory management
algorithms might not be efficient. Efficient replacement algorithm should stop the least
important and a small number of bundles. The proposed algorithm takes into consideration
the priority of the bundle or application and dependencies between different bundles, in
addition to the amount of memory occupied by each service. We implement the proposed
algorithms and performed many experiments to evaluate its performance and execution time.
We used best fit and worst fit as yardstick to show the effectiveness of the proposed
algorithms. The proposed algorithms are implemented as a part of the OSGi framework
(Open Service Gateway initiative).

1. Introduction

Recently there have been a lot of interests to provide new applications for smart homes.

Thanks to technologies like Fiber to Home that allowed the Internet to be used not only for
connecting computers, laptops, and PDAs but also for home appliances like TV, refrigerators,
and washers [20]. Remote diagnosis and remote configuration of home appliances are some
of the most attractive applications. Power companies are also keeping an eye on home
networking because it will allow them to provide value-added services such as energy
management, telemetric (remote measurement), and better power balance that reduces the
likelihood of blackout. Consumer electronics companies started to design Internet-enabled
products. LG presented a smart Internet refrigerator, which has full Internet capabilities.
Matsushita Electric showed during a recent Consumer Electronic Exhibition showed an
Internet-enabled microwave, which can download cooking recipes and heating instructions
from the Internet.

Multiple home network protocols like UPnP [11], Jini [9] [10] are expected to coexist in
the home and inter-operate through the home gateway. The gateway acts also as a single point

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

30

of connection between the home and outside world. OSGi [14] [15] (Open service Gateway
initiative) is a consortium of companies that are working to define common specifications for
the home gateway. According to OSGi model, the gateway can host services to control and
operate home appliances. In the OSGi model, services are implemented in software bundles
(or modules) that can be downloaded from the Internet and executed in the gateway [6]. For
example, HTTP service is implemented as a bundle while security application would be
implemented as another bundle. Bundles communicate and collaborate with each other
through OSGi middleware and thus, bundles depend on each other. For example, a home
security bundle uses an HTTP bundle to provide external connectivity [5].

Because of the need to keep the price of the gateway low, the gateway will be limited in

computational resources, especially main memory and CPU. Home gateway main memory
will be used by various service bundles and home applications. This paper proposes efficient
replacement algorithms for managing bundles or services in home gateways. Memory
management has been studied extensively in operating system field [13]. Memory
management for software bundles executed in home gateways differs from traditional
memory management techniques in the following aspects:

 Traditional memory management techniques, in general, assume that memory pages are

independent while bundles may depend on each other.
 Many of the commercial gateways do not come with disks, which makes the cost of

stopping applications or services relatively high; restarting a service might require
downloading the service bundle from the Internet.

Terminating bundles 1might result in aborting one or more other bundles if they depend on

each other. Some home applications are real-time, thus, kicking a bundle from the memory
may result in aborting the application or the service, while in traditional memory management
model, kicking a page from the memory costs one disk I/O. However, in some applications it
is possible to kick one service in the application and keep the application running. For
example, Audio-on-demand might still work without the equalizer service. However, if the
application considers the terminated service critical to its operation, it might terminate all
other services in the tree as well. In this paper, although the proposed model and models
works for the two cases mentioned above we assume that terminating a node or a sub-tree
would terminate the whole application. Thus the main contributions of the paper are:

 Identifying difference between memory management in home gateway and traditional

memory management problem in general computing environment.
 Introducing a novel replacement algorithm for managing bundles (or services) with

different priorities. The proposed algorithm takes into consideration the priority of the
application, the dependencies between applications, and the memory requirements for
each application.

The rest of the paper is organized as follow; section 2 presents a formal definition of the

problem and the dependency model. In section 3 we describe the proposed replacement
algorithms. Experimental results are presented in section 4. Section 5 describes prior works.
Finally, conclusions and future works are outlined in section 6.

1 In this paper, the terms application, service, and bundle are used interchangeably.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

31

2. Problem description

The gateway might need to free memory space to accommodate new services that are

triggered by connecting a new device to the network or upon explicit local or remote requests.
Although the amount of memory required to execute a service might change with time, the
application service provider (or the author who provides the bundle) can give approximate
statistical estimates of the amount of memory required to execute the services such as
average, median, or maximum. Moreover, extra memory space might be requested by any one
of the service instances (inside the residential gateway) to continue its service. If such
memory is not available, the gateway picks a victim service instance (or instances) to
terminate to allow the new application to start. Given that many of the smart home
applications are real-time in nature, thus, the gateway tends to terminate the victim service
rather than suspending it.

Figure 1. A gateway that hosts two applications:

home security and smart microwave

The following is a typical example that explains the problem in hand. Suppose that there

are two applications that are already running in the gateway namely, home security and
microwave applications. One application is the home security which uses fire alarm and UDP
as a dependent services; it has a priority level 1 (highest priority). The second application is
the microwave service, which has a priority level 4 and it uses two subservices: heating
instructions and import recipe. The details of the memory requirement for each application
and service are shown in Figure 1. Now we would like to start the refrigerator application,
which requires a total of 90 memory units. The priority level of the refrigerator application is
3, which means it is more important than the microwave application but it is less important
than the home security. The fire alarm service (which is a part of the home security
application) has the required memory but it will not be kicked out, because it has the highest
priority. Instead it can replace the Microwave application because it has the least priority
level. Notice that the required space can be fulfilled by terminating several services. The
challenge is to select those services to kick out from the memory gateway such that the
services will be with least priority and the number of applications/services affected is
minimal.

2.1. Application dependency model

Home security
Memory=40
Priority=1

Microwave
 Memory=75
Priority=4

 Heating
 instructions
 Memory=20

Import recipe
Memory=55

UDP
Memory=30

Fire alarm
Memory=100

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

32

OSGi is a framework and specifications for services that can be deployed and managed
over wired home network [4] [5] and wireless networks [4]. It provides the standardized
primitives that allow applications to be constructed from small, reusable and collaborative
components. The core component of the OSGi specifications is the OSGi framework that
provides a standardized environment to applications (called bundles), and is divided into four
layers: Execution Environment, Modules, Life Cycle management, and Service Registry. The
Execution Environment is the specification of the Java environment. The Module layer
defines the class loading policies and adds private classes for a module as well as controlled
linking between modules. The Life Cycle layer adds bundles that can be dynamically
installed, started, stopped, updated, and uninstalled. Bundles rely on the module layer for
class loading but add an API to manage the modules in run time. The life cycle layer
introduces dynamics that are normally not part of an application. The Service Registry
provides a cooperation model for bundles that takes the dynamics into account. Moreover, the
Service Registry layer provides a comprehensive model to share objects between bundles. A
number of events are defined to handle the coming and going of services. Services are just
Java objects that can represent anything. Many services are server-like objects, like an HTTP
server, while other services represent an object in the real world, for example a Bluetooth
phone that is nearby.

The OSGi framework is completely based on Java technology. In fact, the specification
itself is just a collection of standardized Java APIs plus manifest data. Bundles or services are
implemented as plug-ins modules called bundles. These bundles can be downloaded from the
application service providers through the Internet. Examples for services that are used for
application development are Java development tools, J2EE monitor, crypto services, bundles
that provide access to various relational database management systems (e.g., DB2, Oracle,
etc.), HTML creation, SQL, Apache, Internet browser, XML plug-ins, communication with
Windows CE, etc. Other system administration bundles like core boot, web application
engine, event handling, OSGi monitor, file system services, etc. Bundles for various Internet
and network protocols, like, HTTP service, Web services, SMS, TCP/IP, Bluetooth, X10,
Jini, UPnP, , etc. There are many bundles that are already implemented by OSGi partners
[15].

2.2. Formal definition of the problem

More formally, our problem can be described as follows. Let G={g1,g2,…,gj } present the

set of graphs (applications), and let S={s1,s2,…,si } be the set of service instances currently
resident in each graph in the main memory. Service instance si occupies M(si) memory, and
each si may have other services depending on it. T(si) is the set of services that depend on si,
and the memory occupied by si and its dependants is denoted as M(T(si)). The services in the
memory gateway have three levels of priorities High, Medium and Low (H, M and L).

 Given that a new service instance si , with memory requirement M(si) has to be created, it
might be required to remove some of the currently existing instances in order to free room for
the new instance. Assume that the extra required memory for this operation is Mt units, that is
Mt=M(s) - Mf, where Mf is the current amount of available memory. Here we assume that,
when a service instance is terminated, all instances depending on it will be terminated and
removed as well. Our goal is to reduce the quality of removed (stopped) services. More
precisely, it is desired to find a service with least priority, whose ejection, together with all its
dependents, will make available a total memory of at least Mt units.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

33

 In this paper we discuss two approaches to achieve our goal in preserving the quality of
services in the memory gateway and present two algorithms The Relative Weights (RW), and
the Strict Priority (SP) algorithms.

2.3. Traditional replacement algorithms

The traditional memory management techniques, like Best Fit and Worst Fit make

selection based on the amount of memory used and ignore the dependencies. In fact these
algorithms can be used to solve the problem in hand. We use Best Fit and Worst Fit
algorithms as yardstick to evaluate the performance improvement achieved by the proposed
algorithms. We modified Best Fit and Worst Fit to take into consideration the total
accumulative memory of each service (bundle) resulting from stopping one or more
service(s). Best Fit chooses the service, s S, with the smallest total memory that is ≥ Mt.
While Worst Fit chooses the service, s S, with the largest total memory that is ≥ Mt.

3. The new bundle replacement algorithms

The algorithm mainly visits all the nodes in sequential manner. Note that the node X can be
a root of a tree (an application), a leaf node, or a non-leaf that acts as a root of a sub-tree.
Recall, leaf and non-leaf nodes represent services that belong to that application. If X is the
root node then the gateway will stop the corresponding application. But if X is non-leaf node,
then deleting X delete the sub-tree under X. This will result in stopping some features of the
application. In many cases applications can continue to run at reduced functionality. For
example, stopping the “Equalizer” service in an Audio-on-Demand application would not
stop the audio delivery and the Audio-on-Demand service can still continue working without
the “Equalizer” service. In our experiments, without loss of generality, we assume that
stopping a service will stop all dependent services in its sub-tree but will not stop the hosting
application. We implemented two flavors of the service management algorithm depending on
how the priority is handled.

3.1. The relative priority replacement algorithm

RW Algorithm

 1: for each gj in set G // graphs loop

 2: for every si in graph gj //services loop
 3: if (M(T(si))>Mt)
 4: //s has enough memory
 5: if(W(T(victim)) > W(T(si)))
 6: victim= si; // total weights for si < victim
 7: end if
 8: end if
 9: end for // services loop
 10: end for // graphs loop
 11: if (victim!=NULL)
 12: delete(victim); // delete victim service
 13: else
 14: return “no solution found”
 15: end if

Figure 2. RW replacement algorithm

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

34

Some of the real life scenarios represent priority by weight values that reflect the
importance of the application. Relative Weight (RW) algorithm treats priorities as weights.
Large weight values are assigned to high priority services and small weight values are
assigned to low priority services. In this algorithm, W(si) is assigned to each root node to the
priority level that the corresponding application. Subservices, which are represented by leaf
and non-leaf nodes, inherit the priority from their parents.

W(T(si)) is the total weight for the service with its dependants. W(T(si)) is calculated by

adding up the weights of the node si and all the nodes in its sub-tree. The terminated service
(victim) will be the one with the least weight and of course its termination frees enough space
for the new coming application.

The algorithm in
Figure 2 checks if the service has the required memory for the new coming service, then

we check for the service with least weight. So the RW algorithm traverses all the services
available in the gateway and checks if the service has the required memory. If the service
does have the required memory the algorithm checks if its weight is less than that of the
victim; if this is true, the victim is updated. Note that the RW model may not find a service
with enough memory space; in this case, the new service cannot start.

3.2. The strict priority replacement algorithm

The other way to treat applications with different priority is to give an unprecedented
attention to high priority applications before serving applications with lower priorities. We
refer to this algorithm as the Strict Priority algorithm. The difference between the strict
treatment and the relative weight treatment of the priority appears when there is a need to
delete more than one low priority service, say c low priority services. If the total weight of the
c low priority services is larger than the weight of a high priority service, then the Relative
Weight algorithm will remove the high priority service. While the Strict Priority algorithm
will remove the c low priority services regardless of the value of c.

 Strict Priority model assumes that the priority is a property of the application; all services
and subservices inherit their priorities from their parent applications. The model assumes that
there are k different priority levels assigned values from 1 to k, where 1 refers to the highest
priority and k refers to the lowest priority.

To minimize the number of services terminated, we select to terminate the node with
minimum number of dependents. To account for the number of dependent services (that will
be terminated by kicking the sub-tree root) we use the Ratio(si) formula:

The terminated service (victim) will be the one with least priority and has low Ratio value.

The SP algorithm performs one pass through the services in the memory gateway. Since the
new service cannot kick out a service of higher priority, the SP algorithm simply considers
services of equal or less priority than the new services. So the SP algorithm traverses all
services in the gateway to select the candidate victim. The algorithm will check if the priority
of si is less than the priority candidate victim. If true, si is added to the candidate victim list.
Among all candidate victims with the same priority, the algorithm chooses the one with the
least Ratio. This process is repeated until all services are processed.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

35

SP Algorithm

 1: for each Gi in set //graphs loop
 2: for every s in graph Gi //services loop
 3: if (M(T(s))>Mt)
 4: //s has enough memory

 5: if (P(victim) < P(s))
 6: victim = s ; // priority of s < priority of the victim
 7: else if (P(victim)==P(s))
 8: If (Ratio(victim) < Ratio(s))
 9: victim=s; //equal priority and different AMS
10: end if
11: else
12: // don’t update victim
13: end if
14: end if
15: end for // services loop
16: end for // graphs loop
17: if (victim!=NULL)
18: delete(victim); //this function deletes the victim service
19: else
 20: return “no solution found”
 21: end if

Figure 3. Pseudo code for the strict priority algorithm

4. Performance evaluation

We carried extensive simulation experiments to evaluate the performance of the proposed

algorithms in terms of the number and priority of the removed services. We also measured the
algorithm execution time. The amount of memory required by each bundle (or services) is
assumed to be uniformly distributed. Initially, services are generated with random sizes and
loaded into gateway memory, until the memory becomes almost full; in our experiments we
filled the gateway with 100 services. Each service can be dependent on a number of other
services. Dependent service sizes are selected according to uniform distribution from a pool
of available services. The sizes of memory required for the execution of a bundle (or service)
are in the range from 1MB to 5MB. Services have three levels of priorities High, Medium and
Low (H, M and L).

The expected output of the simulation is to find out which service(s) should be kicked out
to make room for a incoming service. To measure the quality of the deleted services we
calculate the total weight of the stopped services using the equation below. V is the set of
stopped services. Wv denotes the total weight of all services that are stopped to start the new
service.

We conducted experiments to compare the performance of the traditional algorithms,

namely, Best-fit and Worst-fit with the proposed algorithms RW and SP. Each experiment is
repeated 100 times and the average of the results is calculated.

4.1. Evaluation of the relative weight algorithm

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

36

In this experiment we compared the RW algorithm with the well-known best fit and worst

fit algorithms in terms of the quality of victim services, as the size of the new coming bundle
increases from 1 MB to 10MB. To measure the quality of the deleted services we assign
weights {400, 200, 1} according to the priority these services obtain (High, Medium and
Low) respectively. The performance of the service management algorithms is evaluated by
measuring the total weight of the stopped services as a function of the size of the new coming
service. Figure 4 shows the total weight of the stopped services in the Y-axis and the size of
the new services in the X-axis. The total weight of the stopped services is increasing as the
size of the new coming service increases because of the need to terminate more services. The
results show that the RW outperforms the traditional algorithms in preserving the services
with high priority. The performance gain increases with increasing the size of the new
service.

Figure 4. Quality performance of algorithms while increasing the new
service size

Table 1 compares the execution time of the RW algorithm with the execution time of the

best fit and worst fit algorithms as a function of the number of services that exists in the
gateway. The size of the new coming service is fixed to 5 MB. The costs of the three
algorithms increase with increasing the number of services in the gateway because of the
sequential nature of the algorithms. The results show that the cost of the RW algorithm is
higher than (but close to) the best fit and worst fit algorithm. The difference in the execution
time is always less than 6% and it significantly decreases as the number of services in the
gateway increases. This makes the proposed algorithms suitable for practical applications.

Table 1. Comparing the execution time of the RW with best and worst fit

No. of existing

services
Worst Fit(µs) Best Fit(µs) RW(µs)

100 18 18 19
200 35 35 36
300 51 51 53
400 68 68 69
500 85 85 86

0

100

200

300

400

500

600

700

1 2 4 6 8 10

New Service Size (MB)

T
o

ta
l W

ei
g

h
t

o
f

V
ic

ti
m

s

Worst Fit

Best Fit

RW

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

37

4.2. Evaluation of the strict priority algorithm

To check the performance of the SP algorithm, we performed experiments that count the

number of services with high, medium and low priority levels that are deleted. The SP
algorithm uses the Strict Priority model, which does not use weights that relate between
various priority levels. Figure 5 illustrates the accumulated number of deleted services for
each priority level.

The size of new coming service is set to 15MB. Each experiment is repeated 100 times.
The y-axis shows the accumulated number of terminated services over the 100 experiments
for each algorithm used. One can easily observe that the SP algorithm outperforms Best Fit
and Worst Fit. The SP algorithm protects services with high priority from being kicked out.
In addition, the SP algorithm terminates less total number of services (regardless of the
priority level) when compared with the traditional algorithms, Best Fit and Worst Fit. Figure
5 shows the total number of deleted services for Best Fit (or Worst Fit) is 606 while the total
number of deleted services for the SP algorithm is only 303, which accounts for 50%
improvement.

63

199

344

63

199

344

17

99

197

0

50

100

150

200

250

300

350

400

High Medium Low

Priority level

A
cc

u
m

u
la

te
d

 n
o

.
o

f
D

el
et

ed
 S

er
vi

ce
s

Worst Fit

Best Fit

SP

Figure 5. Average Number of Deleted Services, Single Pass algorithm
using Strict Priority model

Table 2. Execution time comparison between the SP and the Best Fit and

Worst Fit
No. of existing

services
Worst Fit(µs) Best Fit(µs) SP(µs)

100 18 18 24
200 35 35 46
300 51 51 69
400 68 68 95
500 85 85 116

Table 2 shows the cost of the SP algorithm in terms of execution time and compare it with

the execution time of the best fit and worst fit algorithms as the number of services in the
gateway changes. The size of the new coming service is fixed to 5 MB. The execution time

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

38

of the SP algorithm is slightly larger than the execution time of the traditional algorithms (as
well as the RW algorithm). However, the difference is small, which makes the SP algorithm a
viable option for real-time solutions.

5. Prior work

There are a lot of research works that addressed the memory management problem
extensively in the past. However, the service model is different than that of the home
applications. The most efficient traditional memory management algorithms are best-fit,
worst-fit. In the experiment section, we compared them with our proposed algorithms in
section 2. One of the main differences between memory management for smart home
applications and general computer applications memory management in that the first one
takes into account the priority of the application and subservices and the dependencies among
the different services or bundles.

Vidal et.al. [19] addressed QoS in home gateway, they proposed a flexible architecture for

managing bandwidth inside the home; however they have not addressed memory
management in home gateways. In [24] we addressed memory management in home gateway
but this work did not take priorities of the applications into consideration. To the best
knowledge of the authors there is no study related to the memory management in the context
of smart home applications. Ali et.al. [8] proposed architecture based on OSGi for wireless
sensor network where data is processed in distributed fashion. They showed how to execute
simple database queries like selection and join in a distributed fashion. [17] addresses
protocol heterogeneity, interface fragmentation when connection several devices to OSGi-
based gateway at home. The paper describes different scenarios and challenges for providing
pervasive services in home applications.

6. Conclusions

 This paper studied the problem memory management in the context of smart homes. One
of the main differences between our problem and the traditional memory management is the
priority of the applications and the dependencies among different services.

We proposed two algorithms; the first one is the Relative Weights algorithm that uses
weight vector to represent the priority between applications. Furthermore subservices inherit
the priority of the parent application. The second one is the Strict Priority algorithm, which
assumes that high priority service is more important than any number of low priority services.
We compared the proposed algorithms with the traditional memory management algorithms
like best fit and worst fit. Simulation results indicate that RW and SP are much better than
best fit and worst fit in terms of the total number of services kicked out and their priorities. At
the same time, the proposed algorithms execution time is comparable to the execution time of
the best fit and worst fit. In the future, we will study the optimal solution for the memory
management problem within the above constraints.

References

[1] Zigbee Alliance: Zigbee specification: Zigbee document 053474r06 Version 1.0" (2004)

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

39

[2] Watanabe, K., Ise, M., Onoye, T., Niwamoto, H., Keshi, I.: An Energy-efficient Architecture of Wireless
Home Network Based on MAC Broadcast and Transmission Power Control. In: IEEE Transaction on
Consumer Electronics, vol. 53, no. 1, pp. 124—130 (2007)

[3] King, J., Bose, R., Pickles, S., Helal, A., Vander Ploeg, S., Russo, J.: Atlas: A Service-Oriented Sensor
Platform. In: The 4th ACM Conference on Embedded Networked Sensor Systems (Sensys), Boulder,
Colorado, USA (2006)

[4] Helal, A., Mann, W., El-zabadani, H., King, J., Kaddoura, Y., Jansen, E.: Gator Tech Smart House: A
programmable pervasive space. In: IEEE Computer, vol. 38, no. 3, pp. 50—60 (2005)

[5] Lee, C., Nordstedt, D., Helal, A.: OSGi for Pervasive Computing. In: The Standards, Tools and Best Practice
Department, IEEE Pervasive Computing, A. Helal, Dept. Editor, vol. 2, no. 3 (2003)

[6] Maples, D., Kriends, P.: The Open Services Gateway Initiative: An introductory overview. In: IEEE
Communication Magazine, vol. 39, no. 12, pp. 110—114 (2001)

[7] Jansen, E., Yang, H., King, J., AbdulRazak, B., Helal, A.: A context driven programming model for
pervasive spaces. In: The 4th International Conference on Pervasive Computing (2006)

[8] Ali, M., Aref, W., Bose, R., Elmagarmid, A., Helal, A., Kamel, I., Mokbel, M.: NILE-PDT: a phenomenon
detection and tracking framework for data stream management systems. In: Proc. of the Very Large Data
Bases Conference (2005)

[9] Sun Microsystems Inc.: Jini Architectural Overview ", http://www.jini.org/
[10] Sommers, F.: Dynamic Clustering with Jini Technology,

http://www.artima.com/lejava/articles/dynamic_clustering.html
[11] Microsoft Corporation: Universal Plug and Play Device Architecture Reference Specification, Version 2.0,

http://www.upnp.org/
[12] Jain, K., Vijay V. Vazirani: Approximation algorithms for metric facility location and k-Median problems

using the primal-dual schema and Lagrangian relaxation. In: Journal of the ACM (JACM), vol. 48, Issue 2
(2001)

[13] Silberschatz, A., Peterson, J.: Operating System Concepts, Addison Wesley (1989)
[14] The OSGi Service Platform Release 4 Core Specification Ver 4.1, http://bundles.osgi.org/browse.php
[15] Binstock, A.: OSGi: Out of the Gates. Dr. Dobb Portal (2006)
[16] Ryu, I.: Home Network: Road to Ubiquitous World. In: International Conference on Very Large Databases

(VLDB) (2006)
[17] Bottaro, A., Gérodolle, A., Lalanda, P.: Pervasive Service Composition in the Home Network. In: The 21st

International IEEE Conference on Advanced Information Networking and Applications, Niagara Falls,
Canada (2007)

[18] Margherita2000, The first washing machine on the Internet, http://www.margherita2000.com/sito-
uk/it/home.htm

[19] Vidal, I., Garc´ıa, J., Valera, F., Soto, I., Azcorra, A.: Adaptive Quality of Service Management for Next
Generation Residential Gateways. In: The 9th International conference on Management of Multimedia and
Mobile Networks and Services, Irelanda, Dublin (2006)

[20] Ishihara, T., Sukegawa, K., Shimada, H.: Home Gateway enabling evolution of network services. In: Fujitsu
Science Technical Journal, vol. 24, no. 4, pp. 446—453 (2006)

[21] Ishihara, T.: Home Gateway Architecture Enabling Secure Appliance Control Service. In: The 10th
International conference on intelligence in network (ICIN’06) (2006)

[22] Garey, M., Johnson, D.: Computers and Intractability, Freeman, New York (1979)
[23] Johnson, D.S., Niemi, K.A.: On Knapsacks, partitions, and a new dynamic programming technique for trees.

In: Mathematics of Operations Research, vol. 8, pp. 1—14 (1983)
[24] Kamel, I., Chen, B.: A Novel Memory Management Scheme for Residential Gateways. In: Special issue on

Intelligent Systems and Smart Homes, International Journal Information System Frontiers, Springer (2008)

International Journal of Multimedia and Ubiquitous Engineering

Vol. 5, No. 1, January, 2010

40

