
International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

37

Possibilities and Limitations of Context Extraction in Mobile
Devices: Experiments with a Multi-sensory Personal Device

Tetsuo Yamabe and Tatsuo Nakajima

Dept. of Computer Science, Waseda University
{yamabe, tatsuo}@dcl.info.waseda.ac.jp

Abstract

This paper describes a context extraction framework for a mobile device that equips a
variety of sensors. The framework captures context about a user and her surrounding
environment; the information is used to adapt the behavior of applications running on the
mobile device. Our framework adopts the blackboard architecture to execute multiple
analysis modules that analyze signals from respective sensors. Respective modules implement
different algorithms to complement each other's results to retrieve accurate high-level
context. Based on experiments with a sample application, we evaluate the feasibility of the
framework and point out the possibilities and limitations of context extraction in mobile
devices.

Keywords: context awareness, mobile computing, software framework, sensors

1. Introduction

Within the past decade, mobile devices (e.g., PDA, mobile phone) have evolved with
significant improvements in system performance, battery life, user interface design and
wireless communication capability. A variety of feature-rich devices (e.g., smart phone) have
been released into market and people can enjoy attractive mobile services (e.g., internet
browsing, route navigation) anywhere they want. Mobile devices support our social activities
today and the mobile computing technology has already been pervasive in our daily lives.

One important technology trend in the mobile computing evolution is sensors. Various
sensors such as GPS receivers, accelerometers and capacitive touch sliders are incorporated to
a mobile device, in order to enhance its user interface and functionality. Sensors have been
originally used for monitoring the internal states of device (e.g., temperature, battery
condition). In these recent years, however, the progress of miniaturization and low cost
production of sensors have diversified the purpose; built-in sensors also cover user-oriented
usages and applications. In other words, mobile devices have become able to perceive the
external world, and they have been reaching the vision of context-awareness [11].

Since mobile devices are very personal and close to users, they are expected to play an
important role in ubiquitous computing environments [4,6]. Services can recognize context of
a user and her surrounding environments with analyzing collected sensor data [16]. However,
to date, sensors have been mainly used for detecting primitive context that relates to the
mobile device itself (e.g., posture, motion). To implement richer context awareness, useful
sensors have to be identified in empirical studies. Also it is important to discuss effective
sensor deployment strategy upon the experiments.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

38

In this paper, we introduce a multi-sensory mobile device named Muffin. Muffin equips
fifteen kinds of sensors to sense several types of contextual quantity such as acceleration,
orientation, air temperature, a user's heart rate and so on. Muffin is a very unique device in
the world, since it has been developed under a grand concept - “implement as many different
kinds of sensors as possible into a PDA sized box”. Thus Muffin is a good prototype to
perform empirical studies that aims to investigate sensors' characteristics and possibilities in
context extraction process.

Empirical studies with Muffin showed practical issues in the mobile context extraction; the
validity of sensor data and its analysis algorithms is not stable due to mobility. For example,
biological sensor data are available under some limited conditions (e.g., “at a user's hand”).
The mobility diversifies use cases of mobile device and we have to select an available sensor
set according to the situation. On the other hand, advantages of the multi-sensory device
were also identified; context can be detected in multiple ways with changing combination of
sensors and analysis algorithms.

We have developed a software framework named Citron to utilize the advantages of multi-
sensory mobile device. Citron supports parallel context analysis by employing the blackboard
architecture [15]. Software APIs are offered to develop context analysis modules so that
developers can easily monitor interesting context. Also we have developed a sample
application on top of Citron and evaluated its feasibility. Based on Muffin and Citron
development experiments, we discuss possibilities and limitations of context extraction in
mobile devices.

In Section 2, we identify characteristics and requirements for realizing context-awareness
on mobile devices. In Section 3, we introduce Muffin and point out some difficulties in
mobile context extraction. In Section 4, Citron framework is introduced and a sample
application is shown in Section 5. In Section 6, feasibility of our approach is evaluated and
we conclude this paper in the final section.

2. Context extraction with mobile devices

Mobile devices play a particularly important role in ubiquitous computing environments
[13]. Like a partner, people carry them most of the day and use them very frequently in daily
scenes. From the interaction point of view, they are medium between a user and context-
aware services. Through the device, the user can access several services running in the
background. Also the services can display information with or without interactive actuation
(e.g., vibration, make sound and light) through the device. Considering from a context
extraction aspect, mobile devices are expected to act as a monitor of a user. With logging
sensor data and/or interaction history, context of the user can be inferred. It contributes to
make the services context-awareness. Thus context extraction with mobile devices is one of
key research theme in ubiquitous computing research.

At the early stage of context extraction from mobile devices, location and time information
are the main resource of context [1]. To identify the location, GPS receiver is used in outdoor
environments and other location systems are used to support indoor positioning [10]. Device
status (e.g., network connection) and static personal information (e.g., name) are also
processed as additional context resource. Since sensitivity is limited, however, additional
sensors are required to extract more complex context.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

39

Furthermore mobile devices' mobility causes two critical issues in the context extraction
process. One is physically limited space where sensors can be incorporated. Even though
detectable context heavily depends on equipped sensors [2], available sensors on a mobile
device are limited due to its portable small package. The other is the dynamics of mobile
environments. Since mobile context (e.g., a user's activity, location) changes continuously, it
is difficult to track the transition with poor processing power. Thus some limited sensors have
been attached for limited context extraction in traditional researches.

The most frequently used sensor on mobile context extraction is accelerometers. An
accelerometer is cost efficient and sufficiently small to be incorporated into mobile devices.
Furthermore acceleration data is effective to recognize a user's activities (e.g., walking,
running, walking up/down stairs) and motion (e.g., shaking, rotating, knocking on) [8,12].
Microphones are second-popular sensor after accelerometers, since ambient noise is useful to
infer the place where a user exists (e.g., meeting room, restaurant, on the street) [6,9]. Also
microphones are used to recognize speaking or talking [12]. Lastly environmental sensors are
commonly used on a mobile device; light and temperature sensors are used to extract
environmental and a user's context [5].

Due to the issues, however, it has not been sufficiently discussed what types of sensors are
useful for mobile context extraction. Also it has not been clarified what kind of context can be
efficiently extracted from sensors on mobile devices. In the next section, we introduce Muffin
that is a unique mobile device in terms of the unparalleled sensitivity. Based on preliminary
experiments on Muffin, we point out practical issues in the context extraction process, and
identify requirements to utilize the advantages of multi-sensory mobile devices.

2.1. Related work

Hinckley et al. have added multiple sensors to a handheld PDA for enabling interactive
user interface [7]. Developed device has an IR the proximity range sensor for measuring the
proximity to a user, a touch sensor for detecting whether a user is holding it, and two axis
accelerometers for detecting its tilt. Extracted context is the basic state of device and used
only for user interface extension. A static set of context was analyzed, and context extraction
over multiple sensor data was not discussed.

Siewiorek et al. have developed SenSay, which is a context-aware mobile phone for
recognizing interruptible states [12]. Five kinds of sensors (i.e., voice microphone, ambient
noise microphone, accelerometer, temperature sensor and visible light sensor) are mounted on
a sensor box. SenSay extracts sensor data from the box and it decides the activity of a user
(i.e., uninterruptible state, active state, idle state and normal state). It is similar to our work at
the point they inferred a user's state from multiple extracted context. However flexible
context extraction on different context was not discussed.

Gellersen et al. have proposed TEA (Technology Enabling Awareness) approach and they
incorporated sensors into a mobile phone [6]. The TEA sensor board equips various kinds of
sensors, such as a light sensor, microphone, CO-sensor, IR sensor, accelerometer and so on.
They proposed preprocessing architecture called cue to reduce the analysis cost on context
extraction. The output of each cue is classified into clusters by self-organizing map. Their
approach is similar to ours, since abstract context is retrieved by stepwise approach and
sensor data is processed in multiple ways. However non-exclusive context representation and
parallel context analysis were not discussed.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

40

Laerhoven et al. have shown a practical example of multiple interpretations of the same
sensor data [8]. They created a wooden cube with a sensor module as a tangible input device
and put an accelerometer into it. Then they extracted “gesture'', “orientation'' and “top side''
from acceleration data with different analysis algorithms. Expanding analysis algorithms is
more efficient for embedded devices rather than adding more sensors in terms of power
consumption. Thus we take the approach to extract some of the basic states of Muffin.

3. Preliminary experiments with Muffin

3.1. Muffin: a multi-sensory personal device

Muffin is the prototype of mobile device for studying context awareness. It was developed
in the collaboration work with Nokia Research Center. The significant characteristic of
Muffin is its sensing capability: thirteen kinds of built-in sensors in the PDA sized box and
two kinds of externally attached sensors are available (Figure 1).

The sensors can be roughly divided into four groups. First group is environmental sensors:
an air temperature sensor, a relative humidity sensor and a barometer. Second group is
physiological sensors: an alcohol sensor, a pulse sensor, a skin temperature sensor and a skin
resistance sensor. Third group is motion/location sensors: a compass/tilt sensor, a 3D linear
accelerometer, a grip sensor, an ultrasonic range finder and a GPS receiver. The ultrasonic
range finder and the GPS receiver are externally attached as optional sensors. Last group is
remaining sensors: an RFID reader, front/rear cameras and a microphone. Linux operating
system runs on Muffin, so each sensor can be accessed as a device file (e.g., /dev/AccelX).
Also Muffin equips ordinary user interfaces (e.g., touch screen, micro joy stick, microphone,
vibration motor) and connection interfaces (e.g., IrDA, Bluetooth, wireless LAN, USB port).

3.2. Context-awareness on Muffin

Muffin has so many kinds of sensors that it can quantify several kinds of physical
phenomena. Table 1 shows examples of context that could be extracted from Muffin's
sensors. In the table, context is divided into three categories based on its subject: Muffin
terminal, a user, and environments.

Figure 1. Muffin terminal and available sensors

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

41

Table 1. Examples of context that could be extracted from Muffin’s sensors

Class Description Sensor

Muffin terminal’s context

Motion
Moving speed

3D accelerometer, ultrasonic range finder
Trajectory

Posture
Top side

3D accelerometer, digital compass Tilt
Orientation

Placement At a user’s hand Skin resistance sensor, grip sensor
User context

Activity
Stationary state (e.g., standing, sitting)

3D accelerometer, ultrasonic range finder,
digital compass

Moving state (e.g., walking, running,
going up/down stairs)

Geographical
information

Location GPS receiver
Orientation Digital compass

Physical
condition

Stress level
Skin resistance/temperature sensor, pulse
sensor, grip sensor

Alcoholic level Alcoholic sensor

Emotion
Exciting

Skin resistance/temperature sensor, 3D
accelerometer, grip sensor, pulse sensor

Surprising
Fearing

Environmental context

Air condition
Air temperature Air temperature sensor
Air humidity Relative humidity sensor
Air pressure Barometer

Sound
Ambient noise

Microphone
Talking voice

Based on this classification, we performed preliminary experiments in order to confirm
feasible cases. As a result, we found important points and design issues in the context
extraction with Muffin as follows.

Muffin: Muffin terminal's context could be extracted accurately, because used sensors
output valid data. Also the sensors are so responsive that context can be analyzed in real time.
Furthermore Muffin's state can be clearly classified into exclusive classes, so that simple
algorithms such as threshold analysis could be applied. For example, Muffin takes either “at
user's hand'' state or “not at a user's hand'' state at a certain moment, and it can be analyzed by
simply comparing grip sensor data with threshold value.

User: There are three important issues in the process of user context extraction. The first
issue is the availability of sensors and context analysis algorithm. User context frequently
changes in mobile computing environments, so available sensors and algorithms also change
accordingly. In order to extract user context, a user has to carry Muffin in some ways.
However, available sensors and algorithms change according to the position or situation in
which Muffin is used. For example useful analysis algorithm for detecting “standing or

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

42

sitting” with acceleration data changes according to Muffin’s context: whether Muffin is held
or waist-mounted. Also if it uses an ultra range finder to correct analysis results by measuring
the distance from floor, the validity of the sensors also changes.

The second issue is the delay caused from time-consuming context extraction process. In
the previous example, detecting “sitting'' state is easy at five minutes after the user actually
sits. To detect the event instantaneously, we need to analyze the wave pattern of sensor data
just in a few hundred milliseconds. This issue should be discussed also about other sensing
domains, such as emotion awareness. To retrieve valid physiological sensor data, Muffin has
to be grabbed by a user's hand. However, short-term sensor data is not sufficient to recognize
physiological context. For example sensor data collected from a skin temperature sensor
changes very slowly, and sensor data from a pulse sensor changes too rapidly. In other words
it is necessary to log the average of extracted sensor data and compare them in the enough
span of time.

The last issue is the complexity and ambiguity of context. The definition of complex
context, such as angriness or feeling of hunger, changes according to situation and
application. For example the meaning of loud voice differs in different situations (e.g., “in the
meeting room”, “while talking with friends”). To appropriately recognize context, further
information about a user (e.g., location, activity) is required in addition to sensor data (e.g.,
microphone).

Environment: Environmental context such as air temperature directly relates to raw
sensor data, so it is not difficult to calculate them. However, Muffin gets hot internally as
time goes on, and the heat affects environmental sensors. As a result of that, sometimes
measurement does not work and collected sensor data become unuseful. This problem arises
from mechanical design, so we should refine the placement of sensors in Muffin and protect
them from the heat affect.

3.3. Design issues in context extraction process

We have pointed out practical difficulties in mobile context extraction. Even about simple
states such as “standing” or “sitting”, mobility affects the availability of sensors and analysis
algorithms. In physical condition or emotion sensing cases, such difficulties become
increasingly prominent, because the complexity of context increases. Therefore we should go
back to consider simple context extraction cases, and then discuss about design issues for
effective and robust context extraction with Muffin.

At first, complex context should be represented as a combination of other simple context.
If the complex context can be decomposed into primitive one like Muffin's activity, it
becomes easy to reconstruct them and represent higher abstract context. This approach is also
important in terms of decreasing the ambiguity of context. Next, we should observe physical
phenomena from multiple aspects of view. In order to increase the quality of information,
additional sensor data or context are required. In addition, alternative context analysis
algorithms should be prepared to ensure robust context extraction, because required sensors
could suddenly become unuseful as described in Section 3.2.

This approach also contributes to avoid the time-consuming process issue. In some cases,
optional sensors or alternative analysis algorithms are more effective to recognize context
than a default approach. For example an ultrasonic range finder is useful to detect whether a
user sit down, in the case that she is holding Muffin and the sensor can measure the distance

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

43

from floor. While one sensor data offers multiple meanings, one context can be recognized in
multiple ways.

At last, it is required to specify relationship and dependency among decomposed context.
Our experiments show dependency relations among context. For example, available analysis
algorithms or sensors change according to the situation, because there are several styles to use
Muffin. In Figure 2 possible three cases of context dependency are identified. These
relationships are classified based on a hierarchical context modeling. The resources are inputs
(i.e., context or sensor data) to context analysis modules. The context analysis modules work
for the extraction of predetermined context with analysis algorithms.

The case a) is a basic hierarchical context abstraction with the combination of Resource A
and Resource B. The case b) and the case c) are its variations. In case b), context is mainly
represented as a result of Resource A processing. Resource B is supplementary used to
configure the analysis module’s algorithm. In the case c), context is represented as a
processing result of Resource A or Resource B. When the availability of one analysis module
is not sufficient, other alternative module works instead of the original one.

As a result of the discussion, design issues in context extraction with Muffin have been
pointed. They are not separated issues, but related to each other as shown in Figure 3. In
the figure, there are four basic context that represent Muffin's context: “held or not'', “top
side'', “moving or stop” and “activity”. Every subject takes an exclusive states and the state of
Muffin can be clearly classified into one of them.

However the relationship among context is non-exclusive, so more complex context can be
represented with a context relationship as described above. For example, if the display of
Muffin turns up (“top side”) and a user holds it (“held or not”), the user might look into
Muffin's display (“under observation or not”). This is one of the context relationship
represented as the case a).

In order to extract a wide variety of context, one sensor should be analyzed from multiple
aspects of view. In Figure 3, three different analysis modules analyze acceleration data, and
it is processed into different context and meanings. Furthermore context is also observed
from multiple viewpoints. In the figure, “Activity” is recognized from two different sensors:
accelerometer and ultra range finder. One of them is selected according to the availability of
sensors. This example shows the case c) that dynamically changes its analysis module and

Figure 2. Relationship and dependencies among context

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

44

required resources. Also we can find the case b): the analysis module of “walking or running
or not” changes its threshold according to the posture of Muffin terminal.

We have refined this context-processing diagram into a software framework named Citron,
which offers a software API for context analysis module development. In Section 4, we
introduce Citron architecture and its features.

4. Citron: context information acquisition framework for Muffin

4.1. System architecture

To implement the design issues discussed in Section 3.3, we implemented:

1. A context analysis module framework that allows developers to specify relationship
among modules.

2. A shared space for module communication that stores extracted context.

In this implementation, we employed the blackboard architecture to coordinate context
analysis modules. Furthermore we defined each context analysis module as a worker for
exclusive context extraction.

The blackboard architecture is a data centric processing architecture that has originally
been developed for speech understanding and artificial intelligence. There are one shared
message board and multiple worker modules for collaborative data analysis. Each module
reads information from the message board as a resource, and after processing the data it
writes the result to the board. Thus module communication is established without the
knowledge about other modules. Furthermore extracted data are analyzed and complimented
in the communication process.

To implement the blackboard architecture, we adopt tuple space based programming model
[3]. The tuple space is one of implementations for inter-process communication among

Figure 3. Context-processing diagram with the design issues

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

45

independent processes. The tuple space refines a shared space with a very flexible data type
called tuple, and it enables applications to search tuples with a template-based query. The
important characteristics of the tuple space based system are 1) loose coupling of worker
modules, 2) information sharing among worker modules and 3) flexible data representation.

Especially in ubiquitous computing environments, devices and services should work
without specific knowledge (i.e. IP, port) about others, since the environment dynamically
changes. Moreover context for several applications could be represented in a unified format
because of tuple’s flexible data type. Winograd discussed the characteristics and trade off
between the blackboard architecture and other frameworks on the purpose of multi-process
coordination [15]. We have also employed the blackboard architecture for designing Citron,
because it is an adequate architecture to implement the design issues. Figure 4 shows the
overview of Citron architecture.

Citron consists of two software components: Citron Worker and Citron Space. Citron
Worker is a sensor data analysis module. Each worker collects sensor data from
Muffin's sensors and it retrieves context from Citron Space. Also each worker takes
responsibility on single context extraction. For example, a worker that recognizes “held
or not” observes the value of a skin resistance sensor in order to detect “held” or “free”
with threshold analysis.

Citron Space is a tuple space and it stores tuples that represents context analyzed by Citron
Workers. Citron Space handles data management requests from both Citron Workers and the
applications running on top of Citron. Context is represented as a set of meta-information,
such as subject, state and time. Detailed explanation will be given in Section 4.2.

There are two internal functions (i.e., Sensor abstraction function and Citron Space
function) in the system, and a software API is offered to develop external applications. The

sensor abstraction function is just a simple wrapper function for accessing device files of

Figure 4. Citron architecture overview

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

46

sensors, thus Citron Workers extract sensor data with this function. Citron Space functions
allow accessing Citron Space with three types of methods as shown in

Table 2.

Table 2. Brief description of Citron Space functions

Method Description

put Insert context into Citron Space.
read Read context from Citron Space with template matching.
get Read and remove context from Citron Space with template matching.

Lastly Citron API is published to enable applications to retrieve context from Citron Space.
More details are described in Section 4.3.2.

4.2. Context representation

In Citron architecture, context is represented as a set of meta-information:

Context := {ID, Subject, State, Time, Lag, Interval}

Also Table 3 explains each meta-information that makes up tuples.

Table 3. Explanation of Tuple fields and corresponding meta-information

Field Description

ID Citron Worker’s unique identifier
Subject Subject of the context (e.g., “orientation”)
State Verb of the context (e.g., “NW”)
Time Time when the context is analyzed
Lag Time lag in the analysis
Interval Update interval of the context

For example context that is written as “a user is not walking (i.e., just standing)” is
represented as follows:

{“ID_walk”, “walking”, “at_rest”, 1107005245, 0, 100}

In this case, the state could be either “walking” or “at_rest”. On the other hand the subject
field is fixed, so Citron Worker extracts only one specified context. The lag and interval field
are the meta-information of context, which are inherent in its analysis algorithm. Some
analysis algorithms such as FFT analysis require a certain amount of data and time for
buffering. Thus the lag field shows the time lag to applications so that it can be handled in
appropriate manner. The interval field shows the freshness of context. Also the ID field
specifies the identifier of Citron Worker that created the tuple. Tuples in Citron Space are
updated every its polling interval by the Citron Worker that is associated with same ID. Thus
applications can examine the freshness of context by looking up the interval field and the time
field.

4.3. Implementation

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

47

Citron is written in C language, and it offers 1) a framework for Citron Worker
development and 2) software API for application development.

4.3.1. Citron Worker framework: This framework offers the abstraction of context
analysis module so that developers can easily implement Citron Workers. The framework
provides common functions of context analysis modules, such as connection management to
Citron Space and sensor data retrieval from Muffin. Thus developers can concentrate on
implementing analysis algorithms. When Citron Worker is initialized, the specification of the
analysis, such as the type of sensor and the subject of context, has to be declared. First, a
developer has to set value to the tuple fields. Then Citron Worker starts to run and invokes an
analysis function at every specified interval. This analysis function executes the analysis
algorithm with retrieving sensor data and context. The analysis result is returned as context
and the Citron Worker shares it in Citron Space. In the current implementation, Citron
Worker only puts the result of analysis when the state of context is changed, in order to
reduce the load of Citron Space.

4.3.2. Citron API: Applications running on top of Citron access to Citron Space with
invoking below functions. Context_t is the data structure implementing the context
representation shown in Section 4.2.

 char* libcitron_get_state(char* subject);

 context_t* libcitron_get_context(char* subject);

 int libcitron_add_event_handler(const char* subject, void (*handler)(char*));

 void libcitron_remove_event_handler(void);

Citron Space is implemented based on LinuxTuples, which is a tuple space implementation
on Linux operating system [14]. Originally tuple space allows flexible wildcard-based query
for tuple search, but in Citron it is wrapped as a simple function: only the subject field is used
as a key for search. This design is sufficiently useful for many applications and it decreases
the workload of Citron Space. Furthermore Citron API also provides callback function
management interface. Developers can register/remove callback functions to handle state
change events in Citron Space.

We have developed several Citron Workers and context-aware applications to evaluate the
Citron framework. In the next section, we introduce one sample application and Citron
Workers developed for the application.

5. Sample application

We developed a sample context-aware application named “RouteTracer”, which uses a
user's context extracted by Muffin. This application displays the track of walking route in real
time with a user's state. RouteTracer also shows walking speed and the duration that a user
stayed at the same point. The walking speed is divided into five levels and it can be
distinguished with different colors. The point where the user stopped is represented as a circle
and its radius becomes larger as time advances. Figure 5 shows a sample map image
generated by RouteTracer (right) and the user's states that are used to draw the map (left).

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

48

In this application, three kinds of context are required: “walking state”, “walking direction”
and “walking speed”. To draw the track of route, at least “walking direction” and “walking
state” are necessary. The “walking speed” context is optional, however, it is necessary to
speculate the distance for creating more accurate map. The “walking speed” context is
inferred with the activity level of Muffin. In preliminary experiments we found that the
activity correlates with the walking speed of a user, while she is walking with looking
Muffin’s display. Thus “watching” context is required to determine walking speed. Six
Citron Workers run to extract corresponding context in total: “orientation”, “walking”,
“activity”, “watching”, “holding” and “top side”. Figure 6 shows the relationship among
context required by RouteTracer application.

The “orientation” worker retrieves sensor data derived from a compass, and then it
analyzes which orientation Muffin is heading. This orientation can be regarded as the
direction of walking, when a user is watching Muffin. The “watching” worker recognizes
whether the user is watching Muffin or not, based on a result of “holding” and “top side”
worker analysis. If the user holds Muffin and the display of Muffin looks towards the user’s
face, the “watching” worker recognizes the state as “the user is watching Muffin”. The
“holding” worker analyzes sensor data derived from a skin resistance sensor, and the “top
side” worker analyzes gravity acceleration. The “activity” worker also retrieves acceleration
data and it recognizes the activity level of Muffin with FFT analysis. This worker requires
context generated by the “top side” worker, since the axis for motion detection changes

Figure 5. RouteTracer

Figure 6. Required context and Citron Worker in RouteTracer

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

49

according to the topside of Muffin. As described above, activity status is divided into five
levels and treated as the walking speed. The “walking” worker decides whether the user is
moving or resting with acceleration data: it is used as the “walking state” in RouteTracer.

It is also possible for RouteTracer to recognize the walking state only with “walking
speed”. Performance in the analysis is not good, however, because the “activity” worker has
to take about 6.4 seconds, in order to collect 128 samples into buffer and analyze them at
every 50 msec. On the other hand, the “walking” worker analyzes the user’s walking status
with simple zero cross detection in real time. Thus it is expected that the parallel analysis
using these two Citron Workers enable RouteTracer to be more responsive to recognize the
walking state. In the next section, we evaluate Citron with measuring the overhead in
invoking API. Also we compare the accuracy of map drawn by RouteTracer with changing
Citron Workers.

6. Evaluation

6.1. Performance

We have measured the overhead in accessing Citron Space with invoking Citron Space
functions described in Section 4.1. The dependency relation between the execution overhead
and the number of running Citron Workers is also evaluated. Each worker invokes a Citron
Space function ten times, and the execution time is measured as the mean time of all workers
that run in parallel. Figure 7 shows the result of experiment.

Figure 7 clarified that the overhead in Citron Space access increases as the number

of Citron Worker increases. Especially the execution time remarkably increases when
the number of Citron Worker goes over eight. Also due to template-matching search,
“read” and “get” functions recorded longer execution time than “put” function.

Figure 7. Relationship between execution time and the number of running
k

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

50

6.2. Experiences with the sample application

In this section, we evaluate the effect of Citron Worker coordination using RouteTracer.
We compared drawn maps in three cases: using only “walking state” (case 1), using only
“walking speed” (case 2), and using both for hybrid analysis (case 3). Figure 8 shows the
walking route in the left side. A participant walks the route with holding Muffin in her
hand. The participant was instructed not to pay attention to the display in order to
remove the effects of intentional map creation. To clarify Citron Workers’ effect, the
participant intentionally changes walking speed. The maximum walking speed in this
examination is about 5 km/h and normally it is 3 km/h. Also two stop points were
instructed on the route, so the participant had to stop for 10 seconds at the points.

Figure 8 also shows the result of each examination case. Figure a) is drawn with the
time of walking and its orientation. Turning point and time that the participant has stopped
can be clearly confirmed. This is because that the “walking” worker responds quickly when it
recognizes the walking status change. However the walking speed is not reflected, so the
length of each edge is inferred based on walking time. As contrasted with Figure a), Figure b)
speculates the walking distance based on the walking speed. As a result, the drawn map
becomes more similar to the actual map than Figure a). Figure b) also shows that the
“activity” worker could not detect the stop points, because 10 seconds are not sufficient time
for the FFT analysis to recognize the state change. Figure c) shows a more accurate map than
Figure a) and Figure b). This case exploits the advantage of each analysis method and it also
shows the effectiveness of hybrid context extraction with multiple types of analysis methods.
The stop points were detected clearly, and the shape of map is the most accurate.

7. Conclusion

In this paper, we have addressed possibility and importance of mobile devices in
ubiquitous computing environments. In order to clarify possibilities and limitations in context
extraction with a mobile device, we have introduced Muffin that is a prototype of multi-
sensory personal device. Based on preliminary experiments, we pointed out design issues and
proposed a software framework named Citron. A sample application was developed and
evaluated feasibility of our approach.

We found two further issues in the experiments. One is Citron's performance issue caused
from the blackboard architecture. Parallel context analysis with multiple sensors heavily

Figure 8. Walking route and drawn maps by RouteTracer in each experiments

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

51

burdens mobile devices. Thus we should optimize the performance and reduce the load with
re-designing Citron. Moreover it is assumed that the limitation of workable Citron
Worker heavily depends on the implementation of Citron Space. As described in
Section 4.3.2, Citron Space is implemented as a wrapper function of LinuxTuples. The
performance can be improved if the implementation is optimized for context
processing.

The other one is limitation of context extraction on Muffin. Most of physiological sensors
on Muffin require some constraints to be used, such as the position of a finger and the style of
holding, to measure valid data. Thus accuracy of such sensors changes so frequently
according to the situation. It follows that other sensor devices (e.g., wearable sensors) are
required as the alternative resource of context analysis. Citron can coordinate such remote
devices easily, since the blackboard architecture is suited to dynamically add/remove
knowledge resources and corresponding analysis algorithms.

Acknowledgement

Most of this work was conducted in the collaboration project with Nokia Research
Center Tokyo, and we thank them for great contributions on Muffin development and
fruitful discussions.

References

[1.] Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob Kooper, and Mike Pinkerton.

Cyberguide: A mobile context-aware tour guide. In ACM Wireless Networks, pages 421–433, 1997.
[2.] Michael Beigl, Albert Krohn, Tobias Zimmer, and Christian Decker. Typical sensors needed in ubiquitous and

pervasive computing. First International Workshop on Networked Sensing Systems (INSS) 2004, pages 153–
158, Jun. 2004.

[3.] N Carriero and D Gelernter. Linda in context. Communications of the ACM, 32(4): 444–458, Apr. 1989.
[4.] Guanling Chen and David Kotz. A survey of context-aware mobile computing research. Technical Report

TR2000-381, Dept. of Computer Science, Dartmouth College, November 2000.
[5.] Patrick Fahy and Siobhan Clarke. Cass – middleware for mobile context-
aware applications. In Second International Conference on Mobile Systems,
Appli- cations, and Services (MobiSys2004), 2004.
[6.] Hans W. Gellersen, Albercht Schmidt, and Michael Beigl. Multi-sensor context-awareness in mobile devices

and smart artifacts. Mob. Netw. Appl.,7(5):341–351, 2002.
[7.] Ken Hinckley, Jeffrey S. Pierce, Mike Sinclair, and Eric Horvitz. Sensing
techniques for mobile interaction. In UIST, pages 91–100, 2000.
[8.] Kristof Van Laerhoven, Nicolas Villar, and Hans-Werner Gellersen. Multi-level sensory interpretation and

adaptation in a mobile cube. In In Proc. of the third workshop on Artificial Intelligence in Mobile Systems
(AIMS), Ubicomp 2003, pages 111–117, 2003.

[9.] Jani Mantyjarvi, Johan Himberg, Petri Kangas, Urpo Tuomela, and Pertti Huuskonen. Sensor signal data set
for exploring context recognition of mobile devices. In Workshop: Benchmarks and a database for context
recognition in conjuction with the 2nd Int. Conf. on Pervasive Computing (PERVASIVE 2004), pages 18–23,
Apr. 2004.

[10.] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The cricket location-support system. In
Mobile Computing and Networking, pages 32–43, 2000.

[11.] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications. In IEEE Workshop on
Mobile Computing Systems and Applications, Santa Cruz, CA, US, 1994.

[12.] Daniel Siewiorek, Asim Smailagic, Junichi Furukawa, Neema Moraveji, Kathryn Reiger, and Jeremy Shaffer.
Sensay: A context-aware mobile phone. In Proceedings of 2nd International Semantic Web Conference
(ISWC2003), pages 248–249, 2003.

[13.] Mark Weiser. The computer for the twenty-first century. Scientific American, pages 94–104, Sep. 1991.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

52

[14.] Ware Will. Linuxtuples. http://linuxtuples.sourceforge.net/.
[15.] Terry Winograd. Architectures for context. HCI Journal, 2001.
[16.] Tetsuo Yamabe, Kaori Fujinami, and Tatsuo Nakajima. Experiences with building sentient materials using

various sensors. In In Proceedings of 24th International Conference on Distributed Computing Systems
Workshops, 2004.

Authors

Tetsuo Yamabe is a Ph.D. candidate at Distributed and Ubiquitous
Computing Laboratory in Waseda University. His research interests are
mobile computing, pervasive services with context awareness and
economic incentive design in persuasive technologies.

Tatsuo Nakajima is a professor of Department of Computer Science
and Engineering in Waseda University. His research interests are
distributed systems, ubiquitous computing, operating systems and
interaction design. He is currently a leader of Distributed and Ubiquitous
Computing Laboratory. (http://www.dcl.info.waseda.ac.jp).

