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Abstract 

Context-awareness has been recognized as an important enabler for pervasive computing. 
Our aim is to provide a thorough survey of the state of the art in context representation and 
reasoning in the field of pervasive and context-aware computing. The review is organized in 
sections according to the knowledge representation techniques applied in the work included 
in the survey and an overview of the requirements for context representation is provided. We 
conclude the paper with a discussion of a number of identified limitations in the current 
solutions and point out opportunities for further research. 
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1. Introduction and scope 

Pervasive computing is a vision of personal computing where future living environments 
are permeated with unintrusive, seamlessly operating services readily available for the user 
[1]. To fully realize this vision these services need to adapt to the current situation of the 
environment, including the social situation of the user. Systems that utilize information about 
the situation of either its users, the environment, or the state of the system itself to adapt their 
behavior are called context-aware systems [2, 3].  

To scope the paper, we note that realizing context-awareness has proven to be a difficult 
problem on many levels: First, defining what constitutes context information has been studied 
extensively, and several definitions have been suggested [3-9]. Some definitions approach 
defining context as an abstract concept while others are rooted in the desire to be able to 
technically represent context information. This difficulty of definition overarches all research 
in context-awareness. Second, what and how should be adapted when the context changes and 
where do the context definitions and adaptation rules come from? These human-computer 
interaction problems are at least as challenging as the purely technical problems related to 
realizing context-awareness. Third, recognizing different contexts from sensor measurements 
and other information constitutes a large part of the research. Fourth, how to represent and 
process contexts, the related other knowledge, and adaptation rules? This technical problem 
has received considerable research attention and is what this review focuses on. 

Before focusing onto the fourth problem, we need to give an overview of work on the first 
problem; defining the meaning of context and constituents of context information have been 
recognized as difficult problems and context (sometimes “situation”) has been given a 
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number of definitions; for examples of conceptual definitions see [3, 6]. Exemplars of more 
technical definitions include [4, 5, 7-9]. By technical we mean that the definition can be easily 
applied to a practical context representation (encoding) and provides means to distinguish 
contexts from each other. By conceptual we mean defining what constitutes context, that is, 
what needs to be encoded [10]. In the scope of this paper we apply perhaps the most cited 
definition by Dey [3]: 
 

Context is any information that can be used to characterize the situation of an entity. 
An entity is a person, place, or object that is considered relevant to the interaction 
between a user and an application, including the user and applications themselves. 

 

The fourth problem, and this literature review, focuses on how context information and the 
related knowledge are represented and processed in state-of-the-art context-aware systems. 
Figure 1 illustrates three levels of context information processing with typically used methods 
and techniques in each layer. The arrows depict the flow of context information. On the 
bottom layer signal processing and machine learning techniques are used to recognize 
contexts and activities from sensor signals and other information.  

The middle layer is the core of context modeling, where a multitude of representation and 
reasoning techniques have been applied. The highly dynamic outputs of the bottom layer puts 
hard demands on the middle layer.  

The top layer deals with firing the context-dependent actions or adaptation. Applications 
use a context query language (CQL) [11] to access context information from context storages 
or providers. Query languages can be used to describe queries as well as subscriptions. The 
design, or choice, of the query language depends on the representation techniques used in the 
middle layer. The meaning of the queries must be well-specified because in the 
implementation the queries are mapped to the representations used in the middle layer. An 
important role of the middle layer and the query language is to eliminate direct linking of the 
context providing components to context consuming components. An early form of this was 
Dey’s context widgets [12]. This abstraction is important due to distribution and mobility 
(and often the ad hoc nature of networks) which may cause producers to appear and disappear 
dynamically [13]. Thus, the query language should support querying a context value 
regardless of its source. However, knowing the source of a value may be useful for the client 
in the case of finding the cause of an erroneous inference, for example, and can thus be 
included in the query response. It should be noted that since the CQL acts as a facade for the 
applications to the underlying context representation, the context information requirements of 
the applications are imposed as much on the query language as on the context representation 
and context sources. For detailed reviews of CQLs, see [11, 14]. Procedural programming is 
typically used on the top layer to create queries and to handle query responses, adapting the 
application according to context. In contrast, the context representation in the mid layer can 
be purely declarative.  

Considering the query languages, context-aware pervasive computing systems come close 
to the area of sensor networks, as query processing can be implemented also in a distributed 
fashion, without an actual database. Henricksen and Robinson [15] state that sophistication of 
supported queries characterizes the difference between the middlewares for sensor networks 
and context-aware systems; sensor networks typically provide means for trivial operators 
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such as min, max, and average, whereas the middleware for context-aware systems allow 
higher level queries.  

 In addition to context representation, the fourth problem considers processing context 
information. As knowledge representation techniques usually have an associated reasoning 
method, some of the context processing may be allocated to these default reasoning 
mechanisms. This means, for example, that stating a current user context explicitly may entail 
that the user is in other contexts that are determined through reasoning. However, it is well 
known that representation and reasoning are inherently tied together [16] and thus any 
expressive representation is computationally inefficient. Inference algorithms can be 
generally described using concepts soundness and completeness. As defined in [17], “sound 
inference algorithms derive only sentences that are entailed”, and “complete algorithms 
derive all sentences that are entailed”. If efficiency is our paramount requirement, then 
requirements on (some of) soundness, completeness, or expressiveness have to be relaxed. 
This survey focuses on the context representations, addressing computational characteristics 
of the associated reasoning methods, and the CQLs only in a general fashion. 

 
Figure 1. Layers of context information processing with examples of typical 

methods and techniques for each layer. 
 

Previous reviews of this topic have had somewhat different points of views than ours: 
Korpipää’s thesis contains a general review of information management and related 
architectures for context-aware systems [18]. Strang and Linnhoff-Popien propose a set of 
general requirements for representing context information and compare different approaches 
in the light of those requirements [19]. For a survey on using context as an organizing concept 
in problem solving in AI and other related disciplines, see, for example [20].  

We omit from the review detailed discussion of activity and context recognition (see 
Figure 1). Instead, the focus of the review is on processing higher level context knowledge 
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with formal representations deriving from Knowledge Representation and Reasoning 
(KR&R), a subfield of Artificial Intelligence (AI). Most of the work in context representation 
falls into this category. Nevertheless, other relevant representation techniques from the 
literature of context-aware computing are included as well. We consider context primarily 
from the view point of being an enabler for adaptability in human-computer interaction as in 
[3]. Thus, we exclude reviewing the more traditional view of dealing with context at the level 
of a logical theory, as in the work of McCarthy [21], that is, considering the truth of a formula 
in different contexts. The distinction is not sharp, however, and this will become evident 
throughout this survey.    

We aim to give an overview of the knowledge representation techniques used and to 
discuss their known limitations. In this paper we contribute a distilled discussion of the 
evolving field of context representation and reasoning as well as suggest directions for future 
work. 

This paper proceeds as follows. We synthesize a set of requirements for context 
representation and reasoning from related work in section 2. Section 3 is organized as 
subsections according to applied knowledge representation techniques. The survey findings 
are discussed in section 4. We present our conclusions in section 5. 
 
2. Requirements for context representation and reasoning 

Because context itself is quite a fluid concept it is hardly the case that a comprehensive set 
of requirements for context representation has been, or can be put forward. However, in this 
section we aim to synthesize a set of requirements for context representation and reasoning 
from the following sources: We combine our base set of requirements from [18] and [19]. 
This is done to have a common ground to compare the reviewed work against, even when the 
work at hand did not explicitly specify which requirements it targets.  

As expressiveness and efficiency are required in [18], we also incorporate the generic 
KR&R concepts soundness and completeness [17] to be better able to discuss all of these 
properties. Since the requirements and features from these different sources have some 
overlap, we have to some extent unified them to come up with a representative collection. In 
the following we present only a selection of requirements and features from the above 
sources, based on our subjective opinion of their relevancy. We suggest the reader turn to the 
original sources for more complete information. 

 
2.1. Representation 
 

2.1.1. Unique identifiers: Although this requirement seems self-evident, it is so 
fundamental to distributed systems that it should be explicitly mentioned. That is, for the 
system to be able to uniquely identify different contexts as well as entities in the real world 
domains the system deals with, unique identifiers in some scale are necessary. Furthermore, 
uniqueness enables the reuse of the representations without conflicts in identifiers. 

2.1.2. Validation: A context representation should allow validating pieces of data (or 
knowledge) against it [19]. This enables software components to ensure that data is at least 
consistent with its schema before performing any processing with it. 

 
2.1.3. Expressiveness: An expressive representation allows representing complex entities 

and relations, but is in mutual conflict with soundness, completeness, and efficiency of 
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reasoning [16] (see section 2.2.). Korpipää specifies efficiency and expressiveness as 
requirements for his context representation [18]. 
 

2.1.4. Uncertainty and incomplete information: Since much of context information is 
measured from the real world through imprecise sensors, the representation should allow 
encoding uncertainty of the values. If reasoning is involved, uncertainty of conclusions should 
follow from antecedents. Furthermore, the system should be able to deal with incomplete 
contextual information. Strang et al. [19] refer to the ability to represent “richness and 
quality” of context information as well as to deal with “incompleteness and ambiguity”. 
 

2.1.5. Simplicity, reuse, and expandability: In contrast to the demand for expressiveness 
mentioned in 2.1.3, a system should apply only as expressive representation as necessary to 
encode the domain knowledge. A simple representation promotes reuse and expandability. 
Simplicity, flexibility and expandability are among the requirements of context representation 
of Korpipää [18]. 
 

2.1.6. Generality: Generality of context representation refers to its ability to support all 
kinds of context information [18]. We think generality of a context representation is largely 
defined by its conceptual structure. Nevertheless, the expressiveness of a representation 
language used to encode context information also affects its ability to encode context 
information at different levels of complexity. 

 
2.2. Reasoning 
 

2.2.1. Efficiency, soundness, and completeness: Since context information is highly 
volatile, the ability to deal with dynamic knowledge updates is necessary for the context 
representation and reasoning system. Using the most expressive system that provides sound, 
complete, and efficient-enough reasoning under dynamic knowledge base updates is 
desirable. 
 

2.2.2. Multiple reasoning methods: Korpipää considers it important that multiple 
reasoning methods can be used with a representation [18]. This almost always implies that 
some of the other requirements for reasoning must be loosened. 
 

2.2.3. Interoperability: For comprehensive interoperability, contexts should be 
represented in a syntactically and semantically interoperable format to allow sharing and 
reuse of representations. The loosely coupled components of a context-aware pervasive 
computing system should conform to a common representation for message exchange. 
Moreover, the reasoning procedures should be standardized to ensure that different 
implementations of the procedures produce the same results. In other words, evaluated against 
the same set of axioms, a set of assertions should always produce the same conclusions. This 
implies that when a set of assertions represents a message, its receiver can derive the exact 
meaning the sender had encoded in the message. As a related requirement, Strang et al. [19] 
point out the need of “level of formality” for the representation. 
 
2.3. Analyzing the requirements 
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The aim of this section is to give an insight to the dependencies between the requirements 
in order to promote understanding of the problems in representing context knowledge.  

Deriving the requirements for generic context-aware systems’ knowledge representation 
and reasoning is difficult. Since the system should support applications which are not even 
known at system design-time, it is scarcely the case that the requirements for KR&R can be 
precisely derived. Due to this inherent problem the design of the KR&R system necessarily 
relies on vague and general requirements. A straightforward way to approach the above-
described situation is to design for the “average”, that is, derive requirements from a typical 
application. 

Due to the issue of generality of the requirements described above, it is difficult to know in 
which sense we want to improve the expressiveness. For example, in one application it may 
be important to be able to say “any of my friends” (existential quantification), while another 
application might benefit more from being able to deal with uncertainty.  

Moreover, special purpose procedural attachments [16] (pp. 138) can sometimes largely 
reduce inference costs when compared to a generic inference mechanism. An important sub-
requirement for context representation, related to both expressiveness and efficiency, is the 
support for retraction. Since contexts are usually recognized based on sensor measurements 
and new measurements may replace previous values, the previous measurements and the 
contexts derived based on the previous measurements should be retracted, as well as the 
context derivation repeated. This generally requires computing every conclusion again. A 
way to prevent some of the computation in rule-based systems is truth maintenance [22]. The 
cost is incurred as larger memory consumption. 

Simplicity refers to the ease-of-use and is somewhat conflicting with expressiveness. 
Especially, from the system design point of view it intuitively seems easier to encode the 
knowledge needed by a simple application in a less expressive, but simple representation than 
in an overly expressive representation, not providing real benefit for the particular application 
being designed. This is a trade-off that has to be made in favor of more complex applications 
utilizing the framework. 

A system may incorporate multiple associated inference methods operating on its context 
representation. For example, the system described in [18] supports this. The fact that in such 
systems the same representation has multiple interpretations and that the different semantics 
are necessarily encoded in the individual reasoners hinders interoperability. Of course, often 
there are many implementations of reasoners for a representation, all sound and complete. In 
this case only the computational requirements (space, time) vary, while the resulting 
conclusion set is identical.  

The congruency of inference conclusions is a basic requirement for interoperability. 
Nonetheless, this also implies a disadvantage: it strengthens “ontological commitment” [23], 
i.e., the more consequences are encoded as axioms in the representation, the more its clients 
are tied to dealing with the represented entities in the exact same manner. This is undesirable 
when only a few of the entities of the representation are of interest to the client. An example 
of how this problem can be tackled is the reuse of modules (instead of the whole ontology) of 
a Web Ontology Language (OWL) [24] ontology described in [25]. 

Having introduced context information and synthesized a set of requirements, in the next 
section we move onto reviewing the literature on context representation. 
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3. Context models and reasoning 

Winograd [10] notes that the context representation problem has two sides: 
 

The hard part of this design will be the conceptual structure, not the encoding. Once we 
understand what needs to be encoded, it is relatively straightforward to put it into data 
structures, data bases, etc.. The hard part will be coming up with conceptual structures 
that are broad enough to handle all of the different kinds of context, sophisticated 
enough to make the needed distinctions, and simple enough to provide a practical base 
for programming. 

As implied by the above quote, the context representation problem has two sides. We 
separate these as we go through the work in the following subsections. Since the focus of the 
recent research has been on the “encoding” (representation) of knowledge, we cover more of 
that work. To make the distinction clear, from here on we use the term context model 
analogously to a conceptual model. Respectively, we use the term context representation to 
refer to a context model represented using a particular knowledge representation technique.   

This section consists of subsections corresponding to the different knowledge 
representation techniques applied in the reviewed literature. Section 3.1 describes conceptual 
models that deal with understanding what constitutes context information and the features and 
categories of contexts. In section 3.2 we review work that applies logic programming. Section 
3.3 analyzes work applying ontologies and rules to representing context. Section 3.4 deals 
with systems using case-based reasoning. In section 3.5 we collect together work dealing with 
uncertainty of context information from all the above categories. 
 
3.1. Conceptual models and qualities of context information 

Figure 2. Context feature space1. 
 

                                                           
1 Reprinted from Computers & Graphics, Vol. 23, 6, A. Schmidt, M. Beigl & H. Gellersen, “There is more to 
context than location”, pp. 893-901, Copyright (1999), with permission from Elsevier. 
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By conceptual models we refer to models that deal with what constitutes context and 
conceptual structure of context. In addition, in this section we consider work that identifies 
qualitative features of context information. Some of the reviewed work does not provide 
encodings of the proposed models using any knowledge representation technique. 

One of the first attempts to explicitly model context information in context-aware 
computing is by Schmidt et al. [4]. Their approach is to model context using features, so that 
for each context there is a set of relevant features, where for each feature a value range is 
defined. Figure 2 (from [4]) illustrates this conceptual model. For example, physical 
environment, conditions, light, and level constitutes a path where level is the leaf node and 
has a concrete value. 

Korpipää et al. [26] present a context model based on that of Schmidt et al. [4]. The 
properties of their context structure are context type, context value, confidence, source, 
timestamp, and attributes. We come back to the encoding of this work in section 3.3. 

Gray and Salber [6] focus on dealing with the aspects of sensed context, as opposed to 
context information in general, which constitutes also of static information like user identity. 
Most of their work concerns what they call the meta-attributes of sensed context information. 
These are forms of representation, information quality, sensory source, interpretation, and 
actuation. The dominant attribute is information quality, which constitutes of coverage, 
resolution, accuracy, repeatability, frequency, and timeliness. For detailed descriptions of the 
attributes the reader is directed to the original paper. The authors do not propose a solution to 
a particular problem, but rather discuss how the features of sensed context should be taken 
into account in a design process. 

Perhaps the single most influential piece of work in the area of context-aware computing 
has been the Context Toolkit by Dey et al. [12]. The toolkit is based on a conceptual 
framework consisting of context widgets, interpreters, aggregators, services, and discoverers. 
In the framework widgets collect context information and interpreters process the information 
to provide more abstract context information. Aggregators assemble information that 
concerns a certain entity. Utilizing the context information, services can perform actions on 
the environment. Discoverers are used by applications to find the other components in the 
environment. Context representation in this conceptual framework is embedded into its 
components, mostly widgets. The authors introduce four categories of context information 
related to entities: identity, location, status (or activity), and time.  

In [27] the authors present a context model for an agent based middleware architecture. 
The context model is based on earlier work of one of the authors [28]. In the model, 
environmental state descriptions based on entities and their properties are called situations. In 
the situation model, states are connected with transitions. The transitions can be caused by 
changes in observed entities’ properties. To generalize the situations, they are described using 
generic roles and the entities are mapped to the roles according to their current property 
values. Moreover, situation descriptions contain relations that can be, for instance, Boolean 
comparison operator between values of a specific property of two or more entities. The 
authors note that this context model may seem not to be scalable, because the situation states 
will hardly capture all possible contexts. They further claim, however, that the situation 
model can be dynamically extended. 

Jang and Woo [29] propose a conceptual format of context messages. This format includes 
user identity (who), objects identity (what), location (where), time (when), user 
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intention/emotion (why), and user gesture (how). This message format is encoded as a text 
string.  

Gastelli et al. [30] propose a model similar to Jang and Woo [29] above, called “W4” 
(who, what, where, and when). Their system stores context as tuples of the W4 format in 
tuple spaces. The W4 imposes a common base structure to the data, but the tuple contents are 
simple encoded as strings. The first part of tuples denotes its type and the seconds the value, 
for example, “person:Gabriella”. 

Riva [31] describes a context representation based on key-value pairs and an associated 
SQL-like query language. An example is the triplet <noise=medium, light=natural, 
activity=walking> which defines the context type “walking outside”. Each such context item 
contain values for the type, timestamp, and the optional validity duration, source identifier, 
correctness, precision, accuracy, completeness, and levels of privacy and trust may be 
included. 
 
3.2. Logic programming 

The commonality in the works reviewed in this section is that the proposed context 
representations are based on a logic programming language. Some of them utilize other 
methods as well, but the above mentioned was considered an adequate reason for a paper to 
be classified under this category. 

In a project called Gaia, Ranganathan and Campbell have developed a predicate logic 
representation of context information [32] based on logic programming using XSB [33]. For 
each context in their model, there is a first order predicate the name of which describes the 
context type. A typical example they use is “Location (chris, entering, room 3231)”. In 
addition, logic operators, such as quantification, conjunction, negation, and disjunction can be 
used to combine the context predicates into more complex context descriptions. 
Quantification is always done over finite sets, for instance, the list of users of the system. 

In addition to the above-described work, Ranganathan and Campbell have applied AI 
planning techniques to the Gaia system [34]. Namely, they propose the usage of STRIPS [16] 
(pp.312) planning. In a more recent work, in his thesis [35], Ranganathan points out that they 
considered planning computationally too expensive for their system and that they recognized 
most of the produced plans contained the same actions.  

Henricksen and Indulska [36] propose a situation abstraction, which is based on predicate 
logic. In the expressions of their representation they allow and, or, and not logical connectives 
as well as quantification to be used. Quantification (similarly to Ranganathan and Campbell 
above) is allowed only over finite sets. The basic expressions equality, inequality, and 
“assertion” are supported. Assertion is used in the expressions of the situation abstraction to 
define the sets over which the quantification is done. The representation also incorporates 
ambiguity in the form of fact alternatives, and unknowns represented by null values in the 
database. The interpretation of the model is based on three-valued logic. An assertion 
evaluates to “possibly true” when replacing some constants in a partially matching database 
tuple with the null value causes it to match with the assertion. Similarly, assertions matching 
tuples containing alternative facts are given the third truth-value “possibly true”. The model is 
interpreted under the closed-world assumption. A situation S can be defined as S(v1, . . . ,vn) : 
φ, where φ is a logical expression with free variables from v1, . . . ,vn. An example situation is 
shown in Figure 3 (from [36]). 
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Loke [8] proposes representing contextual information as Prolog-style logic programs [37]. 
He uses the term situation to describe a setting where readings of certain type of sensors fall  

 
 
 
 
 
 
 
 
 

Figure 3. Definition of situation CanUseChannel2. 
 
inside specified ranges. In Loke’s model a situation program defines the Prolog rules that 
relate a situation to the sensor readings. Sensor readings are represented as Prolog predicates. 
Since all situations are defined using rules, the representation also allows reasoning about the 
relations of the situation definitions, for example, whether a situation subsumes another 
situation. The example from [8] in Figure 4 defines the situation “in meeting now”. To 
conserve space, we only note that in the example the predicate location*(E,L) binds the 
location of entity E in variable L.  
The reasoning in [7] is also based on logic programming, but as the focus of the work is on ontologies, 
we review it more closely in the next section. Whereas the results of executing rule-based programs 
depend on various rule execution strategies, the ontological models reviewed in the following section 
are purely declarative. 

Figure 4. Definition of “in meeting now” context3. 
 
3.3. Ontology-based representation 

By ontology one can mean a multitude of things from a taxonomy of terms to a logically 
sound representation and reasoning method [38]. In this section we review work on rule-
based and ontology-based representation and reasoning about context. Thus, we don’t restrict 
the reviewed work based on the type of ontologies. As will become clear, most of the 
reviewed ontology-based work involves rule-based reasoning only, or in addition to the 
inferences encoded in the ontology axioms. Production rules are the essence of expert 
systems [39]. 

Most of the ontology based work in this category applies description logics [40].  
Description logic (DL) knowledge bases consist of two components, the TBox and the ABox. 
The TBox contains the terminology of the application domain and the ABox assertions about 

                                                           
2 Reprinted from Pervasive and Mobile Computing, Vol. 2, 1, K. Henricksen & J. Indulska, “Developing context-
aware pervasive computing applications: Models and approach”, pp. 37-64 Copyright (2006), with permission 
from Elsevier. 
3 Reprinted from S.W. Loke, “Logic Programming for Context-Aware Pervasive Computing: Language Support, 
Characterizing Situations, and Integration with the Web”, in proc:  IEEE/WIC/ACM International Conference on 
Web Intelligence, pp. 44-50, 2004., © 2004 IEEE. 
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individuals, using the terminology of the TBox. DL languages consist of three key constructs: 
concepts (classes) that represent classes of objects, roles that describe binary relations 
between concepts, and individuals, which represent instances of classes. An important feature 
in description logics is defining a concept in terms of necessary and sufficient conditions 
based on other concepts (and roles) [40] (pp. 13).  

The basic operation of description logic reasoners is subsumption determination, i.e. 
checking whether a concept is more general than the other.  Key inference operations with 
respect to ABox are realization, which means “determining the concepts instantiated by a 
given individual” and retrieval, which, in turn, means “determining the set of individuals that 
instantiate a given concept” [40] (pp. 310).  

Gruber defines ontology as “an explicit specification of a conceptualization” [41]. Studer 
et al. define ontology more precisely [23]: 
 

“An ontology is a formal, explicit specification of a shared conceptualisation. A 
'conceptualisation' refers to an abstract model of some phenomenon in the world by 
having identified the relevant concepts of that phenomenon. 'Explicit' means that the 
type of concepts used, and the constraints on their use are explicitly defined. For 
example, in medical domains, the concepts are diseases and symptoms, the relations 
between them are causal and a constraint is that a disease cannot cause itself. 'Formal' 
refers to the fact that the ontology should be machine readable, which excludes natural 
language. 'Shared' reflects the notion that an ontology captures consensual knowledge, 
that is, it is not private to some individual, but accepted by a group.” 

The Cobra project [42] proposes OWL [24] to represent context information. Their work 
composes of designing OWL ontologies [43] and using those in a smart meeting room 
scenario. Chen and others note that their system does reasoning both based on the axioms in 
the ontologies and utilizing additional rule-based reasoning with arbitrary RDF [44] triples. 
The former is done using Jena’s [45] rule-based OWL reasoning engine and the latter by 
applying Java Expert System Shell (Jess) [46]. They give no details of which OWL reasoning 
services they use, but say that the system uses Jess rules only when required, that is, when the 
OWL reasoning is not able to produce the answer to a query. The mechanism for detecting 
when OWL reasoning is not enough is not described. However, in this case, the system is said 
to be able to query the ontology reasoner to find all relevant supporting facts, and to convert 
the resulting RDF graph(s) into a Jess representation. A forward-chaining procedure is 
executed in Jess and any new facts are converted back to RDF and asserted to the ontology 
reasoner. 

Gu et al. [47] have also modeled context by using OWL ontology language. They designed 
a context ontology as two layers: the upper ontology and the domain ontology. The upper 
ontology contains ContextEntity as the root element and its children are CompEntity, 
Activity, Location, and Person. Their approach is to represent contexts in first-order predicate 
logic, using the terminology defined in the ontology in the first-order expressions. However, 
they state that their system supports reasoning tasks based on RDF Schema and OWL Lite 
axioms, as well as rule-based reasoning with arbitrary RDF triples. That is, the reasoning is 
not based on first-order logic. The system is implemented using Jena [45], which indeed 
provides these capabilities.  

The Semantic Space project [48] uses OWL to represent context information as well. They 
argue that the advantages of using ontological approach in representing context are, for 
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instance, shared understanding of the semantics of context representations, ontology-based 
context reasoning, knowledge reuse by using existing ontologies. The listed techniques are 
analogous to standard ontological engineering methods [38] and as such not specific to 
representing context. The ontology used in Semantic Space is almost identical to that of Gu et 
al. above, the works sharing one common author. In Semantic Space, the applications can 
pose queries in RDF Data Query Language (RDQL) [49] to the knowledge base. Their system 
incorporates a simple way of avoiding conflicts, when application-specific rule-based 
reasoning is used; the applications send the forward-chaining rules to the reasoner and the 
reasoner returns the results of the execution to the application, without storing them to the 
knowledge base. Implementation is done using Jena [45].  

A similar approach is implemented in Nicklas et al. [50]: an application specific context 
ontology is crafted in OWL and rule-based reasoning is implemented using Jena generic rule 
engine [45]. Thus, no DL reasoning is used. 

A commonality between the above research efforts is that the developed ontologies, to the 
extent presented, are generally based on taxonomic top-down hierarchies of the domain 
elements. A different approach is used in [51] and in [7].  

In the former, Khedr and Karmouch propose dividing the model into “levels of 
expressiveness”. In addition, they divide their model into two ontologies that they call 
relational ontology and dependency ontology. The relational ontology is conventional domain 
ontology, whereas the dependency ontology is an attempt to represent the parameters of 
inference rules as ontology classes and their properties. Inference in the system is based on 
rules, that is, not on the inferences licensed by the ontologies. The ontologies are 
implemented in OWL and reasoning is done using Jena [45]. No examples of inference rules 
are given. 

In the latter, Strang and others describe an ontology that they call an aspect-scale-context 
model, according to its main concepts. There is a bi-directional relation between aspect and 
scale, as well as between scale and context information. As an example of these relations, the 
authors give the aspect “GeographicCoordinateAspect”, which may have two related scales: 
”WGS84Scale” and “GaussKruegerScale”. In this example, valid context information could 
be an instance of “GaussKruegerScale” with the appropriate instance attributes. As said 
before, the ontology of Strang et al. is similar in style to that of Khedr and Karmouch. 
Moreover, reasoning in the ontology is also based on dedicated logic programming rules. The 
ontology of Strang et al. and rules can be used to, for example, check that a context instance 
is consistent with its scale. These ontologies do not facilitate interoperability between systems 
if the associated rule systems are not also used. 

In [9] Lassila and Khushraj consider representing context using description logics (DL) 
[3], where OWL DL is used as a concrete example. One of the ideas behind their context 
model is that entities in a context-aware system can “be” in any number of contexts at a time. 
In their ontology, contexts are represented as classes and the current contextual information 
about an entity is represented as an individual. Their system uses both retrieval and 
realization. They also consider specifying new contexts in terms of existing context classes 
using generic DL class constructors. As an example, a context could be defined as an 
intersection of existing contexts. 

An example (adapted from [9]) shown in Figure 5 presents a walkthrough of ontology-
based reasoning. The order of reasoning does not necessarily follow that of a practical 
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reasoner; instead the purpose is to illustrate how the context definitions represented in an 
OWL DL ontology are used in the inference. 

Lassila and Khushraj point out that a problem in representing context with DLs is the 
known lack of composition constructor for properties [52, 53]. For example, the composition 
shown in Figure 6 (expressed in a rule format where variables are denoted by question marks) 
cannot be expressed. 
 

 
Figure 5. An example of ontology-based reasoning4. 

  
Figure 6. An example of composition construct4. 

As another weakness, [9] remarks the lack of procedural attachments. To solve these 
problems, the authors use a hybrid reasoning process, where they add rule-based reasoning on 
top of DL reasoning. This architecture is depicted in Figure 7 (from [9]). They present an 
algorithm that specifies the integration of a DL reasoner and a rule-based reasoner. While 
Lassila and Khushraj describe their algorithm from DL point of view, by considering the 
inverse, their system is close to the idea of using DL system as the working memory of a rule-
based system as described in [16] (pp. 181). 

 In a similar approach to that of [9], Agostini et al. suggest combining rule-based reasoning 
with DL reasoning [54]. They propose OWL DL ontology for context representation, but 
represent user profiles separately using Composite Capability/Preference Profiles (CC/PP) 
[55]. Certain attributes in the profiles are linked to concepts in the ontology for more formal 
specification. Referring to performance issues, the authors suggest that most DL reasoning 
should be performed offline, not when services are provisioned to user. The DL reasoning 
task they mainly consider is querying the instances of a particular class. They note that a key 
feature of their reasoning approach is that results of executing the rule-system are not stored 
to the ABox. This way the data flow is unidirectional; from the ABox to the rule-based 
system.  

                                                           
4 Reprinted from O. Lassila & D. Khushraj, “Contextualizing Applications via Semantic Middleware”, in proc. 
of The Second Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 
San Diego, USA, pp. 183-189, © 2005 IEEE. 

• First, an accelerometer based user activity recognition service asserts that: 
‹Tom, TomsActivity› :  isEngagedInActivity and TomsActivity : DrivingCar 
 

Then, using the DL based context definition:  isEngagedInActivity.DrivingCar   ⊆ 
 hasCurrentContext.DrivingCarContext 

 

  the reasoner infers that: 
TomsContext : DrivingCarContext (INF1) 
 

• Using the DL based definitions: 

DrivingCarContext ⊆ TravelingContext and  

  TravelingContext ⊆ NotAtHomeContext and INF1 
 

  the reasoner infers that: 
TomsContext : NotAtHomeContext (INF2)

isLocatedWithin(?space1,?space2) ^ 
 isConnectedTo(?space3,?space1))  
--> isConnectedTo(?space3,?space2)
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Khushraj et al. [56] propose an extension of tuple spaces to integrate ontology-based 
reasoning to query processing. Tuples describe services and generic data items; the work does 
not propose a specific context model. SUN’s object oriented tuple space called JavaSpace 
[57] is used to implement the system. Integration of tuple spaces and ontology-based 
representation is done through enforcing an object field in every tuple to contain a 
DAML+OIL individual [58]. Furthermore, the consistency of the DAML+OIL individuals 
from newly written tuples is checked by a reasoner before they are committed to the 
knowledge base. Querying is done using a special query format (query template) which 
essentially controls what queries are send to the reasoner. A special matcher agent performs 
the queries and combines the query results according to a tailored algorithm. 

Yet another work that is based on OWL DL reasoning is reported in [59]. The proactive 
service recommendation system for internet services retrieves a set of relevant tasks for the 
mobile user based on his current context. The task model and related tools are first described 
in [60]. The OWL based context representation uses classification (realization) to compute 
the current context of the user. The model includes qualitative descriptions of time, location, 
as well as relations among people. The tasks in the system are described using the OWL-S 
process model [61]. The system retrieves a set of predefined high-level tasks (e.g. “go to 
destination”) by matching context tags of the tasks to the current context of the user, and lets 
the user browse them through a mobile device. The high-level tasks have a hierarchy of 
alternative subtasks (e.g. move-by-taxi, move-by-train) and finally the leaves of the task tree 
represent mobile services the user can utilize through his mobile’s web browser. 

 

 
Figure 7. Context reasoning architecture4. 

 

W3C has begun to develop an ontology for context-based adaptation of web content [62]. 
The ontology focuses on describing the device, for example its display and audio support. The 
specification as of now does not give any reasoning examples, and it is thus unclear to what 
extent these capabilities of OWL DL are going to be used. 

Bobillo et al. [63] divides knowledge related to the problem at hand into two ontologies: 
domain ontology and context ontology. As usual, the domain ontology contains the entities, 
relations and individuals of the domain being modeled. Context ontology is used to describe 
the setting where the domain ontology is used and consists of sensor data and user 
preferences, for example. In addition to these base ontologies, they define a Context-Domain 
Relevance (CDR) ontology. The CDR can be used to derive context-dependent, that is, 
relevant knowledge from the domain ontology.  
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Chaari et al. [64] utilize ontologies to represent context and using rules to trigger 
adaptation. Their approach aims to use the expressive combination of OWL and Semantic 
Web Rule Language (SWRL) [53]. However, described implementation is based on Jena 
generic rule engine [45], while it is not possible to fully translate SWRL rules into a rule 
based reasoner [53].  

Ranganathan and Campbell [32] utilize ontologies in the logic programming system to 
define allowed types for the arguments of the predicates. The ontology is implemented in 
DAML+OIL [58] ontology language. The authors claim that they use FACT reasoning engine 
to ensure the validity of context expressions. However, they give no further detail of the 
reasoning tasks through which this is accomplished. 

Korpipää et al. [26] present a work on developing a lightweight ontology for mobile device 
context-awareness. A lightweight ontology is an ontology that contains concepts and 
properties, as well as concept taxonomies, but no constraints [38]. The structure of the context 
model is based on that of Schmidt et al. [4] discussed in section 3.1. What makes this work to 
stand out form the rest is that the structure is represented using RDF, and a set of properties 
for characterizing the context expressions is defined. These properties are context type, 
context value, confidence, source, timestamp, and attributes. Since the ontology serves here 
mostly as a common vocabulary, any inference methods can be used, as long as the results are 
provided in the common format.  

The system of Van Kleek [65] and Shrobe uses RDF(S) to represent sensor information 
and derived user activities. As opposed to most reviewed systems, their system is geared 
towards long-term collection and storage of this information. 
 
3.4. Case-based representation 

In case-based reasoning (CBR) data (cases) is represented as points in Euclidean space or 
as symbolic descriptions [66]. The symbolic descriptions may consist of complex graphs, for 
instance. Therefore, a key issue is finding relevant (often approximate) similarity measures 
for the cases. Aamodt [67] describes a typical CBR process; first, a case or a set of most 
similar cases is retrieved. Second, use the retrieved case to solve the current problem. Third, 
revise the solution. Fourth, retain the experience of this case to the extent it is likely to be 
applicable for solving future problems. Generally, CBR is seen as a process of finding 
problem solutions attached to previous similar cases and reusing those to solve the current 
problem [68]. The papers in this section are reviewed according to the above characterizations 
of CBR. 

Turner’s [5] context modeling approach is called context-mediated behavior, where 
context information is represented using contextual schemas (c-schemas). The c-schemas are 
similar to frames [69], containing slots, among others, for the features that must be present in 
the current situation for it to be recognized as an instance of context the c-schema represents. 
Features that are likely to be present in the context the schema represents are also included. 
These allow the agent to predict the state of the environment beyond its sensory inputs. 
Analogously to CBR cases’ problem solutions, the c-schemas also contain information about 
how the agent should behave in the context. An exemplar of this is that the current context 
may affect the interpretation of sensor inputs. C-schema indices relate the schema to other 
schemas, typically its specializations [70]. Overall, the schema memory structure is similar to 
a conventional case memory [67]. Turner’s system implements C-schemas using common lisp 
object system.  
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In a process similar to CBR’s situation assessment [68], which Turner names context 
assessment, the features of the current situation are used to retrieve a set of c-schemas from 
schema memory. Subsequently, this set is reduced by comparing the degree of match between 
the current situation and each c-schema, ranking them accordingly. Each of the final c-
schemas represents a context, which, in turn, partly describes the current situation. After this, 
these c-schemas are merged into what is called a context object [5]. The author remarks that 
these processes have not been fully implemented. 

Zimmermann [71] proposes CBR for context representation as well and discusses it by 
considering a case with four contextual dimensions: location, identity, time, and 
environment/activity. The case is attached to a recommendation, analogous to the problem 
solution in CBR. The recommendation can be, for instance, delivered to a person that is in a 
museum near a painting that is from the artistic period he likes, as defined in his user profile. 
Zimmermann also discusses generalizing cases as well as modeling episodes of user activity 
with CBR. No system implementation is described. 

Kofod-Petersen and Aamodt [72] discusses early work on a similar CBR-based context 
modeling system. The basic idea behind the CBR model is to associate a probable user task or 
goal with the user’s current situation, that is, each case contains a task or a goal. They model 
high-level context as a taxonomy and extend the taxonomy with a domain-specific multi-
relational semantic network. Generalizing cases is used as well, and an example case with a 
matching generalized case is presented. However, implementation and evaluation of the 
system is yet to be done. 
 
3.5. Representing uncertainty and vagueness 

As the contextual information in context-aware computing often originates from sensors in 
the environment, uncertainty in context-aware systems is unavoidable. Despite this, there is 
only a handful of work that deals with representing and reasoning under uncertainty in these 
systems. 

Ranganathan and others describe reasoning in the Gaia system with vague and uncertain 
information [73]. Their model is based on assigning a confidence value for each context 
predicate (c.f. section 3.2) and interpreting the confidence as either a membership value in 
fuzzy logic or a probability in probabilistic logic. The authors do not discuss whether they 
somehow define the intended interpretation for predicates from these alternatives.  

For probabilistic reasoning, Ranganathan and others apply a form of probabilistic predicate 
logic for which reasoning is known to be sound and complete. As an example of the source 
for probabilities in their environment they describe person localization with RFID badges; a 
probability that a detected badge is in a room is a result of dividing the badge’s detection 
circle that is inside a room by the area of the whole circle. They also discuss other sources of 
uncertainty, such as whether the person is actually wearing the tag or not.  

The authors also describe applying Bayesian networks for inferring activities from 
uncertain context information. In their network, leaves represent sensed context information 
and nodes information to be inferred. All the nodes are random variables of which possible 
values are context predicates. An example network for inferring the activity in a meeting 
room is given, where the values are “meeting”, ”presentation”, and ”idle”. However, no 
probability tables in the network are given. 
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Gaia system utilizes confidence values also for access control. Here, the confidence values 
are simply compared against certain thresholds, such as in the rule shown in Figure 8 
(example from [73]). 

Loosely based on earlier work of Ding and Peng [74], Gu [75] presents a model where web 
ontology language OWL [24] is extended to allow representing dependency relations between 
properties. This is implemented by linking the properties with a rdfs:dependsOn property. 
 

 
Figure 8. Access control rule5. 

Their model also associates prior and conditional probabilities to RDF [44] triples, such as 
status(John, Sleeping)). The original work by Ding and Peng, considers extending OWL so 
that typical description logic (DL) reasoning tasks, for example, concept subsumption [40] are 
supported. However, algorithms for the reasoning tasks are yet to be developed. By using a 
distinctively simpler, syntactic approach, Gu et al. only consider a structural transformation 
from their extended OWL/RDF graphs into a Bayesian network, mapping the rdfs:dependsOn 
relations to arcs in the Bayesian network. They give no complete examples of the probability-
extended OWL ontologies. 

Similar work in modeling uncertain context information with Bayesian networks has been 
done by Truong and et al. [76]. They propose representing Bayesian networks in a relational 
model, where certain classes, called p-classes are used to store probabilistic information. 
Namely, p-classes’ attributes have associated constraints: parents-constraint and conditional 
probability table (CPT) constraint. The former lists all the attributes in the parent classes that 
the attribute depends on. The latter is used to record the conditional probability distribution, 
which depends on the parents. The authors consider integrating their approach with 
representing domain knowledge in OWL, but no details are given.  

Schmidt proposes time-based decay of validity of context information [77]. The decay 
function is context type specific, ranging for static (birthday) to quick decay (location).  

Mäntyjärvi and Seppänen [78] apply fuzzy logic to represent contexts information. Fuzzy 
logic is manifested in vague predicates [16]. Through these vague predicates Mäntyjärvi and 
Seppänen represent concepts such as user activity, which can take values “movements”, 
“walking”, and “running”, with soft borders. This work does not propose a specific encoding 
for communicating the fuzzy contexts and fuzzy rules, thus it is at the border of being a low 
level processing method (see Fig.1) or a context representation and reasoning scheme.  

Similar to Mäntyjärvi and Seppänen, Padowitz et al. [79] represent context information as 
a simple multi-dimensional vector of sensor measurements. A context is defined as a range of 
values in this multi-dimensional space. Based on the context definitions and the current 
sensor measurements, they derive a confidence value to represent the uncertainty in the 

                                                           
5 Reprinted from A. Ranganathan, J. Al-Muhtadi & R.H. Campbell, “Reasoning about uncertain 
contexts in pervasive computing environments”, Pervasive Computing, Vol. 3, 2, pp. 62-70, © 2004 
IEEE. 

canAccess(P, display) :- 
  confidenceLevel(authenticated(P), C), C > 0.7, 
  Prob(activity(2401,cs 101 presentation), Y), Y > 0.8, 
  possessRole(P, presenter) 
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occurrence of a context (or a situation). The related reasoning engine replies to queries by 
encoding contexts and their confidences in XML. 

Other examples of efforts in this category are the one discussed in section 3.1 by Gray and 
Salber [6] and the work by Henricksen and Indulska [36] referred to in section 3.2. Gray and 
Salber discuss the issue of quality of information in general, whereas Henricksen and 
Indulska describe their closed world interpretation of three-valued logics, where, the 
“possibly true” value is used to represent ambiguous or uncertain information. 
 
3.6. Summary 

The reviewed papers from section 3.1 through 3.5 are summarized in Table 1. Note that 
since some work contains aspects of more than one category, the columns of the table 
overlap. In the following we give an overview of the requirements each of the reviewed 
papers touches on. We do not to analyze the respective merits of the papers in achieving the 
goals, but instead aim to give the reader an overview of the extent to which each of the 
requirements have received research attention. It is interesting to find that some work focus 

  
Table 1. A summary of reviewed papers. Columns list the categories and each 

category contains a list of papers included in the review. 
 

Conceptual models Logic 

programming 

Ontology-based 

representation 

Case based 

representation  

Representing 

uncertainty and 

vagueness 

[4], [26], [6], [12], 

[27], [28], [29], [30], 

[31] 

[32], [34], [35], 

[36], [8], [7] 

[42], [47], [48], 

[51], [7], [9], 

[54], [59], [63], 

[64], [32], [26]  

[70], [5], [71], 

[72] 

[73], [74], [75], 

[76], [6], [36], 

[78], [79], [77] 

 

directly on one of the requirements, while other do not specify any particular goals in terms of 
requirements. 

All work applying RDF or OWL naturally supports expressing unique identifiers. This 
work includes [7, 9, 26, 32, 42, 47, 48, 51, 54, 59, 63, 64]. Other work does not deal with 
unique identifiers. Generating unique identifiers and ensuring their uniqueness is an issue we 
do not consider here.  

Ranganathan et al. designed a custom validation mechanism to validate rule parameters 
[73]. XML schema provides validation support in [27, 28]. OWL provides little support for 
validation. 

Agents are used in several projects [27, 42, 80-82] on context-awareness, but there is no 
direct work on interoperability of context sources and consumers. The work using web 
ontology languages indirectly supports a form of interoperability, but much of the work rely 
on custom reasoning systems, thus compromising interoperability. 

The interplay between efficiency, expressiveness, soundness, and completeness has not 
been studied with respect to finding the most suitable tradeoffs for context representation. We 
return to some possible future work in section 5. 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 4, No. 4, October, 2009 

 

 

19 

Work dealing with uncertainty and vagueness was reviewed in section 3.5. The work in [6, 
36, 73-76] deals with representing uncertainty. The work in [78, 79] proposes schemes to 
manage vagueness of context information.  

Korpipää et al. proposes to use RDF to represent context information in order to support 
simplicity [26]. All ontology-based work support expandability and reuse somewhat better 
than, for example, rule-based systems reported in [7, 8, 32, 36]. 

Among the reviewed work [4, 7, 26] aim to support generality through using an 
overarching conceptual structure for context information as a basis of their model. 
 
4. Discussion 

This review has surveyed context modeling and representation describing several, often 
fundamentally different, approaches.  We begin this section by listing some findings from the 
survey and bringing into focus a set of current challenges. At the end of the section we 
suggest some topics for further research. 
 
4.1. Context representations 

A generic finding about the knowledge representation in context-aware systems is that 
while utilizing context is considered the key factor in those systems, representing context is 
rarely distinguished from representing other knowledge. Rather, the problem of relevance is 
left for the applications that utilize the context information, for instance, the applications 
query only those elements of information they require. For example, in the Gaia system [32] a 
context may be “Location (chris, entering, room 3231)”. The representation does not define 
that this fact is a context, or about a context, rather than a general fact about the domain. In 
the following we discuss a bit whether that would be useful or not. 

Counter examples are the work in [9, 59] where contexts are represented explicitly. Thus, 
it can be asked whether it is beneficial to model contexts as “first-class objects”, that is, 
distinguish contexts from other knowledge in context-aware computing. The key idea in [9, 
59] is to represent contexts as (mostly named) concepts in a description logic. This 
corresponds to enumerating all contexts that are required by the system and defining them in 
terms of other domain knowledge or in terms of other contexts. Interestingly, this relates to 
some of the ideas in propositional logic of context as described by Serafini et al. in [83]. That 
is, contexts are modeled as “first-class objects”, context objects can have relations to other 
domain objects, and context can have relations to other contexts (e.g. through generalization). 
Due to enabling the representation of these relations, it seems that “first-class” representation 
of contexts would be beneficial. However, a focused study would be needed to find and 
analyze the possible downsides.  

An interesting feature of Turner’s context model (c.f. section 4.4) is that the current 
context may affect the interpretation of sensor inputs. This causes a feedback loop in the 
context recognition process and it should be studied whether this is beneficial compared to 
conceptualizing inputs as evidence from which the contexts are determined. His suggestion 
that some concepts may have context-dependent meaning is analogous to the notion of 
context dependent adaptation of context-aware services. These aspects of Turner’s model are 
close to the intuitions behind the efforts towards developing a formal notion of context in AI 
(for a concise review on formalizing context, see e.g. [83]). 
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Summarizing the reviewed work on modeling uncertainty and vagueness, it can be noted 
that there is no work presenting a model satisfying all the requirements listed in section 2. 
Moreover, it seems that the benefit of modeling uncertainty and vagueness has not been 
evaluated beyond the capability of representing it; that is, the work doesn’t make it clear how 
easy it is to utilize such models in applications, what is the computational expense, and in 
what kind of applications does it benefit the users. 
 
4.2. Reasoning about context 

In this review, we included work on rule-based, logic programming, ontology-based 
(description logic), and case-based reasoning. As shown, majority of the recent work is 
applying an ontology-based approach. Indeed, context ontologies seem to provide some 
intuitive benefit for context-aware application development. In particular, as the context 
representation and reasoning of the system should be divided between generic and 
application-specific, the generic representation and reasoning can be encoded in the common 
ontologies, and the application-specific, in turn, in ontologies extending the common 
ontology and as rules. This is roughly the split shown in Figure 1, and analogous to the 
common way of designing an upper ontology and domain-specific ontologies [38]. 
Nevertheless, as we note in section 4.3 this, and other intuitive benefits of ontologies for 
context representation are hard to evaluate. 

We observed that most of the recent work describing usage of OWL to represent context 
merely refer to using OWL inference, but the focus is on making inferences using an external 
rule-based system. There is an important distinction between inferences licensed by the 
ontology axioms and inferences based on arbitrary rules. In the former, any reasoner for that 
ontology language produces the same results, whereas in the latter both the ontology and the 
rules in the specific rule language are needed, possibly also an identical rule engine. For this 
reason, much of the benefit of using standard ontology languages is lost when inference is 
based on ad hoc rules, merely using the ontology terms as a vocabulary. Nevertheless, 
extending the reasoning beyond the inferences licensed by the ontology axioms is often 
necessary due to the fact that the expressive power of the ontology language is often 
insufficient for the task at hand. Current research tries to seek solutions to this by extending 
web ontology languages with rules [84]. 

In addition to the above considerations, there are many challenges associated with the 
specific representation methods. As ontology-based representations are the focus of much 
recent research, we note next some issues related to them that would deserve a more detailed 
analysis than given in the work described in section 3.3.  

As an example, the OWL DL language is designed for monotonic inference. This means 
assertions cannot cause the truth of previous assertions or the previous conclusions to change. 
This does not fit modelling context, because usually the knowledge base (ABox) evolves with 
time. This is also true of many other applications that aim at a faithful representation of “the 
real world”. 

Related to the first example, context-awareness requires retraction of assertions. Consider, 
for example, keeping a proposition about the current room of a person up to date. Although 
some DL systems support retraction, typical description logics systems are optimized for 
query answering in domains with relatively static information rather than in domains with 
rapid changes in ABox information. Traditionally, this has meant that retractions (and 
additions) lead to expensive reclassification. Parsia et al. [85] report interesting ongoing work 
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towards reducing the cost of incremental additions and retractions by exploiting the 
monotonicity of DLs. 

As a final ontology-related issue, any assertion can possibly make the DL knowledge base 
inconsistent, and an inconsistent knowledge base satisfies any query [86]. On the one hand, it 
is expensive to check consistency after each assertion, but on the other hand, it is better than 
not being able to detect inconsistency in the first place.  

An intuition about the usage of predicate logic for context representation is that its 
expressiveness may cause it to be inefficient, because context knowledge is very dynamic. To 
the best of our knowledge, there are no results on comparing the efficiency of rule-based 
systems (e.g. Jess [46]), logic programming systems (e.g. XSB [33]), and more generic 
theorem provers (e.g. SNARK [87]) with respect to their capability to deal with dynamic 
context knowledge.    

None of the (description) logic-based approaches discussed above are capable of dealing 
with uncertainty and vagueness. Some work (e.g. [11, 77]) approaches this by aiming to 
combine ontological modeling with modeling of uncertainty, but fall short in providing a 
principled approach that preserves the benefits of formal ontologies. Other work, such as the 
extension of Gaia described in [73], suggest a possibly feasible approach, but evaluation is 
lacking. As Ranganathan [73] notes, often the designer doesn’t know the probabilities or 
confidence values to be associated with types of information. In these cases, learning them by 
collecting a large amount of data may be possible, but is a difficult task. 

The only reviewed system geared towards handling large amounts of context information 
collected over time is presented in [65]. To give an approximate scale, the work reports about 
300MB of RDF-represented data collected in 3 weeks for a person. This implies that complex 
reasoning over even a short history of contextual information may be infeasible. 
 
5. Future work 

We see improving of the evaluation methodology and facilities as by far the most 
important direction of future work for context representation. The lack of a common 
evaluation framework and results disabled us from performing any useful comparison 
between the reviewed systems. Devising a generic evaluation framework and metrics might 
help to focus research more on the core issues related to context representation and reasoning. 
At the same time, a way to improve the quality of research and to advance the state of the art 
would be to collaboratively specify a set of test contexts to be recognized and represented 
from a test data set. This would facilitate comparison of representation and reasoning 
systems. Hypothetically, given such test data, it should be possible to quantitatively compare 
the kind of work reviewed in section 3. The test data set should reflect the characteristics of 
context information processing, for example, the data flow from position and acceleration 
sensors and the query rate from clients. It is a major challenge to devise a representative test 
data set. 

Many currently immature techniques may provide some aid for context-awareness in the 
future. As an example, fuzzy description logic systems [40] (pp. 246) could be used for 
representing partial appearance of a context. Any study on a new technique for context 
representation should investigate how the technique performs, using the common evaluation 
framework. This may help to understand the overall advantage of the new technique. 
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Sometimes it is possible to improve the efficiency of inference by using domain specific 
heuristics. In general this involves knowing, for instance, which queries are the most frequent 
and perhaps the most expensive. Using domain specific heuristics for designing optimizations 
may be achieved without altering the query answer. Moreover, incorporating special purpose 
algorithms or functions should be supported by the KR&R system. The user or the designer 
should be provided the means to input these special purpose functions. For example, in 
pervasive computing a location model is often important and many queries relate to locations 
of persons and devices. The classical example, “print to nearest printer”, for instance, could 
sometimes (depending on the actual location of the nearest printer) be answered more 
efficiently if the search for answer could use the “query location” as an index [88]. That is, 
the inference engine should be capable of efficiently using relations that express the locations 
a certain location is connected to – in this case, propagating the search from the closest to the 
farthest location. 

Brachman and Levesque call systems incorporating the previous kind of special purpose 
algorithms hybrid reasoning systems [16]. The idea of hybrid reasoning systems is to use 
special purpose reasoning always when it makes reasoning more efficient, making sure the 
reasoning stays sound and complete. Only when there is no special purpose algorithm for a 
predicate symbol does the system use generic reasoning, often a resolution algorithm. An 
example of a theorem prover providing a possibility for using special purpose procedures is 
SNARK [87]. Using a hybrid reasoning system for representing and reasoning about context 
seems interesting and has not been reported yet. Of special interest would be to investigate 
what are the most plausible aspects of context knowledge for special purpose reasoning. 
 
6. Conclusions 

This review shows that in the field of context-aware computing, many knowledge 
representation techniques have been experimented with. The field still lacks a major 
breakthrough – although using expressive (e.g. OWL DL) ontologies is suggested in a 
number of papers, the evidence does not yet show that these systems would meet all 
requirements. This lack of evidence comes up as the small number of work reporting 
quantitative evaluation and as the non-existence of work reporting large scale deployment.  

While the computational issues of context representation have not been systematically 
treated in the field of pervasive computing, the reviewed work implies that formal context 
representation puts hard requirements on the KR&R systems in terms of dynamicity and 
expressiveness. Due to this, formal context representation runs across the fundamental trade-
off between the expressiveness of representation and the complexity of reasoning. The future 
research has to investigate this interplay more closely to find the most suitable solutions for 
data-intensive pervasive computing systems. This work could be also geared towards 
understanding whether the required level of interoperability and uncertainty modeling could 
be achieved through other representation techniques. In order to measure future achievements 
the community should establish a common evaluation framework. 
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