
International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 

 

 

1 

Smart Objects as Components of UbiComp Applications 
 
 

Christos Goumopoulos1 and Achilles Kameas1,2 

 
1Research Academic Computer Technology Institute, DAISy group, 26500  Rion, 

Patras, Hellas 
2Hellenic Open University, 23 Sahtouri Str., 26222, Patras, Hellas 

{goumop, kameas}@cti.gr1, kameas@eap.gr2 
 
 

Abstract 
 

This paper presents a component-oriented programming model and middleware support 
services for building ubiquitous computing (UbiComp) applications that are composed out of 
smart objects on demand. Applications are realized as graphs representing smart objects and 
their services binding. Services are provided through high-level abstractions called plugs 
with semantically rich interfaces that allow them to be discovered and invoked dynamically. 
Our middleware supports the integration of heterogeneous smart objects by implementing a 
high level interaction model suited to the end-user and providing dynamic discovery, 
synthesis and binding of services. In this way we can deploy UbiComp applications that adapt 
to the dynamics of an Ambient Intelligence (AmI) environment. A smart home application that 
employees everyday augmented objects is used to illustrate the approach. We give 
implementation details with an emphasis to the compositional aspects and provide a 
scalability analysis for the service discovery process. 

 
Keywords: Smart Object, UbiComp Application 

 
1. Introduction 

One of the major technological trends is to embed sensing, communication, 
computation and actuation in physical artifacts leading to the creation of smart objects. 
Smart objects will be an important building block to bridge the gap between the 
physical and digital world by providing information about aspects of their physical 
environment. While systems of smart objects will need to build on emerging 
technologies such as RFID and wireless sensor networks, the envisioned ubiquity of 
smart objects raises important questions about the digital representation of physical 
artifacts, their cooperation paradigms, integration into backend infrastructures and the 
applications that will benefit and influence their design and development. 

Up to now, the ways that an everyday object could be used and the tasks it could 
participate in have usually been determined by its shape. Smart objects overcome this 
limitation by producing descriptions of their properties, abilities and services in the 
digital space, thus becoming able to improve their functionality by participating in 
compositions, learning from usage, becoming adaptive and context aware. This ability 
improves object independence, as a smart object that acts as a service consumer may 
seek a service producer based on a service and not object description. The benefit of 
this compositional approach is adaptability and evolution: a component-based 
application can be reconfigured with low cost to meet new requirements. The 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 
 

 

2 

possibility to reuse devices for several purposes - not all accounted for during their 
design - opens possibilities for emergent uses of ubiquitous devices, whereby the 
emergence results from actual use. 

In this paper we present a component-oriented programming model and a middleware 
for building UbiComp applications that are composed out of smart objects. Contrary to 
the majority of component-based models that have focused on software components 
with an emphasis to support the programmer our component model embraces a 
heterogeneous collection of artifacts in a way that is comprehensible even by end-users. 
By supporting the encapsulation of the internal structure of an artifact the proposed 
model provides the means for composition of an application, thus can be considered as 
a programming model, without having to access any code that implements the interface. 
To achieve this, composition tends to be as simple as possible and is assisted by visual 
editing tools. Following this programming model, the application programmer is 
presented with a layer of abstraction in which an artifact is represented as a graph node 
and its services as input/output plugs i.e., high-level abstractions with semantically rich 
interfaces that allow them to be discovered and invoked dynamically. Consequently, 
applications and tasks are realized as graphs representing smart objects and their 
services binding. Furthermore, our model is pervasive enabling the application to adapt 
to the dynamics of AmI environments by employing middleware support services. 

Building UbiComp applications out of components is possible only in the context of 
a supporting component framework that acts as a middleware. Our middleware can be 
considered as a component framework that determines the interfaces that components 
share and the rules governing their composition. The middleware manages resources 
shared by artifacts and provides the underlying mechanisms that enable communication 
among them. Furthermore, our middleware is suited to the dynamics of AmI spaces 
because it supports the on demand integration of heterogeneous smart objects for the 
realization of an abstract task or the adaptation of user defined compositions of services 
by providing dynamic discovery, synthesis and binding of the required services. 

The remainder of the paper is organized as follows. Section 2 introduces the 
principle of compose ability which enables the composition of UbiComp applications 
by combining the services offered by smart objects. The basic concepts of our 
programming model are outlined and the smart object structure encapsulated in the 
model is highlighted. In Section 3 we discuss how the concepts of the model are applied 
to compose a smart home application. Section 4 presents our middleware support 
services for building applications out of smart objects on demand. We give 
implementation details with an emphasis to the compositional aspects and in Section 5 
provide a scalability analysis for the service discovery process. Related approaches and 
work are presented in Section 6. Section 7 concludes this paper by presenting final 
statements and future work. 
 
2. Compose ability based on smart objects 

An important decision to be made when designing smart objects is whether they will be 
able to function without any infrastructure support (i.e. they are simply tagged objects) and 
whether they advertise their physical properties. The decision can lead to the development on 
one hand of lightweight tagged objects that rely on a centralized server support or on the other 
of resource-rich and autonomous artifacts. We propose a paradigm that contains 
conceptual abstractions and a middleware that has to run on every object, in order to 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 

 

 

3 

treat objects as components of distributed applications composed of UbiComp services 
[1]. To support this approach, we have adapted basic concepts of component models. 

A component in the UbiComp application domain is an artifact that can be 
independently developed and delivered as a unit, and that offers interfaces by which it 
can be connected, unchanged with other components to compose a larger system. In this 
regard, the process where UbiComp applications are composed out of complex 
collections of interacting artifacts may be viewed as having much in common with the 
process where system builders design and implement software systems out of 
components [2]. 

 
2.1. A model for component-based UbiComp applications 

The basic concepts encapsulated in our model are summarized below. 
Artifacts: An artifact is a tangible smart object which bears digitally expressed 

properties; usually it is an object or device augmented with sensors, actuators, 
processing and networking unit or a computational device that already has embedded 
some of the required hardware components. Software applications running on 
computational devices are also excessively considered to be artifacts. Figure 1 
illustrates a few smart object prototypes that are used in our laboratory. The hardware 
and sensor modules as well as the wiring embedded in the corresponding objects are 
also visible. 

 

 
(a) (b) (c) 

 
Figure 1. Smart object prototypes: (a) a smart desk with weight and proximity 
sensors; (b) a smart chair with pressure sensors; and (c) a smart book with 

bending and luminosity sensors 
 
Artifact compositions: As UbiComp technology matures, an increasing number of 

smart objects will be “virtual”, in the sense that they will be composed from distributed 
objects on a service description basis. As every object acquires a digital representation 
based on its capabilities and properties and the services it offers or requests, then a 
smart object may attempt to locate other modules based on a service-based description. 
Two or more artifacts (simple or composite) can be combined in an artifact 
composition. Such compositions are the tangible bearers of UbiComp applications and 
are regarded as service compositions; their realization can be assisted by end-user tools.   

Properties: Artifacts have properties, which collectively represent their physical 
characteristics, capabilities and services. A property is modeled as a function that either 
evaluates an artifact’s state variable into a single value or triggers a reaction, typically 
involving an actuator. Some properties (i.e. physical characteristics, unique identifier) 
are artifact-specific, while others (i.e. services) may be not. For example, attributes like 
color/shape/weight represent properties that all physical objects possess. The service 
light may be offered by different objects. A property of an artifact composition is called 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 
 

 

4 

an emergent property. All of the artifacts properties are encapsulated in a property 
schema which can be send on request to other artifacts, or tools (e.g. during an artifact 
discovery). 

Functional Schemas: An artifact is modeled in terms of a functional schema: 
 nfffF 21 , , where each function if  gives the value of an observed property i in 

time t. Functions in a functional schema can be as simple or complex is required to 
define the property. They may range from single sensor readings to rule-based formulas 
involving multiple properties, to first-order logic so that we can quantify over sets of 
artifacts and their properties. 

State: The values for all property functions of an artifact at a given time are the state 

of the artifact. For an artifact A, the set  )(),()( 21 tfppppAP iin    represents 

the state space of the artifact. Each member of the state vector represents a state 
variable. The concept of state is useful for reasoning about how things may change. 
Restrictions on the value domain of a state variable are then possible and can be defined 
as part of the application specification.  

Transformation: A transformation is a transition from one state to another. A 
transformation happens either as a result of an internal event (i.e. a change in the state 
of a sensor) or after a change in the artifact’s functional context (as it is propagated 
through the synapses of the artifact). 

Plugs: Plugs represent the interface of an artifact. An interface consists of a set of 
operations that an artifact needs to access in its surrounding environment and a set of 
operations that the surrounding environment can access on the given artifact. Thus, 
plugs are characterized by their direction and data type. Plugs may be output (O) in case 
they manifest their corresponding property, input (I) in case they associate their 
property with data from other artifacts, or I/O when both happens. Plugs also have a 
certain data type, which can be either a semantically primitive one (e.g., integer, 
boolean, etc.), or a semantically rich one (e.g., image, sound etc.).   

Synapses: Synapses are associations between two compatible plugs. In practice, 
synapses relate the functional schemas of two different artifacts.  When a property of a 
source artifact changes, the new value is propagated through the synapse to the target 
artifact. The initial change of value caused by a state transition of the source artifact 
causes finally a state transition to the target artifact. In that way, synapses are a 
realization of the functional context of the artifact. 

Constraints: A constraint is a restrictive property relating one or more artifacts. 
Constraints are used to specify precisely the application behaviour. We have identified 
two types of constraints: atomic constraints and compositional constraints.  

The atomic constraints involve a single artifact and have the following form:  
A.pi relop c, where:  

 A.pi is a property of the artifact A; 
 relop {==, , , >, , <}; 
 c is a constant value. 

For example, an atomic constraint may specify that the light service must be 
provided by an artifact with at least 50 Lux luminosity.  

The compositional constraints involve a set of artifacts and one or more of their 
properties and have the following two forms:  

A.pi relop B.pj, where: 
 A.pi is a property of the artifact A and B.pj is a property of the artifact B; 
 relop is defined as above; 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 

 

 

5 

F(expression) over S relop c [where condition], where: 
 F  {sum, avg, min, max, count, all, any} with the aggregation functions 

having the same semantics as in the SQL query language; 
 expression is an arithmetic expression of artifact properties; 
 S denotes a set of artifacts; 
 [where condition] is an optional part that specifies whether an artifact in S  

contributes to the evaluation or not depending on the logical expression 
specified by the condition. 

For example, to specify that the display service must be provided by the artifact with 
the minimum distance from a smart desk and that distance should be at most two meters 
we may give the following compositional constraint: 

min(abs(x.distance-eDesk.distance)) over {all artifacts x with 
display service}  2 

A formal description of the model presented above is discussed by the authors in [3]. 
 
2.2 Smart object structure 

In a previous work we have described a methodology for creating smart objects, 
which are functionally autonomous, extrovert and composeable [4]. In this section we 
briefly describe the smart object structure which is encapsulated by the proposed model. 
A set of communicating smart objects form a distributed system whose nodes are 
permeated by the architecture illustrated in Figure 2. At the heart of the architecture lies 
the middleware software layer that supports the deployment of UbiComp applications 
by managing dynamically the logical communication channels (synapses) between the 
nodes of the distributed system.  The I/O unit and connectivity layers administer the 
communication intricacies (e.g., commercial of the shelf sensor device communication 
protocols, etc.) in terms of the sensory and interaction communication views 
respectively of the system component. 

 

 

sensors

low-level context acquisition
(sensory communication)

measurements

observations
Knowledge 

Base
Domain Knowledge
Inferred Knowledge

Rules

actuators

other 
artifacts

Shared 
Knowledge

context delivery & reaction 

Shared 
Knowledge

actions

decision making
(Inference)

high-level context 
interpretation/aggregation 

Figure 2. Smart object modular 
structure. 

Figure 3. Smart object context management 
process. 

 
Sensors together with the control circuitry are responsible for transforming 

measurements from the object’s environment to observations (e.g. proximity, pressure, 
luminosity, etc.) in a digital form. Digital data are communicated to the computational 
unit using appropriate hardware interfaces (e.g., RS232, USB, Bluetooth, IrDA etc.). 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 
 

 

6 

The computational unit runs the required middleware software and based on the data 
received from sensors and actuators and possibly data received from other smart objects 
via the networking unit, performs a number of actions which can be manifested either to 
the environment via the object’s actuators or to other objects via the networking 
module. Finally, the networking unit is a wired or wireless unit (e.g. 802.11) which 
facilitates the communication with other smart objects and end-user tools. 

At a high level, the process performed by a smart object can be viewed as a context 
management process. We model this process as a measurement-reasoning-actuation 
control cycle (Figure 3). This logical view of an artifact’s operation is comparable to a 
generic agent architecture [5]. Smart objects model their state on the world on the basis 
of their self representation (domain knowledge), observations of the world through 
sensors and sharing of knowledge with other smart objects. The Knowledge Base 
contains the domain knowledge of an artifact and dynamic knowledge about its 
situation in the environment. This knowledge is structured into facts and into rules. An 
inference component processes the knowledge of an artifact as well as knowledge 
provided by other artifacts either to infer further knowledge and/or to infer actions for 
the artifact to take in the environment. 

 
3. An example application 

 
 

 
 

Figure 4. Combined artifacts in the UbiComp application editor. 
 

The concepts presented in the previous section can be better illustrated with an example 
application. Pat is a 27-year old single woman, who lives in a small apartment near the city 
centre and studies Spanish literature. A few days ago she had given herself a very unusual 
present: a few furniture pieces and other devices that would turn her apartment into a smart 
one! The package included an eDesk (it could sense objects on top, proximity of a chair), an 
eChair (it could tell whether someone was sitting on it), a couple of eLamps (one could 
remotely turn them on and off), and some eBook tags (they could be attached to a book, tell 
whether a book is open or closed). Pat had asked the store employee to pre-configure some of 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 

 

 

7 

the artifacts, so that she could create a smart studying corner in her living room. Her idea was 
simple: when she sat on the chair and she would draw it near the desk and then open a book 
on it, then the study lamp would be switched on automatically. If she would close the book or 
stand up, then the light would go off. 

The behavior requested by Pat requires the combined operation of the following set 
of artifacts: eDesk, eChair, eDeskLamp and eBook. The properties and plugs of these 
artifacts are shown in Table 1 and are manifested to Pat via the UbiComp Application 
editor tool, an end-user tool that acts as the mediator between the plug/synapse 
conceptual model and the actual system [6]. Using this tool Pat can combine the most 
appropriate plugs into functioning synapses as shown in Figure 4.  

In the case of the synapse between eDesk.ReadingActivity and eDeskLamp.Light 
plugs, a data type compatibility issue arises. To make the synapse work, Pat can use the 
UbiComp Editor to define mappings that will make the two plugs collaborate. 

Table 1. The properties, plugs and functional schemas of each artifact 
participating in the eStudy application example. 

Artifact Properties Plugs Functional Schemas 

eChair – Sensing chair 
occupancy (C1) 
– Transmitting 
object type (C2) 

Occupancy:      
{OUT | Boolean} 

eChair.C1  read(pressure-sensor) 
eChair.C2 is an attribute 

Occupancy  {eChair.C1, eChair.C2} 

   
eBook – Sensing open/ 

close (C1) 
– Transmitting 
object type (C2) 

Opened:            
{OUT | Boolean} 

eBook.C1  read( bend-sensor) 
eBook.C2 is an attribute 

Opened  {eBook.C1, eBook.C2} 

   
eDesk – Sensing objects 

on top (C1) 
– Sensing 
proximity of 
objects (C2) 

BookOpenOnTop:      
{IN | Boolean} 
ChairInFront:           
{IN | Boolean} 
ReadingActivity:     
{OUT | Boolean} 

eDesk.C1  read(RFID-sensor) 
eDesk.C2  read(proximity-sensor) 

IF eDesk.C1 == eBook.C2 AND  
     eBook.C1 == TRUE  
THEN BookOpenOnTop  TRUE  
ELSE  BookOpenOnTop  FALSE 

IF eDesk.C2 ==TRUE AND  
    eChair.C1 ==TRUE 
THEN ChairInFront  TRUE  
ESLE  ChairInFront  FALSE 

IF BookOpenOnTop ==TRUE AND  
     ChairInFront ==TRUE   
THEN ReadingActivity  TRUE  
ELSE ReadingActivity  FALSE 

   
eDeskLamp Light service (SL()) Light:      

{IN | Enumeration} 
IF eDesk.ReadingActivity THEN SL(ON) 
ELSE SL(OFF) 

 
The definition of the functional schemas of the artifacts, that is the internal logic that 

governs the behavior of each artifact either when its state changes or when a synapse is 
activated are predefined by the artifact developer. Rules that require identification of 
the remote artifact, can be specified using the property schema information which is 
available in the representation of each of the two artifacts that participate in a synapse. 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 
 

 

8 

The eBook, eChair and eDesk comprise an artifact composition whose emergent 
property is manifested via the ReadingActivity plug. This plug allows the connection of 
this composition to other artifacts or compositions. Any artifact composition can be 
edited to extend the functionality of the application. For example, consider that Pat also 
buys an eClock and wants to use it as a 2 hour reading notification. The eClock owns an 
alarm plug that when activated, via a synapse, counts the configurable number of hours 
and then rings the alarm. To implement her idea, what Pat has to do is to use the 
UbiComp Application editor to create a synapse between the ReadingActivity plug of 
the eDesk and the alarm plug of the eClock and specify the number of hours in the 
Properties dialog box of the eClock. 

 
4. Middleware support 

The idea of building UbiComp applications out of components is possible only in the 
context of a supporting component framework that acts as a middleware. The kernel of such a 
middleware is designed to support basic functionality such as accepting and dispatching 
messages, managing local hardware resources, affording the plug/synapse interoperability and 
providing a semantic service discovery protocol as will be explained in the following. 
 
4.1. Kernel 

To implement and test the concepts presented in the previous sections, we have developed 
a middleware layer that provides a uniform abstraction of artifact services and capabilities 
and shields the application programmer from the complexities of the underlying data 
communications and sensor/actuator access components of each distributed node. The 
middleware supports the features of our programming model and provides UbiComp 
application designers and developers with a runtime environment to build applications out of 
artifact components. 

The outline of the middleware architecture is shown in Figure 5. The kernel is 
designed to have a low memory footprint and supports only accepting and dispatching 
messages, managing local hardware resources (sensors/actuators), performing context 
state evaluation, and implementing the plug/synapse interaction model. The kernel is 
also capable of managing service and artifact discovery and binding in order to 
facilitate the formation of the proper synapses in a dynamic way. Extending the 
functionality of the kernel can be achieved through plug-ins, which can be incorporated 
via a Plug-in Manager. Using ontologies, for example, and the Ontology Manager plug-
in, all artifacts can use a commonly understood vocabulary of services and capabilities, 
in order to mask heterogeneity in context understanding and real-world models. 

The Process Manager (PM) is the coordinator module and the main function of this 
module is to monitor and execute the reaction rules defined by the supported 
applications. These rules define how and when the infrastructure should react to 
changes in the environment. Furthermore, it is responsible for handling the memory 
resources of an artifact and caching information of other artifacts to improve 
communication performance when service discovery is required.  

The State Variable Manager (SVM) handles the runtime storage of artifact’s state 
variable values, reflecting both the hardware environment (sensors/actuators) at each 
particular moment  and properties that are evaluated based on sensory data and P2P 
communicated data.  

 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 

 

 

9 

Property
Evaluator (PE)

State
Variable
Manager

(SVM)

Process Manager
(PM)

Resource Discovery & Binding (RDB)

Middleware
Kernel

Plug/Synapse API

Application
layer

UbiComp Applications

Knowledge
Base (KB)

 
 

Figure 5. Middleware kernel architecture. 
 

The Property Evaluator (PE) is responsible for the evaluation of artifact’s properties 
according to its functional schema. In its typical form the PE is based on a set of rules 
stored in the artifact’s Knowledge Base (KB) and an Inference Engine (IE) that govern 
artifact transition from one state to another. The IE sub-module processes the facts of 
an artifact as well as facts provided by other artifacts to infer further knowledge and to 
infer actions for the artifact to take. Note that the rules stored in an artifacts’ rule base 
may only contain parameters, states and structural properties that are defined into the 
artifacts’ private KB. For the initialisation of the context management process apart 
from the rules a set of initial facts are necessary. For example an initial fact may define 
the existence of an artifact by denoting its parameters, states and reactions that can 
participate in its rules and their initial values. In order to create such an initial fact the 
PE uses knowledge stored in the artifacts’ KB.  

The IE supports the decision-making process and it is based on a simple Prolog 
interpreter that uses backward-chaining with depth-first search as inference algorithm. 
Compromises in terms of expressiveness and generality were necessary to facilitate 
implementation  on a micro-controller platform. For example, backtracking is only 
possible over local predicates. In order to initialise its process execution, the IE needs 
the artifact initial facts and the rules stored in the KB. The IE is informed for all the 
changes of parameters values measured by artifacts sensors. When it is informed for 
such a change it runs all the rules of the rule base. If a rule is activated, this module 
informs the PM for the activation of this rule and for the knowledge that is inferred. 
The artifacts state and reaction is determined from this inferred knowledge. 

The KB describes also the services that artifacts provide so that to support the 
service discovery mechanism. The PM provides methods that query the KB for the 
services that an artifact offers as well as for artifacts that provide specific services. The 
Resource Discovery and Binding module gets from the PM the necessary knowledge 
stored in an artifact KB relevant to its services, in order to implement the service 
discovery mechanism. Finally the PM using this mechanism and a service classification 
can identify artifacts that offer similar semantically services and propose objects that 
can replace damaged ones. Therefore, it supports the deployment of adaptive and fault-
tolerant UbiComp applications. 

 
4.2. Resource Discovery and Binding (RDB) 

Service and resource discovery will play an integral role in the realization of smart 
systems. Since mobile devices are very resource limited, in order to reduce the significance of 
these limitations they should be able to discover and use the resources of surrounding devices. 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 
 

 

10 

As another example, a service discovery mechanism is needed so that if a synapse is 
broken, e.g., because of an artifact’s failure, another artifact that offers a similar 
semantically service could be found. In the example application scenario discussed 
previously if the synapse between eDesk and eDeskLamp is broken, because of a failure 
at the eDeskLamp, a new artifact having a property that provides the service “light” 
could be found. Thus for a UbiComp environment this mechanism must be enhanced to 
provide a semantic service discovery. This means that it must be possible to discover all 
the relevant services. 

Since for the UbiComp applications a semantic service discovery mechanism is 
useful and the replacement of artifacts depends on the services that artifacts offer, a 
service classification is necessary. In order to define such a service classification we 
first identified some services that various artifacts may offer; some results of this work 
are presented in Table 2. From these results it is clear that the services offered by 
artifacts depend on artifacts’ physical characteristics and their sensors/actuators. 

Table 2.  Services offered by artifacts 

Artifact  Offered services 
eLamp  switch on/off, light, heat 
eDeskLamp switch on/off, light, heat 
eBook  open/close, number of pages, current page 
eDrawer  contains objects yes/no, number of objects, open/close, locked/unlocked 
eMoodCube current position 
eMobilePhone send SMS, send email, make phone call, get calendar, get contacts 
eMusicPlayer  sound, sound volume, kind of music, play/pause/stop, next/previous track 
eCarpet  object on it yes/no, objects’ position, pressure, weight, frequency 
 

Next we had to decide how we should classify the services. The classification 
proposals that we elaborated are the following: by object category, by human senses 
and based on the signals that artifacts’ sensors/actuators can perceive/transmit.  

 
4.2.1. eRDP protocol 

 
We have defined a lightweight Resource Discovery Protocol for eEntities (eRDP) 

where the term resource is used as a generalization of the term service. eRDP is a 
protocol for advertisement and location of network/device resources with a semantic 
description. We have followed the architecture of the Service Location Protocol [7] and 
defined three actors in the eRDP : (i) Resource Consumer (RC), an artifact that has a 
need for a resource, possibly with specific attributes, initiating for that purpose a 
resource discovery process, (ii) Resource Provider (RP): an artifact that provides a 
resource, also advertises the location and attributes of the resource to the Resource 
Directory, provided that there is one, and (iii) Resource Directory (RD): an artifact that 
aggregates resource information into a repository on behalf of artifacts that are less 
equipped. The RD is an optional component of the discovery protocol and its aim is to 
improve its performance. In the absence of an RD, RCs and RPs implement all RD’s 
functions with multicast/broadcast messages with the optional and undeterministic use 
of resource cache within each artifact. When one or more RDs are present (Figure 6), 
the protocol is more efficient, as an RC or RP uses unicast messages to the RDs. 

 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 

 

 

11 

Resource 
Provider (RP)

Resource 
Directory (RD)

multicast/broadcast

unicast

Resource 
Consumer (RC) 

PUBLISH(res_spec)

ACKNOWLEDGE(status)
REPLY(res_spec)

REQUEST(res_class, attr)

REQUEST(RD) REQUEST(RD)

RD_ADVERTISE(RD_spec) RD_ADVERTISE(RD_spec)

 
 

Figure 6.  eRDP with a RD facility. 
 
The protocol makes use of typed messages codified in XML. Each message contains 

a header part that corresponds to common control information including local IP 
address, message sequence number, message acknowledgement number, destination IP 
address(es) and message type identification. The prototype was written in Java using 
J2ME CLDC platform. kXML is used for parsing XML messages. 

One of the KB uses is to describe the services that the artifacts provide and assist the 
service discovery mechanism. In order to support this functionality the middleware 
kernel provides methods that query the KB for the services that a plug provides as well 
as for the plug that provide a specific service. Therefore, the middleware provides to 
the calling process the necessary knowledge stored in artifact KB relevant to the artifact 
services, in order to support the service discovery mechanism. Similarly the middleware 
can answer queries for plugs compatibility and artifacts replaceability. 

Suppose now that in the scenario discussed in the previous section the synapse 
between eDesk and eDeskLamp is broken. When this happens, the system will attempt 
to find a new artifact having a plug that provides the service “light”. The eDesk system 
software is responsible to initiate this process by sending a message for service 
discovery to the other artifacts (RD may be present or not) that participate in the same 
application or are present in the surrounding environment. This type of message is 
predefined and contains the type of the requested service and the service’s attributes. A 
description of the eLamp resource is shown in Figure 7. 

The options related to the communications module that are defined are the multicast 
address and port used for the discovery of artifacts, and the TCP port on which this 
artifact should accept P2P connections. Then attributes of the local artifcat are defined, 
like its name, and the properties. In the XML description the physical properties of the 
artifact are defined as name-type-value triples, e.g. the eLamp from which the 
configuration file was taken can give maximum 50Lux luminosity. 

When the system software of an artifact receives a service discovery message, 
forwards it to the PM of the middleware kernel. Assume that the artifact eLamp is 
available and that this is the first artifact that gets the message for service discovery. 
The eLamp PM first queries the KB of eLamp in order to find if this artifact has a plug 
that provides the service “light”. 

If we assume that the eLamp has the plug “LampLight” that provides the service 
light, the PM will send to the system software a message with the description of this 
service. If such a service is not provided by the eLamp, the PM queries the eLamp KB 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 
 

 

12 

in order to find if another artifact, with which the eLamp has previously collaborated, 
provides such a service. In case of a positive answer it returns as a reply the description 
of this service. If the queried artifact, in our example the eLamp, has no information 
about an artifact that provides the requested service, the control is sent back to system 
software, which is responsible to send the query message for the service discovery to 
another artifact. 

 
<resSpec> 
 <resName> eLamp </resName> 
 <resClass> light </resClass> 
 <resId> ELamp@1066821815562 </resId> 
 <commConfig> 
      <TCP_PORT>6500</TCP_PORT> 
      <MULTICAST_PORT>6501</MULTICAST_PORT> 
      <MULTICAST_ADDR>225.225.225.225</MULTICAST_ADDR> 
 </commConfig > 
 <resData>  
         <attrName=“power” type=”bool” value=”false” 
      <attrName=”luminocity” type=”integer”, value=”50” 
 </resData> 
 <resTimestamp> 4758693030 </resTimestamp> 
 <resExpiry> Never </resExpiry> 
</resSpec> 
 

Figure 7. XML description of eLamp resource 
 

4.2.2 Dynamic Binding 
For a UbiComp application the knowledge of the exact location of the artifacts and 

services that are required to realize the application may be quickly become obsolete. For 
instance, the dynamic nature of AmI environments can cause problems during application 
execution such as network or service unavailability. Dynamic binding is used to address the 
above issues. Given an abstract task specification dynamic binding tries to locate, synthesize 
and bind the services that are required to implement the task. Services are provided through 
plugs abstractions with semantically rich interfaces. Dynamic binding is performed by 
the Binder Algorithm as outlined in Figure 8.  

The binding algorithm receives as input an abstract task specification (which may be 
read from a planning module, a user profile etc.), which describes a process to achieve a 
task without reference to actual artifacts, but to semantically rich descriptions of the 
services required in each step. The algorithm classifies these descriptions into Plugs 
(i.e. service providers/consumers), Synapses (between plugs) and Constraints (on the 
Synapses). Then, for each Synapse, it tries to map the specified input and output onto 
specific Plugs offered by a specific set of artifacts. When such a mapping is achieved, 
the corresponding artifacts (which possess the source and target Plugs) are informed 
about the established Synapse, so that they can start communicating without further 
mediation. The established Synapse is recorded in the abstract task specification. In the 
end, this will be transformed into a concrete task specification, listing the actual 
artifacts that realize the task and their interaction. An abstract task specification is a 4-
tuple T of the form (sourcePlugs, targetPlugs, Synapses, Constraints) such that: 
 sourcePlugs is a sequence of distinct properties and/or services; 
 targetPlugs is a sequence of distinct properties and/or services; 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 

 

 

13 

 Synapses is a set of pairs of the form (origin, destinations) such that if σ is a synapse, then: 
 origin(σ) is a source plug of T; 
 destinations(σ) is a set of properties of T not containing origin(σ). 

 Constraints are either atomic or compositional as defined in Section 2.1 
 

Algorithm Binder 
Input: Abstract task specification T 
 parse Τ into sourcePlugs, targetPlugs, Synapses, Constraints 
 forall σ  Synapses  
  send origin(σ) to eRDP 
  send destinations(σ) to eRDP 
  receive eRDP Reply  
  if corresponding artifacts satisfy semantic criteria and  
   constraints then cache artifact info 
  endif 
  create a Synapse message 
  send Synapse message to service provider artifact to bind 
  send Synapse message to service consumer artifact to bind 
  record Synapse in Concrete task specification 
 endfor 
end  

 
Figure 8. Binder algorithm 

 

<PLUG> 
 <NAME> Book State Plug </NAME> 
  <DESCRIPTION> Outputs boolean values denoting its open/closed  
  state. </DESCRIPTION> 
 <INTERFACE> #OPENED# </INTERFACE> 
   <TYPE> OUTPUT </TYPE> 
 <DATATYPE> BOOLEAN </DATATYPE> 
</PLUG> 
<PLUG> 
   <NAME> Book Luminocity Plug </NAME> 
   <DESCRIPTION> Outputs integer values to describe the luminocity 
  level on its surface. '1'=INADEQUATE / '2'=COMFORTABLE / '3'=TOO  
  MUCH </DESCRIPTION> 
  <INTERFACE> #LUMINOCITY_PLUG# </INTERFACE> 
   <TYPE> OUTPUT </TYPE> 
  <DATATYPE> INTEGER </DATATYPE> 
</PLUG> 

 
Figure 9. XML description of eBook plugs 

 
It is implied that the implementation of a task specification can be represented as a 

graph of connected artifacts. A synapse associates a source plug of one artifact, the 
origin of the synapse, with the target plug of one other artifact, the destination of the 
synapse. For example, Figure 4 shows the internal structure of the task specification 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 
 

 

14 

that corresponds to the eStudy application example in the context of the editing tool. 
Figure 9 gives an example of plug descriptions in XML. 
 

Synapse establishment can be also performed at runtime in the context of the Binder 
algorithm. As an example, let’s consider the synapsing process among the 
‘ReadingActivity’ plug of the eDesk and the ‘Light’ plug of the eDeskLamp. Figure 10 
shows the sequence of messages for the synapse establishment. Synapse request occurs 
after the Binder algorithm has discovered the artifacts that provide the required 
services. The eDesk sends a “Synapse Request” message to the eDeskLamp. The 
message contains information concerning the eDesk and its ReadingActivity plug as 
well as the name of the Light plug. When the eDeskLamp receives the message it first 
checks the plug compatibility of the ReadingActivity and Light plugs. In the example 
the Reading plug is output and the Light plug is input, so the direction compatibility 
test is passed. Data type incompatibility does not halt the synapsing process, however it 
needs to be dealt via the use of mappings. Following, an instance of the Light plug is 
created in the eDeskLamp and a positive response is sent back to the eDesk. The 
instance of the Light plug is notified for changes by its remote counterpart plug, created 
by the eDesk, and this interaction serves as an publish/subscribe channel. In case of a 
negative plug compatibility test, a negative response message is sent to the eDesk, 
while no instance of the ReadingActivity plug is created.  

After connection has been established, the two plugs are capable of exchanging data. 
Output plugs (ReadingActivity) use specific objects to encapsulate the plug data to 
send, while input plugs (Light) use specific event-based mechanisms to become aware 
of incoming plug data. When the value of the shared object of the ReadingActivity plug 
changes the instance of the Light plug in the eDeskLamp is notified and a synapse 
activation message is sent to the eDeskLamp. The eDeskLamp receives the message and 
changes the shared object of its ReadingActivity plug instance. This, in turn, notifies 
the target Light plug, which reacts as specified. 

 

 
 

Figure 10. Synapse establishment sequence diagram. 
 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 

 

 

15 

Finally, in Figure 11 we give a few code snapshots on the implementation of the update() and 
processConstraints() methods shown in the above sequence diagram. 
 
public Synapse(String sArtifactID, String sPlugName, String 

tArtifactID, String tPlugName) { 

… 

    } 

 

public boolean update(String name, String value) { 

   if (isInferenceInstalled) { 

StateChangedEvt e = new StateChangedEvt(name, value); 

informInferenceEngine(e); 

return true; 

   } else { 

return false; 

   } 

} 

 

public boolean processConstraints(Ruleset constraints)  { 

… 

IRuleManager ruleManager =  

RuleManager.getRuleManager();                                       

int rulesSize = constraints.getAttributes().length; 

for (int i=0;i<rulesSize;i++) { 

     Element ruleElement = ruleset.getAttribute(i); 

     ruleManager.setRules(ruleElement); 

} 

      try { 

inferenceEngineEntity.startInferenceEngine(); 

} catch (Exception e) { 

     System.out.println("Could not start Engine"); 

      } 

…. 

} 

 
Figure 11. Supporting code snapshots. 

 
4.3. Implementation 

The middleware prototype has been implemented in J2ME (Java 2 Micro Edition) 
CLDC1 (Connected Limited Device Configuration), which is a very low-footprint Java 
runtime environment. The proliferation of end-systems, as well as typical computers 
capable of executing Java, make Java a suitable underlying layer providing a uniform 
abstraction for our middleware. Furthermore, it facilitates deployment on a wide range 
of devices from mobile phones and PDAs to specialized Java processors. 

Up to now, our middleware has been tested in laptops, IPAQs, in the EJC (Embedded 
Java Controller) board 2  and on a SNAP board 3 . Both EJC and SNAP boards are 
network-ready, Java-powered plug and play computing platforms designed for use in 
embedded computing applications. The EJC system is based on a 32-bit ARM720T 
processor running at 74 MHz and has up to 64Mb SDDRAM. The SNAP device has a 
Cjip microprocessor developed by Imsys which has been designed for networked, Java-
based control. It runs at 80 MHz and has 8 Mb SDDRAM. The main purpose of 
programming our middleware to run on these types of boards was to demonstrate that 
the system was able to run on small embedded-internet devices.  

The code size of the current implementation of the middleware kernel is 
approximately 200 KB. Measuring the memory footprint is crucial in order to indicate 
that middleware can be executed on resource constraint devices. We measured the 
memory footprint of the middleware kernel running upon the Sun Personal Java on a 
Compaq IPAQ PDA reference system. The dynamic memory allocated depends on the 
number of plugs provided by an artifact as well as the number of synapses it 
                                                           
1 java.sun.com/products/cldc 
2 www.embedded-web.com/ 
3 www.imsys.se/documentation/manuals/snap_spec.pdf 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 
 

 

16 

participates. Using the JProbe Memory Profiler tool we measured that upon starting a 
smart object needs approximately 24 KB of memory for the initialization of the kernel 
components. Each plug costs 512 bytes in memory. An extra memory of 416 bytes is 
required for every plug participating in a synapse. Each synapse finally costs 856 bytes. 
The following formula shows memory footprint for an artifact with P plugs, when X 
plugs take part in Y synapses: Mem = 24KB + P*512 + X*416 + Y*856; For example, 
an artifact with three plugs and one synapse per plug, like eDesk in our case, requires 
approximately 29 KB. 

Using code instrumentation, we measured the average time for making a synapse and 
for communicating in our example application (Table 3). These measurements include 
the overhead of the IEEE 802.11b protocol and the discovery phase as specified 
previously, while messages exchanged vary from a few bytes to 1 KB. Synapse times 
refer to the amount of time needed from the point the user initiates the application up to 
the time this synapse is completed. We note that after synapses are established 
communication between objects is fast, with average time of a few hundreds of 
milliseconds, satisfying our requirement for real time response. 

Table 3. Example application set-up overhead 

 1st Synapse 2nd Synapse 3rd Synapse Data Exchanged 
Time (ms) 1832 1612 1622 400 
 
 

5. Scalability 

The consumption of bandwidth or the amount of traffic that a service/resource 
discovery protocol generates is a feature that is extremely important when devices are 
mobile and wireless like the networked everyday objects. Protocols that use fewer 
messages are more desirable because wireless bandwidth is a scant resource as well as 
mobile device power. We analyze the usage of bandwidth made by eRDP when a RD is 
present and when a RD is not present with an aim to identify the conditions under 
which the one case should be more appropriate than the other. The analysis process is 
based on the work presented in [8]. 

For the bandwidth usage analysis we assume that eRDP messages are encapsulated 
within network and MAC layer (e.g. 802.11b) messages. Consider the parameters 
REQ_SZ, REP_SZ, PUB_SZ, ACK_SZ and ADV_SZ, which represent the size of the 
corresponding messages (REQUEST, REPLY, PUBLISH, ACK and RD_ADVERTISE) 
of the eRDP. For the analysis we also assume that n is the number of RPs, m is the 
number of RCs. The analysis is divided in three phases: (i) RD Discovery (RDD), (ii) 
Resource Publications (RP) and (ii) Resource Lookup (RL).  

The bandwidth usage (BU), generated by the RDD phase when there is no RD entity 
is given by the following formula, given that the REQUEST messages are sent a 
constant of k times: 

 mnkSZREQBURDD withoutRD  __  (Eq. 1) 

The corresponding BU when an RD is involved is given below: 
   mnSZADVSZREQBURDD withRD  ___  (Eq. 2) 

The RP phase is necessary when there is at least one RD in the network, otherwise 
the incurred cost is zero. In the presence of a single RD, the amount of traffic in bytes, 
generated by this phase is given by the following equation: 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 

 

 

17 

 SZACKSZPUBnBURP ___   (Eq. 3) 

In the RL phase we have two kinds of messages, REQUEST and REPLY. In the case 
of a network without an RD entity, let’s assume that the REQUEST messages are sent a 
constant of λ times and that ω percent of the RPs return a reply. In the absence of an 
RD, and with a resource request frequency frr, the amount of traffic in bytes, generated 
by this phase is given by the following equation: 

 SZREPnSZREQfmBURL rrwithoutRD ___    (Eq. 4) 

In the case of a network with an RD entity, a unicast REQUEST message is sent to 
the RD and a unicast REPLY message is sent back to the RC. When more than one 
publication matches the requested resource the RD is responsible for selecting the most 
appropriate provider taking also into account routing information should this be 
available. Thus, the amount of traffic in bytes is given by the following equation: 

 SZREPSZREQfmBURL rrwithRD ___   (Eq. 5) 

Combining (Eq. 1) and (Eq. 4) we get the overall bandwidth consumption in a 
configuration without an RD. 

  






nfmSZREP

fmmnkSZREQBU

rr

rrwithoutRD

_

_
 (Eq. 6) 

Combining (Eq. 2), (Eq. 3) and (Eq. 5) we get the overall bandwidth consumption in 
a configuration with an RD. 

  
 mnSZADVSZACKSZPUBn

fmSZREPfmnSZREQBU rrrrwithRD




_)__(

_1_
 (Eq. 7) 

A useful assessment of the above analysis is the condition under which the 
bandwidth usage with an RD is less than the bandwidth usage without an RD, that is the 
condition such that BUwithRD < BUwithoutRD. Given the relative size of the eRDP message 
types where REP_SZ=PUB_SZ=ADV_SZ=L, REQ_SZ=0,6L and ACK_SZ=0.3L and if 
we assume that n=m and k=3 then by combining (Eq. 6) and (Eq. 7) we get the 
following expression: 

 





 6.06.1
19.0

rrf
n  (Eq. 8) 

Giving typical values to the above parameters (ω=0.1, λ=2, frr=1.5), which we expect 
to hold for the UbiComp application domain, we get that 10n . Therefore, the 
configuration with an RD leads to better bandwidth usage when the number of RCs/RPs 
is at least 10. Otherwise the introduction of the RD adds more overhead than a 
configuration without one. 
 
6. Related work and discussion 

Traditional middleware infrastructures like CORBA, Jini, UPNP have been used to 
address the needs of application developers targeting distributed systems. However, we 
have found that such systems are either too heavyweight to be applied to mobile hosts, 
or are not powerful and flexible enough to address the requirements of such systems. 
Furthermore, most of them are language or system dependent, and on the other hand, 
they try to provide as much functionality as possible, which leads to very complex and 
resource consuming systems, unsuitable for small devices. 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 
 

 

18 

There are systems that permit users to aggregate and compose networked devices for 
particular tasks [9]. However, those devices are not context aware but act more as 
service providers, e.g., Web services usually in the UPnP style. Approaches to 
modelling and programming such devices for the home have been investigated, where 
devices have been modeled as collections of objects [10], as Web services [11], and as 
agents [12]. However, there has been little work on specifying at a high level of 
abstraction how such devices would work together at the application level taking into 
account artifacts, which people can combine in dynamic ways. 

The approach for the dynamic binding of services used in our middleware is similar 
to the one used in the OASiS framework, which implements a service-oriented 
middleware for pervasive ambient-aware sensor networks [13]. OASiS enables a 
wireless sensor network application to adapt to network failures and environmental 
changes by employing a dynamic service discovery protocol. However, their approach 
uses fixed identifiers for the description of services, instead of the semantically rich 
interfaces supported by the plug abstraction in our case. A flexible composition 
algorithm for smart device services has been developed as part of the middleware 
infrastructure developed in the context of the EU-IST project AMIGO [14]. Based on 
service descriptions, the algorithm builds up relevant service composition in a given 
situation, using contextual information. The algorithm dynamically selects services 
using a semantic and contextual matchmaking algorithm and consistently compose them 
using Constraint Satisfaction Problem solving. 

Other research efforts are emphasizing on the design of ubiquitous computing 
architectures. For example, project “Smart-Its” [15] creates autonomous smart objects 
by attaching small computational devices to physical objects. However, this 
“augmentation” is not related in any way with their “nature”, thus the objects ends up to 
be just physical containers of the computational modules they host. Project 2WEAR 
[16], considers smart wearable objects whose digital self is not always related to their 
physical self, as many of the smart objects presented are just computational devices 
offering digital services (e.g. storage device). Furthermore, the functionality which is 
feasible without infrastructure support is not clear enough. Ambient Agoras [17] aims at 
providing situated services, place-relevant information, and feeling of the place to the 
users, so that they feel at home in the office, by using mobile and embedded 
information technology. “Ambient Agoras” aims at turning every place into a social 
marketplace of ideas and information where people can interact and communicate. 
However, this approach aims at building new smart objects from scratch rather than 
augmenting physical objects.  

The proposed component-oriented programming model and middleware have 
provided to our research team and others a useful medium for exploring new 
approaches on merging the physical and digital space in AmI environments. This 
happened by reusing and extending our framework to new application domains 
examined in research projects undertaken by our group and associate colleagues. We 
mention our effort to create digital interfaces to nature, in particular to selected species 
of plants, enabling the development of synergistic and scalable mixed communities of 
communicating artifacts and plants by providing each plant with a description of its 
properties and state to enable a seamless interaction in scenarios ranging from domestic 
plant care to precision agriculture [18]. Another direction is explored by the authors in 
the context of awareness systems. Awareness systems are a class of computer mediated 
communication systems that help individuals or groups build and maintain a peripheral 
awareness of each other. Such systems promise to address pressing social problems: 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 

 

 

19 

elderly living alone, families living apart for large parts of the working week, 
monitoring the well being of an ill relative, etc. In [19], we present how smart objects 
in a person’s environment can be used to capture and convey awareness information 
under this person’s control. 
 
7. Conclusions and future work 

We have presented a component-oriented programming model and middleware support 
services for building UbiComp applications that are composed out of smart objects on 
demand. Our middleware supports the integration of heterogeneous smart objects by 
implementing a high level interaction model suited to the end-user and providing dynamic 
discovery, synthesis and binding of services that allow the development of UbiComp 
applications that adapt to the dynamics of an AmI environment. 

Different smart object models may use different terms to describe the same concept 
and may follow different policies to perform the same task. As a consequence, 
applications and services developed for one system model often cannot be ported in 
other systems. One solution is to develop and discover mappings and relationships 
between different ontology-based systems, a process called ontology alignment [20]. 
The ontology alignment can be described as: given two ontologies each describing a set 
of discrete entities (which can be classes, properties, rules, predicates, or even 
formulas), find the correspondences, e.g., equivalence or subsumption, holding between 
these entities. To make our system available on a larger scale and adaptable to other 
systems developed for different models we aim to apply ontology alignment in order to 
find those elements which have the same intended meaning. 

 
Acknowledgement 

Part of the research described in this paper was conducted in the ATRACO (ICT-
216837) project. The authors would like to thank the anonymous reviewers for their 
suggestions for improving this paper.  
 
References 
[1] A. Kameas,  S. Bellis, I. Mavrommati, K. Delaney, M. Colley, and A. Pounds-Cornish, “An architecture that 

treats everyday objects as communicating tangible components”, Proceedings of the first IEEE International 
Conference on Pervasive Computing and Communications, IEEE CS Press, pp. 115-122, March 23 - 26, 
2003. 

[2] C. Szyperski, “Component Software, Beyond Object-Oriented Programming”. ACM Press, Addison-Wesley 
NJ, 1998. 

[3] C. Goumopoulos, and A. Kameas, “Ambient Ecologies in Smart Homes”, The Computer Journal, 2008; doi: 
10.1093/comjnl/bxn042. 

[4] N. Drossos, and A. Kameas, “Building composeable smart objects”, 1st International Workshop on Design 
and Integration Principles for Smart Objects (DIPSO 2007), Innsbruck, Austria, 2007. 

[5] N.R. Jennings, “On agent-based software engineering”, Artificial Intelligence, vol. 117, no. 2, pp. 277-296, 
2000. 

[6] I. Mavrommati, A. Kameas, and P. Markopoulos, “An editing tool that manages the device associations”, 
Personal and Ubiquitous Computing, ACM, Springer-Verlag London Ltd., vol. 8 no. 3-4, pp. 255-263, 2004. 

[7] E. Guttman, “Service location protocol: Automatic discovery of IP network services”, IEEE Internet 
Computing, vol. 3, no. 4, pp. 71-80, 1999. 

[8] J. Govea, and M. Barbeau, “Comparison of Bandwidth Usage: Service Location Protocol and Jini” Technical 
Report TR-00-06, School of Computer Science, Carleton University, October 2000. 



International Journal of Multimedia and Ubiquitous Engineering 
Vol. 4, No. 3, July, 2009 
 

 

20 

[9] R. Kumar, V. Poladian, I. Greenberg, A. Messer, and D. Milojicic, “Selecting devices for aggregation”, 
Proceedings of the IEEE Workshop on Mobile Computing Services and Applications, IEEE CS Press, pp. 
150–159, 2003. 

[10] J. H. Jahnke, M. d’Entremont, and J. Stier, “Facilitating the programming of the smart home”, IEEE Wireless 
Communications, vol. 9, no. 6, pp. 70-76, 2002. 

[11] K. Matsuura, T. Hara, A. Watanabe, and T. Nakajima, “A new architecture for home computing”, 
Proceedings of the IEEE Workshop on Software Technologies for Future Embedded Systems, IEEE CS 
Press, pp. 71-74, 2003. 

[12] F. Ramparany, O. Boissier, and H. Brouchoud, “Cooperating autonomous smart devices”, Proceedings of the 
Smart Objects Conference (sOc'2003), pp. 182-185, 2003. 

[13] I. Amundson, M. Kushwaha, X. Koutsoukos, S. Neema, and J. Sztipanovits, “OASiS: A Service-Oriented 
Middleware for Pervasive Ambient-Aware Sensor Networks”, Technical Report ISIS-06-706, Institute for 
Software Integrated Systems, Vanderbilt University, 2006. 

[14] M. Vallee, F. Ramparany, and L. Vercouter, “Flexible composition of smart device services”,  Proceedings of 
the International Conference on Pervasive Systems and Computing, CSREA Press, pp. 165-171, 2005. 

[15] L. E. Holmquist, H.-W. Gellersen, A. Schmidt, M. Stro-hbach, G. Kortuem, S. Antifakos, F. Michahelles, B. 
Schiele, M. Beigl, and R. Mazé, “Building Intelligent Environments with Smart-Its”, IEEE Computer 
Graphics & Applications, vol. 24, no. 1, pp. 56-64, 2004. 

[16] S. Lalis, A. Savidis, A. Karypidis, J. Gutknecht, and C. Stephanides, “Towards Dynamic and Cooperative 
Multi-Device Personal Computing”, in: Streitz, N., Kameas, A., Mavrommati, I. (eds.) The Disappearing 
Computer, LNCS, Springer, Heidelberg, vol. 4500, pp. 182-204, 2007. 

[17] N. A. Streitz, C. Rocker, T. Prante, D. v. Alphen, R. Stenzel, and C. Magerkurth, “Designing Smart Artifacts 
for Smart Environments”, IEEE Computer, vol. 38, no. 3, pp. 41-49, 2005. 

[18] C. Goumopoulos, A. Kameas, and B. Oflynn, “Proactive Agriculture: An Integrated Framework for 
Developing Distributed Hybrid Systems”, Proceedings of the 4th International Conference on Ubiquitous 
Intelligence and Computing (UIC-07), Springer-Verlag, LNCS 4611, pp. 214-224, 2007. 

[19] C. Goumopoulos, A. Kameas, E. Berg, and I. Calemis, “A Service-Oriented Platform for Pervasive 
Awareness Systems”, Proceedings of the Service Oriented Architectures in Converging Networked 
Environments Workshop (SOCNE 2009), Bradford, UK, May 26-29, 2009. 

[20] M. Ehrig, “Ontology Alignment - Bridging the Semantic Gap”, Springer, New York, NY, US, 2007. 


