
International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

125

Network recourses (NOW) to remove the work load for Deriving rule
for Semantic Query Optimization and Speed up answering queries

Mohammed Jaffer Alhaddad
Department of Information Technology

malhaddad@Kau.edu.sal

Abstract

 The rapid growth in the size of databases and the advances made in Query Languages has
resulted in increased SQL query complexity submitted by users, which in turn slows down the
speed of information retrieval from the database. The future of high performance database
systems lies in parallelism. Commercial vendors’ database systems have introduced solutions
but these have proved to be extremely expensive.
This paper invistagete how networked resources such as workstations can be utilised by
using Parallel Virtual Machine (PVM) to Optimise Database Query Execution. An
investigation and experiments of the scalability of the PVM are conducted. PVM is used to
implement parallelism in two separate ways: (i) Remove the work load for deriving and
maintaining rules from the data server for Semantic Query Optimisation, therefore clears the
way for more widespread use of SQO in databases [1,2]. (ii) Answer users queries by a
proposed Parallel Query Algorithm PQA which works over a network of workstations,
coupled with a sequential Database Management System DBMS called PostgreSql on the
prototype called Expandable Server Architecture ESA [1,2,3,4]. Experiments have been
conducted to tackle the problems of Parallel and Distributed systems such as task scheduling,
load balance and fault tolerance.

1. Introduction

Exploiting idle workstations has attracted researchers, due to the fact that large portions of
the workstations are unused for a large time and the rapid growth in the power of
workstations. It has been observed that, up to 80% of workstations are idle depending on the
time of the day [5]. Commercially available Parallel Processing servers are expensive systems
and do not present a viable solution for small size businesses, therefore we are interested in
trying to find alternative parallel processing methods and query optimization methods. Such
methods as described in this report are by the utilization of a network of workstations.

The goal of this research is to utilize any available computers in a data server's local
network to optimize database query processing. Parallel Virtual Machine (PVM) is the
software that allows utilization of networked workstations as a single computational resource.
The effective use of PVM in enhancing the performance of Database Queries is presented.
Experiments have been carried out and suggested that the task performed on the cluster of
networked workstations are almost from 2 to 12 times faster than one workstation. The
project goal was pursued in two separate ways as in figure 1.

It is envisaged that these two separate ways to optimize query answering can be combined
in an operational system, in which one workstation receives client’s queries and chooses to
answer each query either by Semantic Query Optimization (SQO) and the original data
server, or else by using the cluster of Expandable Server Architecture (ESA) machines.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

126

The significance of the "Rule Derivation for SQO" component of my research is that it
greatly improves the applicability of semantic query optimization techniques. The main
objective of SQO is to use semantic knowledge (this knowledge has been represented in a
form called a ‘rule’) to transform an original query into an alternative query that produces the
same answer set but will be processed more efficiently by the data server and with lower-
execution cost. In addition to the importance of learning rules automatically and using the
derived rules for query optimization, these rules also need to be maintained to keep the rules
set accurate if the database can change. Therefore SQO becomes complex because the
workload to derive and maintain rules can cancel the benefits of faster query processing.

The demonstration of the performance of the systematic rule-set derivation algorithm,
which utilizes multiple workstations, removes this problem, see figure 2. This clears the way
for more widespread use of SQO in databases; the detail is shown in section 3.

The proposed “Expandable Server Architecture" (ESA) allows the data server to spread
from its original one workstation onto any other available computers in the local network.
The effect is to create a distributed database within that network, and so gain the benefits of
parallel processing, as described in section 4. The set of general-purpose computers in this
Expanded Server Architecture can be used as a separate data server from the original server
from which the data was obtained. Therefore two queries can now be simultaneously
processed: one on the original data server, and the other on the ESA cluster of workstations
server. This latter server executes its queries using the proposed parallel Query algorithm
PQA. The fault-tolerance problem has been tackled; if one of those servers is crashed the
current executed query will switch to the other server.

In order to demonstrate the proposed ESA idea a prototype system has been built and
experiments performed to measure execution times. A standard set of database tables has
been used and a standard collection of SQL queries, in order to represent a realistic query
processing environment. The TPC-H standard database benchmark provided the data and the
queries [6]. The author does not claim to draw any conclusions about performance on an

Query Process

Rule Derivation for SQO Expandable Server Architecture

Figure 1. The goal of the research.

Workstation

Workstation Workstation Workstation

Data Server

..

Master

Slave
Slave

Slave

Figure 2. Utilizing Workstations for Semantic Query Optimization.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

127

actual TPC-H benchmark. This database schema consists of 8 tables and was distributed
statically into a cluster of 8 workstations in the experiments. These 8 workstations are the
upper limit that has been provided for this research.

The proposed Parallel Query Algorithm (PQA) works as an Interface Manager over the
ESA, which receives the users queries and decomposes them into sub-queries as described in
section 4. In special case where the sub-query has error from an early termination of the query
execution an error message is returned to the user. The Query Processing Algorithm is
developed by employing both inter and intra-operation parallelism. The proposed algorithm is
able to perform adaptively based on two methods; the Dynamic rescheduling method where
the processors are allocated to tasks during runtime on the fly and the Merge-Join method.
There are two main factors that influence processor assignment; communication time and
load balancing [7]. Communication costs consist of the data transmission costs and the
overheads for coordinating multiple processors; it is an important component of the total cost
depending on the network environment and the database placement. On the other hand, load
balancing tremendously influences overall performance because the overall query execution
time or the individual phase execution time is determined by the longest execution time over
multiple processors. The experiments in section 5 represent the performance of the algorithm
on only a single data set and a few specific queries.

A huge amount of CPU and memory resources are required in order to efficiently process
distributed N-way join queries on huge data sets. Therefore, one main objective of this
architecture is to utilize the computer resources of the clustered networked workstations to
meet this demand. Thus, Parallel Query Algorithm PQA [3] implemented on client-server
architecture with configuration, where a master process running at the query initiated site
which manages a virtual pool of lightly loaded slave workstations. Each slave workstation can
dynamically join and quit the pool, depend on its participating to answer the original query.
At any moment, the computing power of the virtual pool can be fully utilized to process the
original query. The master and slaves are interconnected via a fast local area network.

The proposed “Expandable Server Architecture" ESA allows the data server to spread from
its original one workstation onto any other available computers in the local network by using
Parallel Virtual Machine PVM [9]. The effect is to create a distributed database within that
network, and so gain the benefits of parallel processing. The set of general-purpose computers
in this ESA can be used as a separate data server from the original server from which the data
was obtained. Therefore two queries can now be simultaneously processed: one on the
original data server, and the other on the ESA cluster of workstations server. This latter server
executes its queries using the proposed PQA. The fault-tolerance problem has been tackled; if
one of those servers is crashed the current executed query will switch to the other server.

The structure of the paper is as follow. In section 2 an investigation of using PVM to create
a cluster of workstation is conducted. Section 3, explains utilizing cluster of networked of
workstation to create a rule set for Semantic Query Optimization. An overview of ESA, PQA,
Dynamic schedule allocation and Data placement are given in section 4. Section 5 illustrates
the performance and valuation for PQA on ESA; on general purpose workstation and on
dedicated workstations, followed by conclusion in section 6

2. Environment and tools of the project

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

128

PVM is a software system that allows the combination of a number of computers, which
are connected over a network into a parallel virtual machine. This machine can consist of
computers with different architectures, running different operating systems and can still be
treated as if it were a single parallel machine. As the software is public domain this means
that many organizations which already have a network of workstations can get a parallel
machine for free and solve larger problems using existing hardware resources. PVM is a
small package about 1 Mbyte and easy to install. It needs to be installed once in all machines
that are desired to form the virtual machine. PVM system uses the message-passing model. In
this, sets of processes are invoked. Each process has its own local memory. Processes
communicate by sending and receiving messages, and thus the transfer of data between
processes requires co-operative operations to be performed by each process (a send operation
must have a matching receive).

PVM communication model assumes that any task can send a message to any other PVM
task and that there is no limit to the size or number of such messages. While all hosts have a
physical memory limitation that limits potential buffer space, the communication model does
not restrict itself to a particular machine's limitations and assumes sufficient memory is
available.

The PVM communication model provides asynchronous blocking send, asynchronous
blocking receive, and non-blocking receive functions. A blocking send returns as soon as the
send buffer is free for reuse, and an asynchronous send does not depend on the receiver
calling a matching receive before the send can return. There are options in PVM 3 that
request that data be transferred directly from task to task. In this case, if the message is large,
the sender may block until the receiver has called a matching receive. A non-blocking receive
immediately returns with either the data or a flag that the data has not arrived, while a
blocking receive returns only when the data is in the receive buffer.

2.1. PVM scalability

Some database tables are much too large to distribute to ordinary workstations, because the

local storage capacity on these general-purpose computers is not large enough to
accommodate the database tables. Therefore, there is an upper size limit for tables, beyond
which the data distribution approach is not applicable. Performance also declines with
increasing table size, before that upper size limit is reached. The time taken to send data from
the master workstation to a set of slave computers was investigated. Tables of progressively
increasing size (from 32560 to 846585 rows, representing database tables up to 93 Mbytes)
were sent to sets of 1, 2, 3... 8 workstations and the total send time measured. The following
graph displays the results. They show that even these relatively small tables suffer from
performance degradation related to their size.

Each table size is shown as a curve on the graph. Small tables appear as horizontal lines
near the bottom of the graph. Curves are seen to deviate progressively more from the
horizontal as the table size increases, but all become approximately horizontal when the
number of hosts becomes ‘sufficiently large’. Using more hosts reduces the size of the data
set that is sent to each computer, because the number of hosts divides the table. The graph
reveals that above a particular data size per computer the time to transfer data between Master
and slaves increases dramatically. All curves become horizontal when the number of table
rows per host is 150 000 or less. So 150000 rows for this 112-bytes-per-row table is the
maximum size per host (for these particular hosts) to avoid the delay. 150000*112 bytes = 16

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

129

Mbytes. For FAST operation the maximum table size is 16*H Mbytes, where H is the number
of workstations available for use. Larger tables can be processed, but time will increase
significantly because of the data transfer time component shown in the graphs.

Paging in the Receive Buffer memory space in the slave workstations causes the large
increase in data transfer time above 16 Mbytes per workstation. The next physical limitation
as table size increases beyond 16*H Mbytes is the size of the swap file used for page-
swapping, since our system operates in the virtual memory of the workstations. The size of
the swap file can be increased, up to the limitation of available disk space accessible to each
workstation. The swap file can be placed on any mounted drive, but a computer can slow
down dramatically if a remote (shared) disk is used for virtual memory swap space. A large
network accessible disk increases the maximum size of database tables that can be processed,
but the resulting slowdown of the workstation (which affects all programs running on it, not
just our background processes) is a clear drawback. The workstations used in the
experimental network are chosen as typical examples of ordinary PCs in current use, not state
of the art machines. Their internal disks are 10 Gbytes capacity. They have Intel PIII 450
MHz processors, 128 Mbytes of main memory, Windows NT or LINUX operating system,
and communicate by Fast Ethernet.

3. Obstacle in Semantic Query Optimization approach

Sending time plot for all data sets

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Hosts

Se
nd

in
g

tim
e

(s
ec

)

32560
65121
97682
130243
162804
195365
227926
260487
293048
325609
358170
390731
423292
455853
488414
520975
553536
586097
618658
651219
683780
716341
748902
781463
814024
846585Figure 3. Sending different size of data set over a cluster of 8 hosts

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

130

Semantic query optimization, uses semantic rules to transform a given query into

alternatives, and then selects the optimum query between the alternatives according to their
cost. These alternative queries can be different syntactically but must be the same
semantically.

There are various developed techniques for Semantic Query Optimization. To the best of
the author’s knowledge, there are no broad commercial implementations of SQO. There are
number of reasons for this lack of implementation. First and foremost, because SQO is
associated for many years with cases designed for deductive database, it was not thought be
useful for other uses such as relational database technology [10]. Second, it has been
commonly assumed that for a SQO to be of benefit, many integrity constraints have to be
defined for a given database. Otherwise queries could not be optimized semantically. Finally,
the speed of the CPU and the I/O at the time when the Semantic Query Optimization
developed was different than nowadays. [11] Shows that the cost of semantic optimization
could be comparable to the query execution cost.

Semantic Query Optimization approach can use the previous queries to improve the future
queries. Therefore the first query will be executed straight away because no rules exist in the
rule set. The conditions in the second query will add up into rule derivation process then to
rules set. In other words, the system builds its own rules thus it would answer a certain query.
Moreover, this rule would be useless when any database changes.

In this paper, the author used the attribute pair rule [4]. These rules are also created
automatically using QuickSort and Scan Bucket Algorithm for semantic query optimization.

3.1. Sorting Data Subsets for Rulesset Derivation and Maintenance

The data in a Database table or view is partitioned by the Master workstation to whatever

number of workstations is available. For an N-row table and H workstations, each Slave
workstation receives N/H rows. Partitioning is done by counting rows rather than examining
data values, so it is fast. The Master workstation also tells the Slaves which attribute to use as
antecedent for the current ruleset. Each slave then sorts its sub-table on that attribute, extracts
a rule set from the sorted data, and sends the rule set to the master workstation. The master
merges the sets of rules, one from each slave, into a single set for that antecedent attribute.
Receiving and merging rule sets is much faster than merging data sets, because rule sets are
small (e.g. 100 rules per set). It takes less than one second to receive and merge rulesets
derived from a 400000-row table, for example, for up to ten slaves.

When the antecedent attribute is numeric the master tells the slaves how many rules to
derive. The master also broadcasts the MIN and MAX values for the attribute so that all
slaves use the same set of sub-ranges as rule antecedents. The number of rules produced per
slave is therefore constant for numeric antecedents. Sorting the data makes it easy to extract a
histogram rule set since the antecedent attribute values are all arranged in order. It also makes
rule maintenance easy.

As shown in table 1, the measured time means the observed time taken to create a set of
rules (a histogram ruleset) from the 130239-row database table. The roughly hyperbolic curve
for measured time suggests xy = constant. In this case we might expect the constant to be 625
seconds, the measured time for one workstation; time to complete a task being inversely
proportional to the number of workers involved. Expected Time in the graph is therefore

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

131

calculated as 625/H where H is the number of workstations used in the local network. The
experimental results show even better speedup, as indicated in Figure 4. (Two machines are
more than twice as fast as one, etc). The explanation for this better than predicted
performance is partly the computational complexity of the Quicksort algorithm used. It has a
best case complexity of NlogN for N data items, and a worst case of N2. We divide N by H
and sort the smaller subsets, without the need to recombine the sorted subsets (only the
relatively small sets of rules are merged). A second factor in the speedup is the amount of
virtual memory paging involved. Each page swap between disk and main memory is a
significant time delay. Large data sets do proportionately more page swapping.

Table 1. Expected time and real experiment measured time

No. of Hosts, H 1 2 3 4 5 6 7 8 9

Measured time (sec) 625 282 167 91 61 36 16 8 5

Expected 625/H (sec) 625 313 208 156 125 104 89 79 70

Figure 4 shows that when 9 workstations are used it took only 5 seconds to distribute and
sort the data sub-sets, derive 9 separate histogram rulesets and merge them into a single
ruleset in the master workstation. The same operation performed on a single workstation is
seen to take over 5 minutes. The practical significance of this acceleration is that rules can
now be generated in response to a query and may be available in time to be used to optimize
the next query. This query-triggering of ruleset derivation is now a feasible alternative to
speculative generation of sets of rules from database tables before queries arrive. The
experiments were repeated with various database tables. They varied in antecedent type, table
size, degree of prior sorting and total number of workstations used. The graph above is
representative of the results to some extent, but larger database tables needed correspondingly
larger numbers of workstations to provide fast derivation. Furthermore, the minimum time
achievable increased with the size of the database table because data is sent to computers

Measured Time to Derive Rules from 130239 tuples
whose antecedent attribute is of String type

0

100
200

300

400
500

600
700

1 2 3 4 5 6 7 8 9

Number of hosts used in LAN

E
la

ps
ed

 T
im

e
(S

ec
.)

Measured Time

Predict Time (T/H)

Figure 4. Measure time for rule set derivation shows better than
linear speedup

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

132

before they start work on it. Data subsets must be sent one after another on the local network
until the whole table has been distributed. The network bandwidth therefore imposes a time
proportional to table size on the whole process. (Some workstations will have finished their
tasks before the final data subset is sent). This undesirable time penalty can be removed by
distributing database tables to workstations in advance. Then rulesets can be derived in a few
seconds by broadcasting only the derivation parameters. These are the identity of the
antecedent attribute, and if it is a numeric attribute the number of rules required in the set plus
the MIN and MAX values in that column of the whole table.

The master broadcasts to the slaves all data changes. The slaves then revise their rules and
notify the master of any changes. The master obtains an updated ruleset describing the
changed database table in less than 2 seconds by this method. Sorting data is usually a slow
operation. This would be a disadvantage for the current application, because rules are needed
for query optimization as soon as possible after a query reveals user interest in certain
columns of some virtual or base relation. If rules are not produced until the data is sorted then
sorting must be done as fast as possible. Our experiments show sorting is significantly
accelerated by the parallelism in distributing data to multiple workstations.

3.2. Scan Bucket Algorithm to Derive Rules for SQO

Rules can also be derived using a more direct algorithm, which scans once through the

database table. During the scan each tuple is mapped to a bucket in a set of buckets
corresponding to the required set of rules. Buckets correspond to bars in the histogram.

For numeric antecedent attributes the number of bars and their sub-range limits are known
in advance. So mapping each tuple to its bucket is achieved by matching its value for the
antecedent attribute to the relevant sub-range. For string antecedents a new bucket is added
for each new value of the attribute encountered during the scan. Each bucket has one rule
associated with it, which describes all tuples mapped to that bucket so far. The subset
descriptor evolves as more tuples are added to the bucket’s subset. For example, at some
point in the scan one subset descriptor has the form:

(15 �a �30) �c(71 �c �94) �(101 �g �156)
This indicates that all tuples encountered so far whose attribute ‘a’ value was in the range

15 �a �30 were found to have values of attribute ‘c’ in the range 71..94 and attribute ‘g’
values in 101..156. If the next tuple in the table has values a = 16, c = 96 and g = 121 then the
value of the antecedent attribute ‘a’ maps it to the bucket with antecedent range (15 �a
�30). The value c = 96 requires the range in the assertion describing all ‘c’ values to
increase from (71..94) to (71..96), and the value of ‘g’ does not change the descriptor because
121 agrees with the assertion that all ‘g’ values are in the range 101..156.

3.3. Measuring the algorithms Performance

The scanning algorithm for rule set derivation has the advantage that a single pass through

the data generates a rule-set. This is much faster than sorting. The disadvantage is that sorted
data, to support subsequent rule maintenance, is not produced. These measurements, as shown
in figure 5, are for a 42 Mbyte table with 390731 rows. The scanning algorithm times form a
horizontal line on the graph. Elapsed time was 30.5 ��3.5 sec, independent of H. The time to
derive the same set of rules by sorting the data subsets in the workstations varied from 4018
seconds for one workstation down to 205 seconds for six machines.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

133

Since the scan times are fairly constant, independent of number of processors, it is possible
to derive multiple rule sets simultaneously, one in each host. Each rule set has a different
antecedent attribute. The whole data table is now broadcast to N workstations so that the
derivation time for N sets of rules is still about 30 seconds for this 42 Mbyte table.

Two or more sets of rules can be produced during the scan in a single computer. A set of
buckets are provided for antecedent attribute ‘a’ and another set for antecedent‘d’, say, in
another rule set. Then in each tuple the value of attribute ‘a’ maps it to a bucket in the first
rule set, and the value of attribute ‘d’ maps it to a bucket in the second evolving rule-set.

3.4. Consistency of the Rules

The sorted data subsets in each workstation are useful for deriving rule. Moreover, it’s

useful for rule maintenance as well. It makes rule maintenance easy. The master broadcasts to
the slaves all data changes. The slaves then revise their rules and notify the master of any
changes. The master obtains an updated rule-set describing the changed database table in less
than 2 seconds by this method. For more detail and due to space restriction please [5, 9].

4. Network Resources for Answering Query

Query processing is the crucial part of the DBMS, which is responsible for generating the

best plan to execute the query. After receiving a query from the user, it has to be transformed
to a relational algebra expression and then parser during the transformation. The next step is
to generate Access Plans. From these plans the optimal one will be chosen, taking in
consideration the methods of accessing this data and the physical feature of these data. In
general, query processing involves the costs of processing Input/Output and communications.

Measuring the Performnce between QuickSort
& Scanning Algorithm

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9

Number of Hosts used in LAN

E
la

ps
ed

 T
im

e
(S

ec
.)

QuickSort

Scaning

Figure 5 Comparing ruleset Derivation times for QuickSort & Scan
Algorithm

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

134

The purpose of querying the database is not only satisfying the query but to minimize the
response time. Therefore, maintaining a reasonable level of performance is essential. The
response time of a query (the time difference between the time the query arrives and is
answered) is the sum of waiting time and execution time. The overall response time
essentially can be reduced by:

• Reducing the average waiting time of a query: this refers to the time difference
between when a query arrives and when it starts being executed.

• Reducing the execution time of a query: this refers to the time difference between the
start and finish of the execution of a query

4.1. Expandable Server Architecture ESA

Parallel Query Processing in database systems, may improve the Database Query

answering time and hence the overall response time of a query. The need for this
improvement has become apparent due to the increasing size of the relational database as well
as the support of high-level query languages like SQL, which allows users to present complex
queries.

Expandable Server Architecture (ESA) has been designed to accomplish that by utilizing
the resources of any Local Area Network (LAN) such as a small business. This means that we
are making use of the workstations that are connected in the LAN and saving the small
business from buying an expensive system. It is a special class of parallel processing systems,
which falls in the category of distributed-memory architecture where a set of workstations are
interconnected through a Local Area Network and they communicate with each other by
sending messages across the interconnection network. Each workstation has its own private
memory, disk, CPU and local communication (between disk, memory, and act) and has
access to a global interconnection network.

However, using cluster of workstations for database query processing poses several
problems and performance issues. As in NOW [12] there is no central control therefore it is
impossible to distribute the database among workstation, the database relations are stored in
central workstation. Like Parallel Database Systems, ESA with Parallel Query Algorithm
PQA [9] has partially central control and the database is partitioned across the clustered
workstations, this reduces overhead as the data does not need to be sent to the other
workstations.

4.2. Parallel Query Algorithm PQA

The combination of parallel processing and the database management gave rise to the
concept of Parallel Database. Parallel Query Algorithm PQA exploits the parallelism
available in ESA to bring high performance database, as it shown in figure 6. In NOW [14]
one workstation has control over the database and the others have access to database through
this workstation. As a query indicates which relations are involved and central database
workstation transfers all required relations to the workstation initiating the query. PQA
represents partially central control therefore the database relations can be partitioned and
distributed over the clustered workstations but deals with only read-query. By partially central
control we meant that PQA has metadata of how the database scheme is partitioned, the size
of each partition, data structure and location of the data partition. Due to the limited number
of workstations that small business might use and to limited number of workstations that this
study is dealing with, the non-query load (the back-ground load) is not considered. The other

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

135

problem is the work load as this study in not a simulation study as in NOW, a real data about
2GB is being use from TCP-H and Data Placement Algorithm is used to tune static data
distribution among the cluster of workstations to achieve an optimal performance.

4.3. Parallel Query Algorithm Components.

In this section a description of PQA and all it components will be presented. Figure 7

shows all the components and processes, which are executed on all workstations at the same
time. Query Manager is one of the components (it’s an arbitrary processing node) of PQA. At
the initialization stage this process receives user’s query and reads the metadata, then it is
responsible for undertaking the entire execution plan and keeping up a correspondence
between all nodes. Query Manager has two sub-components (Scheduler, Information Policy
and Decompose Query) these sub-components co-operate with each other in order to schedule
dynamically query execution plan. Information Policy reads the information from the
metadata. When a query arrives Decompose Query will in turn divide up this query in to sub-
queries. Scheduler will receive these sub-queries and then allocate each sub-query to a node
based on the knowledge received from the Information Policy by spawning a process (Slaves)
in those nodes, every node has a unique Processor Identifier (PID) that is used by scheduler
and slave to communicate with each other. When one of the Slave process finishes its task
(fetching data) it sends an acknowledgement to Scheduler with the structure of Intermediate
Relation IR and its size, Scheduler passes this information to Information Policy to update its
information, and makes a decision of the best optimal execution strategy for the next
operation either to send it to available Slave for joining operation or to sort IR based on the
join attribute if its not sorted. Slave is the other component of PQA, it starts fetching data
when it receives the sup-query from the scheduler then it sends an acknowledgment to
Scheduler telling it that the task is finished. Decision is made by the Scheduler and sent to
Slave telling it either to send IR in to peer Slave or to receive IR from peer Slave or sort its IR
according to join predicate. Since the behavior of the components varies and they receive
different acknowledgement messages, a table of message tags is maintained, see table 2. In
addition, for better understanding of the flow of interactions between processes, these
message tags are shown in figure 7.

Sub-query Sub-query Sub-query Sub-query Sub-query

Query Process Algorithm

Figure 6. The parallelism in ESA by PQA

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

136

Table 2. Message tags
Process Tag Identifier Tag Description

Scheduler

sub-query 10 Send sub-query to salve to start fetching data

how many partition 19 Send to slave how many partitions in table
start join IR 14 Send the salve to start joining

finish successfully 11 Send to slave to exit

Start sort IR 13 Send to slave to start sorting IR

Start send IR 18 Send to slave to start send IR to peer slave

Start receive IR 17 Send to salve to start receive IR from peer slave

Slave

Finish joining 15 Send to scheduler, join is finished

Finish sorting 20 Send to scheduler, sorting is finished

Finish Concatenate 9 Send to scheduler, finishing concatenate IR

Final result 16 Send to scheduler, final result
Fetch sub-query 12 Send to scheduler, finished fetching sub-query
Finish receive IR 22 Send to Scheduler, finished receiving IR

Finish send IR 21 Send to scheduler, finished sending IR
Commit_Sub-query 9 Finished fetching data.

Decompose Query

F
in

is
h

C
on

ca
te

na
ti

ng

Slave Slave Slave Slav Slave

Query Manager

Scheduler

Exchanging MessageFlow of information

Flow of request signal

Flow of Jobs

Information Policy

C
om

m
it

 Q
ue

ry

F
et

ch
in

g
su

b-
qu

er
y

F
in

is
h

Jo
in

in
g

 F
in

al

 R
es

ul
t

Update

 Info.

Main

Query

F
in

is
h

S
en

di
ng

F
in

is
h

R
ec

ei
vi

ng

S
ub

-Q
ue

ry

U
se

r
Q

ue
ry

F
in

al
 R

es
ul

t

Reading info.

F
in

is
h

S
or

ti
ng

Figure 7. Flow of Messages in PQA

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

137

4.4. Dynamic Load Scheduling.
A query evaluation plan is generated by the optimizer. The task of the optimization is

broken into phases for example scheduling, algebraic transformation, etc. The decision of
which step to apply next is based on cost estimations. Thus the quality of the optimization
result depends on the accurateness of the cost prediction. The problem that arises is how to
predict the optimal cost. To solve this problem, many information parameters can be obtained
during the query execution, this gives the accurate prediction needed. Consequently, pushing
certain optimization steps into the execution phase can alleviate the problem of optimization
in parallel database systems.

In the proposed algorithm PQA, the query is received by Query Manager Process and then
decomposed into sub-queries by using the Decomposition algorithm. A process in the remote
site in ESA handles retrieving the data by the algorithm called Slave see Appendix A and B
for the algorithms Slave and Query Manager respectively.

When a new user’s query arrives as shown in figure 8, an arbitrary processing node “Query
Manager” receives it and becomes the co-coordinator in charge of optimizing and supervising
this query (C1) and passes it to Scheduler. The Scheduler first determines the degree of
parallelism for the query by passing the main query to Decomposing Query (C2), it returns
sub-queries (C3). (C4) determines the number of Processing Sites (PSs) and number of disks
that hold the data partitions and passes it to Information Policy. Through exchanged messages
between Scheduler and Slave each operator can process the output of the previous one
without delay, by sending knowledge to the Scheduler telling it that the task has finished and
it is ready for next task (C5).Slaves start fetching data when they receive the sub-query (C6).
Accurate information such as size and structure of intermediate relation will be updated in

C1: receive query from client

C5: Exchanging Messages Scheduler

C2: Send Query to Decompose

C8: final result

Parallel Slaves Execution

C6: Fetching data from sites

Decompose
Query

Information
Policy

Metadata

 C4: Reading
 Info. From
 Metadata

 C7: update
 Information

C3: Decomposed Query

Synchronous
Messages

Query Manger User’s Query

Figure 8. Parallel Query Algorithms PQA.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

138

(C7). The Query will be considered to be answered when the slave sends a final result to
Scheduler (C8)

Message passing is used for transferring data and messages between the Scheduler and
Slave processes. An accurate description of the data is sent to the Scheduler such as, the size
of the intermediate result and which processes have finished their work. The Scheduler in turn
dynamically allocates the next step. This step is either to send a command to slave process to
sort their IR or to send a message to available slave to receive IR from the peer slave for
joining or concatenating.

All steps taken by the slaves are managed and controlled by the Scheduler. At a given
moment the Scheduler will order a slave to undertake a specific task. This is achieved by
exchanging messages as shown in figure 7. The dynamic scheduling of tasks at run time is
begun when a slave receives the message “FETCH SUBQUERY” to fetch a sub-query, then
the Intermediate Relation is obtained and known as IR. Subsequently the slave sends an
acknowledgement message “COMMIT_SUBQUERY” and the size of IR to Scheduler
indicating that fetching has been completed. Scheduler may on one hand send a message
“SEND_IR” of sending data to one slave after commanding that slave to sort IR according to
Join Rule. On the other hand it gives a separate order “RECEIVE_IR “ for receiving IR from
a peer slave, taking into consideration that IR size will be checked then the smallest IR will
migrate to peer slave to reduce the communication over head. The peer slave receives a
message “JOIN_IR” from the Scheduler to begin the joining whenever it accommodates both
the local IR and the peer IR. Then Enhanced Sort Merge takes place. The continuous iteration
stops only when the Scheduler sends the message “FINAL_RESULTS” to slave. Then the
slave will send the final IR to the Query Manager, for better understanding of the flow of
interaction between processes, these message tags are shown in figure 7.

An example of query execution procedure based on the Parallel Query Algorithm, which
divided the initial query into six sub queries, shows in figure above. The execution of such
procedure is susceptible to delays that arise when retrieving data from workstations because
of the different workload on each host and the overload is not constant because those hosts
are not dedicated hosts. PQA reacts to such delay by dynamic rescheduling when a delay is
detected using Scheduler and Slave algorithms [3] which they exchange messages at run time
[15].

For example the initial execution procedure for Q5 is shown in figure 9; however figure 9

shows other different execution procedure for Q5. Relation C_ is not ready to send their

Figure 9. Dynamic Load Scheduling in PQA

 S_ C_ R_ N_ O_ L_ S_ C_ R_ N_ O_ L_

Execution plan for Q5 Other execution plan for Q5

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

139

intermediate result but relation N_ is finished then PQA received the acknowledgment form
that host and at the run time sends a command to the host which holds S_ (as N_ is smaller
then that would reduce the communication cost) to receive the IR from N_.

4.5. Data Placement.

Data placement in ESA shows similarities with data fragmentation in distributed databases.

An obvious similarity is that fragmentation can be used to increase parallelism.

Another similarity is that since the data is much larger than applications, applications
should be executed as much as possible where the data resides. However, there are two
important differences with the distribution database approach. First, there is no need to
maximize local processing (at each node) since users are not associated with particular nodes.
Second, load balancing is much more difficult to achieve in the presence of a large number of
nodes. (e.g. one node ends up doing all the work while the other remains idle). Ndiaye
Yakham et al in [13] said that parallel DBMS offers at present only static partitioning
schemes.

Assumption:
P is the number of workstations
Ni the size of the relation, where i 1 to K
Nt the total size of the relations

 RF the chunk amount of that fits in the workstation
LCT the Largest Current Table
RFF Records to Transfer
CW Current Workstations

Let LCT = 0 // initialization variable
FOR (CW=1 to P) // starting loop
 RTT = RF
// move the right chunk of data in to variable
 IF (LCT = 0) THEN
 LCT = the largest current available relation //
get the largest tables form the DB scheme
 WHILE (CW not full) DO
 IF (Size(LCT >= RTT) THEN
 Allocate RTT records to CW

 // place the data into current workstation
 Declare CN as full
 Size (LCT) = Size(LCT) – RTT
// get the remained data from the largest table
 BREAK
 ELSE
 IF (Size(LCT) < RTT) THEN
 Allocate Size(LCT) to CW
// place the data into current workstation
 RTT = RTT – Size(LCT)
// get the remained data to full the workstation
 LCT = the next largest available relation
 ENDIF
 END WHILE
ENDFOR

Figure 10. Data Placement Algorithm

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

140

Adding a storage node is then a heavy operation that typically requires the manual
redistribution of data. The aim of Data Placement algorithm, as shown in figure 10, is to
avoid data skew which deteriorates the system performance by partitioning the relations
horizontally into equal sizes, then allocating them to different ESA environments which
might be 3, 4, 5, 6, 7 or 8 clustered workstations to achieve maximum performance and
minimum utilization of the resources

5. Performance Evaluation for PQA on ESA: –on general purpose
workstation and on dedicated workstations

The response time of a query is defined to be the elapsed time from the initiation of

query execution until the time that the last tuple of the query result is completed.

An experiment was carried out at an open resources lab accessible by wide variety of
users such as students, staff, researchers and system administrators (back up and
maintenance routines). Therefore, the respond time for Q5 executed in different time in
a day is variable as shown in figure 11.

Figure 12 shown 4 different types of environments, as follows: First - the response time of

executing Query 5 on the Expandable Server Architecture ESA shows that the final response
time decreased in comparison with that of the PSQL, which is the case of one workstation
without the support of PQA. As in the ESA environment, the sub-queries were executed in
parallel which saved considerable time in comparison with the other environments. Second -
by using PQA over a central database on a single workstation Single_PQA produced a better
performance than PSQL. In the case where one workstation was used with the support of
PQA, the sub-queries were executed sequentially and the time of each execution was added
up to give the overall response time to the main query and there is no time wasted for the
query optimizer to generate the optimum query. While in the case of PSQL, the time was

Performing Q5 in Different Time

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Number of running the experiment

E
la

ps
ed

 T
im

e
(S

ec
.)

Figure 11. Running query 5 in different time of the day

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

141

spent on the query process trying to find the best strategy plan for the execution of the query
and on sequential access to the data thus taking the most time. Third – the performance of
PQA over a cluster of dedicated workstation D_ESA showed the best response time because
there is no back ground process burden the performance.

6. Conclusion

In this project, PVM has clearly demonstrated its ability to use networked workstations as

a single computational resource able to exploit parallelism. Experiments of measuring the
scalability of PVM show that there is a limitation to the size of data that can be sent to one
workstation. This limitation is caused by the restricted size of the memory that can hold the
data at one time, which increases the sending time as page swapping will take place. The
sending time is thus reduced as the number of workstations is increased and the size of data is
decreased, this allows the data to be distributed and dealt with in a shorter time

The significance of the Rule Derivation for Semantic Query Optimization (SQO) is
that it greatly improves the applicability of semantic query optimization techniques.
The main objective of SQO is to use semantic knowledge (this knowledge has been
represented in a form called a ‘rule’) to transform an original query into an alternative
query that produces the same answer set but will be processed more efficiently by the
data server and with lower execution costs. However, the task of examining tables of
data to derive sets of rules can be a significant workload. The scanning algorithm is
amenable to parallel implementation by either horizontal or vertical partitioning of database
tables. The effect, in both cases, is the simultaneous derivation of N histogram rule sets by
partitioning to N workstations. Vertical partitioning, assigning different pairs of columns to
different workstations, gives a slightly slower ruleset derivation. However, it also has the
more significant drawback that if the data is subsequently sorted the operation will be very
slow. Experimental results for sorting data (by QuickSort Algorithm) on multiple
workstations show a useful sub-linear speedup. The effect of sorting by antecedent attribute
value is to cluster tuples for each rule antecedent; therefore sorted data allows direct access to

4 1 6
3 6 4

2 5 9
2 0 1

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

E
la

ps
e

ti
m

e
-s

ec

P S Q L S _ P Q A E S A D _ E S A

F o u r D i ffe r e n t En vi r o n m e n ts

T P C -H Q u e ry 5

Figure 12. Performance of PQA in four Different Environments

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

142

the data subset selected by a rule’s antecedent condition. Descriptors for that subset can be
revised, following data changes. A choice must be made about whether to derive rules by the
sorting “QuickSort Algorithm” or the Bucket Scanning algorithm. For ‘small’ tables the
sorting algorithm can be completed rapidly if enough workstations are used, so sorted data, as
well as a ruleset, is immediately available.

However, the Bucket Scanning algorithm is faster than the sorting algorithm and the
difference becomes increasingly significant as the amount of data per workstation increases.
The experimental results suggest that the scanning algorithm should do the initial derivation
of each set of subset descriptor rules, unless the table is small (less than 150000 rows) and at
least 9 slave workstations are available. This makes rules available for query optimisation as
quickly as possible at the time they are needed. Data in the slaves can be sorted after rule
derivation, to support rule maintenance. The master broadcasts to the slaves all data changes.
The slaves then revise their rules and notify the master of any changes. The master obtains an
updated ruleset describing the changed database table in less than 2 seconds by this method.

As for answering user’s queries, in general, in such networked of workstations
environment’s the I/O resources could have a great effect on the performance. Firstly, the
internal factors which include: mechanical design (size and number of platter surfaces,
actuator and spindle motor speed) and data recording (track and sector layout). Secondly, the
external factors such as disk interface (interface type, CPU utilization and command
overhead. Finally, the operating system, caching and virtual memory have an effect over all
the performance. Measuring the performance during a day of Q5 using PQA has shown a
variable respond time using PQA over ESA. Whereas D_ESA (Devoted networked of
workstation) has taken the network congestion and back ground process noise away and
obtaining better respond time.

References

[1] Mohammed Alhaddad, “Analysis Parallel Query Algorithm performance and efficiency by devoted
networked workstation”, International Symposium on Computer Science and its Applications, CSA-08,
proceedings published by IEEE CS, Hobart, Australia, October 13 - 15, 2008.
[2] Robinson J, Lowden B, Alhaddad Mohammed, “Distributing the Derivation and Maintenance of
Subset Descriptor Rules “,The 5 th World Multi-Conference on Systemics, Cybernetics and Informatics.
SCI 2001. July 22-25, 2001. Orlando, Florida USA.
[3] Mohammed Al Haddad, Jerome Robinson, “Using A Network of workstations to enhance Database
Query Processing Performance”, Euro PVM/MPI 2001, The 5th World Multi-Conference on Systemics,
Cybernetics and Informatics, July 22,2001, LNCS 2131 Page 352.
[4] Robinson J, Lowden B, Alhaddad Mohammed. “Utilizing Multiple Computers in Database Query
Processing and Descriptor Rule Management”. Dexa’01 September 3-7 2001, LNCS 2113, page 897.
[5] M. Mutka and M. Livny.: The Available Capacity of a Privately Owned Workstation Environment.
Performance Evaluation, Vol. 12, No. 4 (July 1991) pp. 269-284
[6] Meikel Poess, Chris Floyd: “New TPC Benchmarks for Decision Support and Web Commerce”, ACM
SIGMOD Record, 29(4) December 2000.
[7] Liu K. H., Y. Jiang and C. H. C. Leung, “Query execution in the presence of data skew in parallel
databases”, Australian Computer Science Communications, Vol. 18, No. 2, 1996, pp157-166.
[8] Mohammed Alhaddad Robinson J, “Extending Database Technology by Expanding Data Servers
“,The 6 th World Multi-Conference on Systemics, Cybernetics and Informatics. SCI 2002. July 14-18,
2002. Orlando, Florida USA.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

143

[9] Mohmmed Alhadadd, Jerome Robinson, Martin Colley: “Extending Database Technology by
Expanding Data Server”, the 6th World Multi-Conference on Systemics, Cyberntics and Informatics, SCI
2002, July 14-18 2002, Orlando, Florida USA.
[10] Q. Cheng, J. Gryz, F. Koo, C. Leung, L. Liu, X. Qian, and B. Schiefer, (1999): Implementation of
two semantic query optimization techniques in DB2 universal database. Proc. of VLDB, Pages 687—698.
[11] S.Shekar, J.Strivastava, and S. Dutta. (1988): A formal model of trade-off between optimization and
execution costs in semantic query optimization, Proc. 14th VLDB, Page 457-467, Los Angeles, CA,.
[12] Sivarama P. Dandamudi and Gautam Jain.: Architectures for Parallel Query Processing on Networks
of Workstations”. Proc. Int. Conf. Parallel and Distributed Computing Systems, New Orleans, (October
1997).
[13] Ndiaye Yakham,Wane Diene, A., Litwin, W., Risch, AMOS-SDDS: A Scalable Distributed Data
Manager for Windows Multicomputers To be presented at the ISCA 14th Intl. Conf. on Par. and Distr.
Computing Systems, Texas, USA, August 8-10, 2001.
[14] Thomas T. Anderson, D. Culler, and D. Patterson. A Case for Networks of Workstations: NOW”.
IEEE Micro, Feb. 1995.
[15] Mohammed Alhaddad, Martin Colley “Parallel Query Algorithm performance and Fault Tolerance” ,
DATAKON 2002 Database conference, October 19-22, Czech Republic.

Authors

.

Mohammed J. Alhaddad has received his Bsc in computer science
in 1986 and his master in 1999 and his PhD in 2006. He was
working in MIS and NCB.
He is acting vice dean of admission & Registration in the North
Border university in KSA, chairman of Information Technology
department in King Abdul Aziz university and chairman of the
Computer Science & IT club at King Abdul-Aziz University.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 2, April, 2009

144

