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Abstract

In the article a new threshold signature for dynamic groups without the trusted dealer is 
presented. The scheme is based on the Boneh, Lynn and Shacham short signature from the 
Weil pairing. The scheme provides an efficient solution especially for the family of dynamic 
groups. We prove the security of the scheme in the random oracle model assuming the 
chosen target CDH problem.

1. Introduction

Threshold  cryptography  gives  the  ways  to  distribute  trust  throughout  a  group  and 
increase the availability of cryptographic systems. The threshold cryptosystems (including 
the digital  signatures)  are traditionally based on the corresponding single-server system, 
together  with  the  setting  of  the  secret  sharing  protocol.  Two major  types  of  threshold 
cryptosystems deal with the group being the encryption group (threshold signature) or the 
decryption group (threshold decryption system). The dynamics of the corresponding group 
members and the flexibility in the threshold size t provides one of the important criteria for 
the  application  of  the  considered  cryptosystem (cf.  eg.  [5]  for  the  threshold  decryption 
system). Here we shall be concerned with the threshold signature scheme of the type (t, n), 
where the group has the cardinality  n and at least  t members have to sign the message in 
order to pass through the verification process. 

The familiar way of realization of such (t, n)-schemes is based on the application of the 
Lagrange’s interpolation formula - the protocol being invented by Shamir [11]. The group 
generates a random polynomial  f over the finite field with f(0) being the group secret and 
f(i),( i distinct than zero), being the shares of the players. We shall be interested in situation 
where the fraction t/n of signers should overcome the  given value α while the number of 
the group members is varying. This makes the traditional approach rather impractical since 
the addition (or deleting) of the group members requires each time the generation of a new 
polynomial f.
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Another interesting challenge for the threshold type schemes is to deal with the value t/n 
depending  for  instance  on  the  message  “priority”.  Then  the  varying  threshold  size 
(depending on n and the priority of m) implies again that the traditional approach is is not 
useful from the computational cost point of view. 

In this paper we present an efficient solution for the dynamical groups with the variable 
threshold bound. In fact we consider the more general situation, when there is a family of 
dynamical groups instead of one group. We were able to handle this more general situation 
by joining the secret sharing idea together with the certification system device which allows 
to distinguish the members of distinct groups of the family. The efficiency of the system is 
due to the fact that the ”active” signing is related only to the corresponding group members, 
leaving the others to accept their ”decisions”. 

Due to elegant structure of GDH groups and the simplicity of the basic signature scheme 
the presented system is provably secure. The security is proved in the random oracle model, 
provided  the  number  of  corrupted  players  in  the  family  of  groups satisfies  the  suitable 
estimates (see Theorem 1) and the ”chosen target CDH problem” is computationally hard.

2. Related work

Let   G 1  = (G1  ,  +) and  G 2 =  (G 2 ,  *)  be  finite  groups  of  prime  order  q and 
e :G1×G1 →G2  be the map satisfying the following conditions: 

1.there exists P∈G1  such that e P , P ≠1  (non-degeneracy)

2. ∀P , Q, R∈G1
∀a,b∈ℤe aP ,bQ =e P ,Q ab

(bilinearity)

3.there exists an efficient algorithm computing the value e P ,Q  for any P , Q∈G1

(computability)
The bilinear group structure G1,G2,e  implies that the corresponding Decisional Diffie-

Hellman problem (DDH) in G1 is easy. Namely it is sufficient to check if the corresponding 
4-tuple P ,aP ,bP , cP is Diffie-Hellman quadruple, i.e. satisfies the inequality: e(P, cP)= 
e(aP, bP).  Alternatively we shall  write  it  as P ,aP ,bP ,cP=DH in  the  sequel.  In this 
paper we assume that G1  is the suitable additive group of points of an elliptic curve E /F p ,

G2 is  the  multiplicative  group  of  the  finite  field F 2p and  e is  the  corresponding  Weil 

Pairing as defined in [1]. 
We call such G 1  the Gap Diffie-Hellman (GDH) group if moreover the corresponding 

Computational  Diffie-Hellman  problem  (CDH)  is  hard  in G1 (and  therefore  also  the 
Discrete Logarithm problem in G 2 ([7]). The first such an example was given in [6]. Boneh, 
Lynn and Shacham [2] have proposed a new signature scheme working in GDH groups. 
Boldyreva [3] has  extended the above protocol  for  the  threshold signature  scheme.  The 
concept  of  the  threshold-flexible  signature  based  on  the  RSA  cryptosystem  [10]  has 
appeared in [8]. The threshold signature scheme for the dynamic group has been considered 
quite  recently  in  [9]  with  the  assumption  that  there  exists  a  trusted  Dealer  and  the 
Administrator of the system. The present work is a further development and improvement 
of the above paper. The improvement concerns in particular the following aspects:

1.avoids the participation of the Administrator and the trusted Dealer in the protocol 
2.corresponds  to  more  realistic  scenario  of  dynamic  groups  with  group  members 
responsible for the generation and the distribution of secret shares
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3.is more flexible in dynamical aspect (it handles the case of adding and deleting of the 
users as well)

The suitable changes in the computational cost related to the presented protocol follow 
directly from the application of the results of the paper [4].

3. System and the communication model

Let the positive integers l∈ℕ and 1 be the fixed parameters. We consider the triple 
(Γ, α, β), where:

1.Γ =∪Γ i  and  K≤Γ i <θK, for  some  positive  integer  K and  any  1 ,  where
∀ i≠ j i≠ j

2.  :{1,2,. .. , l }[0,1] , i =i is the threshold level in the group  i , which means 
that at least ⌈i∣ i∣⌉ members of  i should sign the given message,

3.  :{1,2,. .. , l }[0,1] ,  i =i is  the  corruption  level  in  the  group  i ,  which 
means that at least ⌊i∣ i∣⌋ players can be corrupted in  i .

Here ⌈ z ⌉  denotes the smallest integer greater or equal to  z and ⌊ z ⌋ denotes the biggest 
integer smaller or equal to z.

The system consists of two parties: the group  , which consists of the users belonging to 
the  family  of  l groups F ={1,2,. .. , l} ,  connected  by  the  secure  channels,  and 
connected with them by the secure channels the group public server (GPS) where all the 
public data (of participated parties) can be sent and read.

3.1 The action

We are given l , K , , , .
1.System creator  generates  the  bilinear  group  structure 〈G〉=G1,G2,e , P  with  the 
corresponding cryptographic keys, where P≠0 is a random point of G1 .
2.The group members execute the distribution algorithm (see below) to generate the 
secret shares of the corresponding certification secret s=scert ,  which will be used to 
sign certificates. After that each member has one share for signing certificates.
3.Group  members  execute  the  distribution  algorithm  to  generate  the  signing  secret 
shares. At the end each member has  distinct shares of a secret s=ssig . Both secrets
scert and ssig can be reconstructed on the basis of at least d + 1 shares.

4.Certificate signing phase: each member asks his group for the signature of his own 
certificate. Other members use their signing secret shares to sign this certificate. If at 
least ∣Gi∣ members  apply  the  correct  shares,  then  the  correct  signature  can  be 
computed. All signed certificates are published in GPS.
5.In case  of  joining a  new member he must  first  obtain a free  share  from a group 
member. Then he asks the group for the signature. Group checks correctness of data 
(validates the share, checks if the share was not used before) and creates the certificate 
for the new member signed by at least ∣Gi∣ group members. The signed certificate is 
published in GPS.
6.Deleting members is done by introducing time-limit certificates.
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7.Let  m be  the  message  to  be  signed  by  the  chosen  group  i∈F  with  the 
corresponding threshold level m , which may depend on the message m to be signed.

8.Any user from  i checks if the condition mi  i is satisfied, then he generates the 
partial signature and publishes it in GPS.
9.If the number of valid signature shares from  i is at least i∣ i∣ , then the members 
from  compute the remaining partial signatures and publish them on the GPS.
10.If the number of valid signature shares is at least d+1 and at least mi ∣ i∣ in  i

then the members of  i compute and publish on GPS the complete signature.
11.One can check the correctness of signature using the verification algorithm.

4. The protocol

The  Dynamic  Multi-Threshold  Signature  Scheme  (DMTSS)  is  the  6-tuple: 
DMTSS=(Generate, Register, Sign, Check, Combine, Verify).

To initialize the system the creator starts from the Generate algorithm. The input is the 
security parameter k. The output is the description of the bilinear group structure G1,G2,e 

, together with nonzero P∈G1 , and hash functions Q, H, R.

Algorithm 1.  Generate(1k)
〈G〉G1,G2,e , P

Q :{0,1}∗G1

H :{0,1}∗G1

R :{0,1}∗G1

return〈G 〉 , P ,Q ,H , R

In the next steps we will use the distribution algorithm. This is an algorithm described in 
[4], and it’s goal is to generate some secret and distribute securely the shares of it among 
the group members, so that they could reconstruct it when signing the message. Though the 
algorithm described there works for the discrete-log based cryptosystems, it can be easily 
converted to the bilinear pairing based cryptosystems.

To be more precise  the group members first perform distribution algorithm to generate 
signing  secret s=scert=a0 with  a  corresponding  polynomial f =a0.. . ad x d

of  degree  d 

and the public key Pcert=sP . The same distribution algorithm is then executed to obtain 

the  signing  group  secret   s sig with  the  corresponding  shares  for  every  member.  Each 

member executes it as  personalities, to generate  shares - one for himself and the others 
for the new members in the future. After that each member has  pairs  (x, y), where  y = 
g(x) for some generated polynomial g=b0 . . . bd xd

with a group secret b0=ssig .
The following algorithm is executed to create a certificate for the user of given identity 

ID.  The  user  receives  a  share x ID, y ID and  computes P ID=Q  ID and Pusr= y ID P ID . 
Algorithm takes 4-tuple  ID , x ID, Pusr , group as input  and returns  the  certificate  of  the 
given user, which states that the given identity appertains to the suitable group.
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Algorithm 2. Register  ID , x ID, Pusr , group
P IDQ ID
w IDP ID, Pusr , group, xID

ID sRw ID

cert ID=w ID ,ID

returncert ID

Multiplying by  s here is  done by the group. Each member multiplies  using its secret 
share, and then results are combined to obtain the complete signature. 

The certificate should be validated before signed by the group. In the first step any user 
of the given group  i checks if the certificate is correct, i.e. if  Rw ID ,ID, P , Pcert is 
DH quadruple, where w ID=P ID , Pusr , group , X ID . In the second it is checked if  none of 
already accepted certificates has the same value x= xID  . Third step is performed only in 
case of joining the new member. We have already the group  i with the validated list of 
certificates which has to check if the pair (x, y) received by the new user is an interpolation 
point of the polynomial g. In this connection the group  i generates 

the message m=H  ID , group and creates two signatures of it: one using the trusted 
quorum of  (with at least ⌈i∣ i∣⌉ valid partial signatures of members from  i ) together 
with the signature share of the added user and the other of the quorum without the added 
user. If both signatures are the same the trusted quorum can easily declare the certificate as 
validated. Otherwise the group declares the deception of the added user or the user who has 
given the share (each of the above cases can be easily distinguished).

The  following  algorithm  has  as  input  the  description  M of  message  to  be  signed 
(message  m,  destination group and threshold level),  and the user’s secret  share with the 
corresponding certificate. It returns the partial signature of the type: (message description, 
signature share, certificate). It is executed by any group member.

Algorithm 3. Sign M , y ID, cert ID

parse M asm , group,m

 IDm yID H m∥group∥m

returnM , ID , cert ID

The  next  algorithm  validates  the  above  partial  signatures.  Validation  concerns  the 
correctness of the signature share and the validity of the certificate as well.

Algorithm 4. Check M , ID , cert ID

parse cert IDas wid ,ID

parse w IDas P ID ,Pusr , gr , x ID

parse M asm , group,m

r1P , Pcert , Rw ID ,ID=DH ?
r 2H m∥group∥m , ID, P ID , Pusr=DH ?
if r 1=1∧r 2=2
thenreturn1
else return0
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The following algorithm combines the (validated) signature shares to compute the final 
signature. Both the algorithms  Check and  Combine are preformed by all members of the 
signing group.

Algorithm 5. Combine cert ID1
, ID1

 ,... ,cert IDn
, IDn



parse cert IDi
as w IDi

,IDi


parse w IDi
asP IDi

, Pusri
, grIDi

, xIDi


S{x IDi
: i∈{1,... , n}}

i∏x∈S∖ {x IDi
}

−x
x IDi

−x 

∑i=1

n
i IDi

return

The last algorithm is executed by any user of the system (verifier). It has as input the pair 
(message description, signature) and as output acceptation or rejection according to whether 
the corresponding 4-tuple is the Diffie-Hellman quadruple.

Algorithm 6. Verify M ,

parse M asm , group,m

returnP , Psig , H m∥group∥m ,=DH ?

5. Security analysis

At the beginning of the game we assume that the adversary corrupts the set of players
F corr=F 1, F2,. .. , Fc . By this we mean that he has an access to all the data of the corrupted 

players (i.e. Their secret keys, free shares, certificates etc.). Also he can ask any player for 
the signature of any chosen message. Under the above assumptions we will prove:

Lemma 1. It  is  hard  to  compute  the  valid  partial  signature  of  the  chosen  message  
without the knowledge of the corresponding secret key. 

Lemma 2. All signed certificates are valid. 

By the word ’hard’ we mean that there exist a polynomial reduction of this problem to 
the chosen-target CDH problem. It’s detailed definition can be found in [3]. Shortly, we 

have a group G of a prime order p, some random κ∈ Z p and two oracles: CHALL returning 

random distinct points from G, and CDH which for given P∈G returns Q∈G , satisfying 
Q=P .  The  assumption  says  that  there  is  no  polynomial-time  algorithm,  which  can 
’answer’ n questions of CHALL oracle, using less than n queries to CDH oracle. 

Now the argument runs as follows: assume that exists an adversary, that can break our 
protocol in some way. Then, we can construct a simulator which will be indistinguishable 
from a real group implementing algorithm for adversary, and which will prepare data in 
some special way. After the successful attack on our simulator we could use this prepared 
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data  and  forged  data  from adversary  to  break  the  CDH problem.  However  this  would 
contradict the hardness of the CDH problem. 

Coming into details we first observe that all the shares are valid, i.e. every pair  (x, y) 
belongs to the generated polynomial g. The proof can be found in [4]. 

Assume that we are given a GDH group G and two corresponding oracles: CHALL and 
CDH with the secret value  .

We consider the following simulator:

Oracle 1. Q  ID

if ID∉Q set

thenQ set=Q set∪{ID}
Q [ ID ] random G1
returnQ [ID ]

Oracle 2. R x 
if x∉R set

thenR set=Rset∪{x }
R [ x ] randomG1
return R [x ]

Oracle 3. H m

if m∉H set

then H set=H set∪{m}
H [m ]CHALL 
return H [m ]

Algorithm 7. Init F1, F2,. .. , Fc

∀ i∈{1,... , c}X i x Fi
;Y i y F i

∀ i∈{1,... , d−c} X ci random ℤq ;Y ci random ℤq

s random ℤq

Algorithm 8. Translate x0, 0, P0, x ' 
X 0 x0 ; S{X 0,. .. , X d }

∀ i∈{0,. .. , d}i
∏x∈S∖ {xi }

x '− x

∏x∈S∖ {xi }
X i− x

 ' ∑i∈{1,... , d}
iY i P000

Oracle 4. CERT group

ID random{0,1}∗
P IDQ ID
x ID random ℤq

PusrTranslate0,CDH P ID , P ID , x ID
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w IDP ID, Pusr , group, xID

ID sRw ID

CERT set=CERT set∪Rw ID ,ID

returnw ID ,ID

Oracle 5. SIG M , ID
 ' CDH H M 

 IDTranslate0, ' , P , x ID

return ID

First  let  us  remark  that  by  the  Lagrange’s  polynomial  interpolation  formula  the 
polynomial f of degree d is uniquely determined by the  d+1 points applying the following 
interpolation formula:

f x =∑xi∈S
xi

f x i ,  where xi
=
∏x j∈S∖{x i}

x−x j

∏x j∈S ∖{x i}
x i− x j

,  for  any  x and  any  set 

S={x0, x1,. .. , xd} .
This property is used in the simulator: the polynomial  f is computed indirectly by its 

values in the set of points:  c points from the certificates of corrupted players,  d-c points 
generated randomly by the algorithm Init, and secret  which is assumed to assign the value 
f 0=a0 . Similarly the above interpolation formula is applied in the algorithm Translate 

which has  as  input  the  4-tuple x0,0, P0, x '  .  Here  for  any fixed x0 , 0 is  the  suitable 
partial signature corresponding to the secret value attached to x0 of the message with the 
hash equal to P0 and x ' is any element of ℤq . The output of the algorithm is the partial 
signature of the same message but corresponding to the secret attached to x ' .

In  the  simulator the  oracle  H transports  the  ’queries’  of  CHALL.  The  algorithm  Init 
initializes  the  simulator  generating  the  points  needed  for  the  computation  of  the 
interpolation polynomial and the signing secret key. The oracle CERT returns the certificate 
of the group member. All the parameters are chosen randomly with the uniform distribution. 
For the generation of keys we apply the Translate algorithm with the missing point 0, . 
The secret point for signing is randomly chosen in Init algorithm. The oracle SIG returns the 
signature of a chosen player under a chosen message. Here the CDH oracle is used in order 
to get the missing interpolation point.  CERT and  SIG oracles provide all the information 
that the adversary can get from the system.

By Lagrange’s interpolation all the corresponding values have the uniform distribution 
which is in accord to the generation of the system parameters. Therefore the simulator is 
undistinguishable from the adversary’s system. Moreover the probability of generation of 
any collisions by the oracles Q, R or H is negligible. 

Now we are ready to pass to the proper reduction proof. 
Let  us  assume that  there  exists  a  polynomial-time  algorithm  Cheat that  for  a  given 

message generates the false partial 
signature. We consider first the pessimistic case when the adversary corrupts d players, 

hence he is missing only one partial signature to sign a chosen message. 
Then we can construct the false environment for the adversary, in which he will forge the 

corresponding partial signature. Then from the generated data we will break the chosen-
target CDH problem. Let us consider the following algorithm:
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Algorithm 9. Break F 
Q set∅ ; H set∅ ;CERT set∅
init F 

m random{0,1}∗
group random{1,... , l}

m random [group ,1]
M m, group,m
shareCheat 〈G 〉 , M , Q , H , R ,CERT , SIG ,F 
parse share asM , , cert 

If  the  algorithm  Cheat has  generated the  valid  signature  of  the  message  M then  the 
following events had to occur: 

There was a query to the H oracle for the hash of the message M , but there was no query 
(if the algorithm has forged the signature) for the signature of  M for any player from   . 
Since the oracle H transports the queries of the oracle CHALL, the above pair H M  ,

breaks the chosen-target CDH problem. Concluding if the polynomial-time algorithm Cheat 
forges  (with  non-negligible  probability)  the  signature  of  M,  then  the  polynomial-time 
algorithm Break breaks the chosen-target CDH problem with the secret value  (with non-
negligible probability). 

The considered case is  pessimistic in the sense that if  the adversary corrupts  smaller 
number of players he has less information to be used in the attack on the system.

More  precisely  let  us  assume that  the  adversary  corrupts  r−1 players  and  therefore 
computes the corresponding r−1 partial signatures 1≤ r − 1≤ d  .

To show that the problem of computation of the r-th partial signature is not easier than 
the already considered one, we simulate the system generating  d−(r−1) partial signatures 
and transmitting them in an encrypted form to the adversary (so that he could not learn any 
information about their values). The adversary’s algorithm breaking the corresponding r-th 
partial signature is then easily transformated to the algorithm breaking the  d+1-th partial 
signature which we have proved to be a hard problem. To complete the argument it remains 
to observe that the probability that the r-th partial signature computed by the adversary is 
distinct from any of the encrypted partial signatures is non-negligible. This completes the 
proof of Lemma 1. 

To prove Lemma 2 we need to observe that certificate is valid only if at least i∣ i∣

members of  i  have accepted it. If ii , then there is at least one honest player among 
them. Therefore 1) certificate is correct, 2) the corresponding share is correct, 3) there are 
no distinct certificates with the same value of  x  (since otherwise the suitable honest user 
wouldn’t accept it). Hence the certificate is correct and therefore Lemma 2 is proved. 

Now we are ready to prove the final result with the explicit security conditions.

Theorem 1. Assume  that  the  triple  , , is  as  in  the  system description.  If  the 
following conditions:

1. ∀ iimin
1
2,
i

2.∑i
il−

2
K
−∑i

min
1
2,
i
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are  satisfied  then  the  Dynamic  Multi-Threshold  Signature  Scheme  is  secure  in  the 
random  oracle  model  provided  the  chosen-target  CDH  assumption  holds  true  and 

d=⌈K ∑i
min

1
2,
i⌉1 .

Proof. By (1) it follows that i∣i∣i∣i∣ , so there are not enough corrupted players to 
generate sufficiently  many partial  signatures, and by Lemma 1 they cannot  forge them. 
Moreover the corrupted players are not able to stop the honest ones from generating of valid 
signatures since from (2) we have:

K∑i
i−Kl−2−K∑i

min
1
2,
i , hence

∑i
1−i∣ i∣≥∑i

1−iK2 K∑i
min

1
2,
i≥1⌈K ∑i

min
1
2,
i⌉=d

which  implies  that  the  honest  players  are  able  to  generate  the  required  number  d+1 
partial signatures. By Lemma 2 the corrupted players can not forge the certificates, so the 
published partial signatures are valid. This completes the proof of  Theorem 1.
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