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Abstract 

 
Task scheduling under a grid environment is an important research area, on which much 

attention has been paid. However, either in the meta-task scheduling problems or DAG 
(Direct Acyclic Graph) scheduling problems, it is usually assumed that tasks are submitted to 
dedicated hosts and that these tasks are processed in FIFO (First In First Out) order. This is 
not practical in a grid, in which a host may be shared between grid users and its owner and 
local tasks, which belong to resource owners, may compete with grid tasks for the hosts. 
EBGSA (Estimation Based Grid Scheduling Approach) is proposed, which allows for the 
simultaneous processing of grid tasks and local tasks. In EBGSA we use history information 
about the execution of tasks to estimate the performance of non-dedicated hosts. Two 
heuristic scheduling algorithms, MCT (Minimum Completion Time) and Min-min are selected 
to perform the simulation experiment. Both experiments obtain a smaller make span, proving 
EBGSA feasible for grid task scheduling. 
 

1. Introduction 
 

Grid [1] is a kind of distributed computing infrastructure, which allows large scale resource 
sharing and system integration. It is based on networks and able to enable large-scale 
aggregating and sharing of computational, data, sensors and other resources across 
institutional boundaries. As a heterogeneous computing system, the task scheduling strategy 
directly influences the performance of gird applications. And there are now many researches 
on how to schedule gird tasks properly in order to achieve high performance. 

Under a grid environment, tasks can be classified as independent tasks, which have no 
communications between each other, and communication depended tasks. As for independent 
tasks, mapping (matching and scheduling) heuristics can be grouped into two categories: on-
line mode and batch mode mapping. In the on-line mode, a task is scheduled as soon as it 
arrives at the mapper. In the batch mode, tasks are collected into a set, which is called a meta-
task, and mapped at mapping events. And there are many mapping heuristics for independent 
tasks such as MCT (Minimum Completion Time), MET (Minimum Execution Time), SA, 
Min-min, Min-max, Sufferage [2], etc. It is common to treat communication based tasks as a 
DAG. There are many heuristics for DAG scheduling including the list scheduling [3],[4] the 
critical path heuristics [5],[6] the clustering algorithms [7],[8] the guided search algorithms 
[9],[10]  and the duplication based algorithms [11],[12]. Either in the scheduling of 
independent tasks or DAGs, it is assumed that each task has exclusive use of the machine and 
that the machine will execute its tasks in FIFO order. However, this assumption is very 
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unpractical in a grid environment. Though the grid is aiming at coordinated resource sharing, 
this sharing is often conditional: resource owners make resources available, subject to 
constraints on when, where and what can be done [13]. When a grid user has submitted his 
task to the grid task manager, the task will enter a task queue maintained by the task 
managing organization. After that, the grid scheduling module will select proper tasks from 
the task queue and allocate suitable resources to these tasks to make them run. There are 
usually more than one task being scheduled to the same resource and these tasks have to enter 
a local task queue of the resource and be scheduled by the local scheduler before their 
running. So after submitted to the grid, a task will be scheduled by the grid scheduler and 
subsequently the local scheduler before its completion unless it's migrated or killed by the 
grid. Due to the site autonomy of the grid, the task manager may have no control of and even 
no information about the local schedulers. For a certain grid resource, there are usually many 
tasks on it, including the gird tasks and the resource owner's local tasks. And the local 
scheduler may schedule all these tasks in a parallel manner, which makes the execution 
unrecurrable. So the grid task scheduling can hardly promise the realization of its target. 
Though there are many researches in the grid scheduling and many scheduling algorithms are 
proposed, little work involves this issue. In this paper, we propose EBGSA, which allows for 
the simultaneous processing of grid tasks and local tasks. We also apply EBGSA to  MCT 
algorithm and  Min-min algorithm. The result of the experiment shows that a smaller 
makespan is obtained using EBGSA.  

The rest of this paper is structured as follows. The next section gives the background of 
grid scheduling problem and also presents MCT and Min-min. In section 3, we propose 
EBGSA and apply it to MCT and Min-min. In section 4, the simulation experiment is 
discussed. The last section includes the conclusion and future work. 
  
2. Problem Definition 
2.1. Performance Metrics 
 

For simplicity, in this paper we only consider the scheduling of independent tasks and use 
throughput as the only scheduling criterion thought there are other criterions, for instance the 
quality of service. The expected execution time eij is defined as the amount of time taken by 
machine mj to execute task ti, given mj has no load when ti is assigned. The expected 
completion time cij of task ti on machine mj is defined as the wall-clock time when mj 

completes ti. Let m be the total number of the machines in the grid and K the total number of 
tasks to be scheduled. Let the arrival time of task ti be ai, and let the begin time of ti be bi. 
From the above definitions, cij = bi + eij. Let ci be cij, where machine j is allocated to execute 
task i. The makespan for the complete schedule is then defined as ( )max Kti ci  [14]. Makespan is 

a measurement of the throughput of the computational grid. 
 
2.2. Problems with Existing Algorithms 
 

Task scheduling is a well-known NP-complete problem if throughput is the optimization 
criterion [15] and various scheduling heuristics are proposed both for independent and 
communication based tasks. Most of these heuristics are based on the following two 
assumptions. First, the expected execution time eij is deterministic and will not vary with time. 
Second, each task has exclusive use of the machine. As we discussed in section 1, this is not 
the case actually. This inconsistency is unavoidable and has a great influence on many 
heuristics. In order to illustrate this influence, consider MCT and Min-min algorithms.  
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Minimum Completion Time (MCT) Algorithm 

The MCT heuristic assigns each task to the machine that will finish it earliest. The algorithm 
is described below: 
(1) for all the tasks ti (in an arbitrary order) 
(2) for all machines mj in the gird 
(3) cij = eij + rj 
(4) find machine mp which will finish ti earliest 
(5) schedule ti to mp 
 

Min-min Algorithm 
Min-min begins by scheduling the task that changes the expected machine ready time 

status by the least amount that any assignment could. If two tasks compete for a particular 
machine mj, Min-min will select the one that changes the ready time rj of machine mj less and 
assigns it to mj. The algorithm is described below:  

 
(1) for all tasks ti in meta-task M (in an arbitrary order) 
(2) for all machines mj in the grid 
(3) cij = eij + rj 
(4) do until M is empty 
(5) for each task in M find the earliest completion time and the corresponding machine 

that obtains it 
(6) find the task tp with the minimum earliest completion time 
(7) assign task tp to the machine mq that gives the earliest completion time 
(8) delete task tp from M 
(9) update rq 
(10) update all ciq for all i 

 
Now, let's consider two scheduling examples of MCT and Min-min. Table 1 gives a scenario 
in which four tasks will be scheduled onto two machines using MCT algorithm. Table 2 gives 
a scenario in which four tasks will be scheduled onto two machines using Min-min algorithm. 

 Table 1. A scenario for MCT scheduling 

 t0 t1 t2 t3 

m0 2 4 5 4 

m1 3 8 7 3 

Table 2. A scenario for Min-min scheduling 

 t0 t1 t2 t3 

m0 5 1 6 4 

m1 6 2 7 4 
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Figure 1. Different schedules made by MCT: (a) the schedule on dedicated 
machines (b) the schedule on non-dedicated machines (c) the schedule on non-

dedicated machines with prediction 

 

 

Figure 2. Different schedules made by Min-min: (a) the schedule on dedicated 
machines (b) the schedule on non-dedicated machines (c) the schedule on non-

dedicated machines with prediction 

     The scheduling results are illustrated in figure 1 and figure 2 respectively. We suppose that 
the four tasks, t0, t1, t2 and t3, in table 1 will be scheduled in the sequence of increasing 
subscript. If machine m0 and m1 are both dedicated, MCT will make a schedule as illustrated 
in figure 1-(a), which results in a makespan of 9. As we discussed before, it's unpractical to 
expect all the machines in a grid to be dedicated. Suppose machine m0 will execute grid task 
t1 and local tasks together and this will delay e10. Let the actual e10 change from 4 to 6. If the 
scheduler doesn't know this change, it will persist on the former schedule, which leads to a 
makespan of 12 as illustrated in figure 1-(b). Though the change of e10 is unavoidable due to 
the site autonomy, if the scheduling strategy can predict it in advance, a better schedule will 
be made. In figure 1-(c), when task t3 arrives, the scheduler already predicts that the 
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completion time of t1 will change from 4 to 6 and it will assign t3 to m1 in stead of m0 
according to MCT, which results in a smaller makespan of 10 compared to 12. Table 2 shows 
a scenario of Min-min scheduling. Figure 2-(a) and figure 2-(b) are the schedules before and 
after t31 changes from 4 to 7. We can see that the makespan can be cut from 14 (in figure 2-(b)) 
to 12 (in figure 2-(c)) if the scheduler can predict the change of t31. 
 
3. EBGSA 
 
3.1. Applying EBGSA to MCT and Min-min 

 
In this paper, we propose an Estimation Based Grid Scheduling Approach (EBGSA), which allows 

for the simultaneous processing of grid tasks and local tasks. In EBGSA, we treat every expected 
execution time as a random variable in stead of a predetermined constant. By estimating the value of 
each random variable, the scheduler can make a better schedule, which takes into account the actual 
resource status in the grid. Consider the two examples in the previous section, we apply EBGSA to 
MCT and Min-min and modify them to be EMCT (Estimating MCT) and EMin-min (Estimating Min-
min). The two algorithms are described below: 

 
EMCT Algorithm 

(1) for all the tasks ti (in an arbitrary order) 
(2) for all machines mj in the gird 
(3) ecij = eeij + erij 
(4) find machine mp which will finish ti earliest 
(5) schedule ti to mp 
 

EMin-min Algorithm 
(1) for all tasks ti in meta-task M (in an arbitrary order) 
(2) for all machines mj in the grid 
(3) ecij = eeij + erj 
(4) do until M is empty 
(5) for each task in M find the earliest completion time and the corresponding machine that 

obtains it 
(6) find the task tp with the minimum earliest completion time 
(7) assign task tp to the machine mq that gives the earliest completion time 
(8) delete task tp from M 
(9) update erq 
(10) update all eciq for all i 
 

Note that line 3 of EMCT algorithm differs from that of MCT. In EMCT algorithm we substitute 
the estimation of cij, eij and rj, namely ecij, eeij and erj, for cij, eij and rj. And Min-min algorithm is 
modified in the same way to produce EMin-min algorithm. 
 
3.2. Estimating the Time Variable 
 

The key issue of EBGSA is how to accurately estimate the time variable, eeij. However, because the 
distribution of random variable eeij is unknown, it's impossible to form a definite formula of eeij. So we 
should try to approximate it. One way people may easily think of is to figure out the value of eeij by 
monitoring the resource status, such as system load. But this method has two shortcomings. First, it 
isn't fit for the grid environment. Usually the resource owner's local tasks is prior to the grid tasks, so a 
grid resource will not process the grid tasks assigned to it until it has finished all the local tasks or it is 
released by all the local tasks. Even different grid tasks have different priorities. So, we can not derive 
the value of eeij accurately only from the information of system load. Second, it will cost a lot of time 
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if we have to detect the resource status before scheduling every task. 
In EBGSA, we statistically estimate the random variable eeij from the past observations. The relation 

between eij and eeij can be expressed as (1).  

ij ij ijee e                     (1) 

In (1), ij is the additional amount of time needed by machine mj to finish task ti, caused by the 

execution of local tasks. Let ( 1)ij

ij
ij

ee
e

   . Suppose that before task 

ti, which is assigned to machine mj, is executed, mj has already accomplished m tasks. We use (2) to 
estimate 

ij , where 
p j refers to the 

th
p  task accomplished by mj. 

1 1

, 1
m m

p pij pj
p p

x x 
 

           (2) 

In (2) xp is the weight of 
pj , and usually the bigger p is, the more proportion xp will take up. That 

means the execution of the latest task will influence the estimation the next execution most. After the 
estimation of 

ij , we can derive eeij and erj from (3) and (4) respectively. 

ij ij ijee e                       (3) 

1
j ij

i k
er ec

 

                      (4) 

In (4), k stands for the number of tasks that machine mj allows to run simultaneous and we assume that 
all the k tasks assigned to mj start from time 0. 
 

4. Simulation 
 
4.1. Simulation Environment 
 

In our simulation experiment we scheduler a meta-task of 200 tasks onto 4 machines. The 
expected execution time of task ti on machine mj, namely eij, varies from 1 to 50. 
 

In order to simulate the concurrent running of grid tasks and local tasks, we make use of 
Java MultiThreading Programming [16]. In our experiment, for simplicity we generate a Java 
thread object, localTaskThread, with a high priority, Thread.MAX_PRIORITY, to present a 
local task which is running on a certain machine (Of course, it ispossible to generate more 
than one thread with Thread.MAX_PRIORITY to simulate more than one local task running 
concurrently). And we also generate three Java thread objects, gridTaskThread, with a low 
priority, Thread.MIN_PRIORITY, to present three gird tasks running right on the previously 
mentioned machine concurrently. Here, we suppose that a machine will allow at most three 
grid tasks running concurrently on it. The experiment is performed using JDK1.5.0 and on the 
platform of Windows XP. According to the features of Java and Windows XP scheduling 
strategy, the JVM (Java Virtual Machine) scheduler will run the thread with the highest 
priority first. When all the threads with a high priority are dead or blocked, the threads with a 
low priority are able to get the opportunity to run. In addition, the JVM running on Windows 
XP will allocate amount of CPU cycles to each of the threads with the same priority and 
schedule them in turn. In our experiment, a machine will prefers a localTaskThread to a 
gridTaskThread and we will call the sleep() method at intervals to let a localTaskThread sleep 
for a certain period so that the gridTaskThreads are able to be scheduled. By doing this, we 
simulate an actual computation grid environment described in section 1. 
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4.2. Simulation Procedures 
 

The specific simulation procedures are described as follows. 
1. Schedule the previously mentioned 200 tasks on to 4 different machines using MCT 

algorithm. 
2. Find the machine mMct which produces the makespan and denote the corresponding 

schedule of tasks as sMct. 
3. Suppose mMct to be non-dedicated. Generate on it a 

localTaskThread and three gridTaskThreads for every three tasks in sMct as described 
in the previous subsection. 

4. Execute sMct on mMct and denote the finish time as makespan1. 
5. Schedule the 200 tasks again using EMCT algorithm and denote the corresponding 

makespan as makespan2. 
6. Compare makespan1 with makespan2. 
7. Substitute Min-min for MCT and repeat steps 1 to 6. 

 
In step 1, we treat each of the 200 tasks as a Java Thread object, initialized with an 

expected execution time eij between 1 and 50. For task ti assigned to machine mj, when the 
total time of ti's running on mj reaches eij we will kill the thread. So the period from the time 
when ti is generated to the time when it is dead is the actual execution time, which is denoted 
as aeij. And in step 5, the key of EMCT is how to make the estimation of eeij as close to aeij as 
possible. Here we use the observation of the last meta-task to estimate the next meta-task. 
Assume the non-dedicated machine is mj. We generate 50 tasks and execute them on mj. 

Let 1
,

50
pj

ppj
pj

ae
xe

   . According to (2) and (3), for task ti in the next meta-task, 

50

1

1

50
pj

ij ij p
pj

ae
ee e e

  . 

 
4.3. The Result and Discussion 
 

The scheduling results of Min-min, EMin-min, MCT and EMCT are illustrated in figure 3 
and figure 4. From figure 3, we can see that the actual makespan mp2 (568.7) is much larger 
than that expected by Min-min algorithm, mp1 (512.2). This great increase of makespan is 
caused by the scheduler's neglect of the non-dedication of machine mMin when using Min-min 
algorithm. When the scheduler considers scheduling task ti to machine mMin has the earlier 
completion time than any other assignment, it will Assign ti to mMin according to Min-min 
algorithm. In fact, due to the simultaneous running of local tasks as well as other gird tasks on 
mMin, ti may not be the task with the earliest completion time. Since our EMin-min algorithm 
uses the estimation of execution time eeij of grid tasks instead of the predetermined expected 
execution time eij, it can make a schedule more suitable to the actual grid environment than 
Min-min. This can explain why mp3 (537.2) decreases by 5.5% compared to mp2 (568.7). The 
experiment of MCT and EMCT has a similar result. We can see that in figure 4, mp3 (579.3) 

is 5.2% less than mp2 (610.8). Note that, in our experiment we let xp be 1

50
, which makes each 

task of the meta-task of 50 tasks has the same weight. This is because since we use the 
observation of the last meta-task to estimate eeij of the next meta-task, every task in the last 
meta-task has the same influence on the estimation. If the scheduling heuristic belongs to the 
on-line mode instead of the batch mode, we can give a larger weight to the more recently 
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finished task, making it have more influential on the estimation of the next task. Since it's not 
the point of this paper, we do not discuss this issue here. 
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Figure 3. Different makespans made by Min-min and EMin-min: mp1 is the 
makespan of Min-min; mp2 is the actual makespan; mp3 is the makespan of 

EMin-min  
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Figure 4. Different makespans made by MCT and EMCT: mp1 is the makespan of 
MCT; mp2 is the actual makespan; mp3 is the makespan of EMCT  

5. Conclusion 
 

Most grid scheduling heuristics assume the precondition that all the machines in the grid 
are dedicated and idle and that every grid task has exclusive use of each machine. In fact, due 
to the site-autonomy feature of grid, a machine may simultaneously execute local tasks and 
grid tasks. Thus, the scheduler can not promise that its scheduling goal can be achieved. In 
this paper EBGSA is presented, which allows for the simultaneous processing of grid tasks 
and local tasks. We apply EBGSA to MCT and Min-min algorithms and the simulation 
experiment shows that EMCT and EMin-min outperform MCT and Min-min respectively in 
the measurement of makespan. 

While the MCT and Min-min algorithms are considered in this paper, we should note that 
EBGSA is applicable to any other scheduling heuristic where the predetermined execution 
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time and completion time are used. In this paper, to estimate the execution time of a grid task 
we use the linear estimation mode which is simple but not very adaptable to the dynamic grid 
environment. The future work focuses on developing a new estimation mode for our EBGSA, 
which can estimate the execution time of grid tasks more accurate under the dynamic grid 
environment. 
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