
International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

 85

A Scheduling Approach Considering Local Tasks in the
Computational Grid

Zhan Gao, Siwei Luo and Ding Ding

School of Computer and Information Technology
Beijing Jiao tong University

bjtugaozhan@gmail.com

Abstract

Task scheduling under a grid environment is an important research area, on which much

attention has been paid. However, either in the meta-task scheduling problems or DAG
(Direct Acyclic Graph) scheduling problems, it is usually assumed that tasks are submitted to
dedicated hosts and that these tasks are processed in FIFO (First In First Out) order. This is
not practical in a grid, in which a host may be shared between grid users and its owner and
local tasks, which belong to resource owners, may compete with grid tasks for the hosts.
EBGSA (Estimation Based Grid Scheduling Approach) is proposed, which allows for the
simultaneous processing of grid tasks and local tasks. In EBGSA we use history information
about the execution of tasks to estimate the performance of non-dedicated hosts. Two
heuristic scheduling algorithms, MCT (Minimum Completion Time) and Min-min are selected
to perform the simulation experiment. Both experiments obtain a smaller make span, proving
EBGSA feasible for grid task scheduling.

1. Introduction

Grid [1] is a kind of distributed computing infrastructure, which allows large scale resource
sharing and system integration. It is based on networks and able to enable large-scale
aggregating and sharing of computational, data, sensors and other resources across
institutional boundaries. As a heterogeneous computing system, the task scheduling strategy
directly influences the performance of gird applications. And there are now many researches
on how to schedule gird tasks properly in order to achieve high performance.

Under a grid environment, tasks can be classified as independent tasks, which have no
communications between each other, and communication depended tasks. As for independent
tasks, mapping (matching and scheduling) heuristics can be grouped into two categories: on-
line mode and batch mode mapping. In the on-line mode, a task is scheduled as soon as it
arrives at the mapper. In the batch mode, tasks are collected into a set, which is called a meta-
task, and mapped at mapping events. And there are many mapping heuristics for independent
tasks such as MCT (Minimum Completion Time), MET (Minimum Execution Time), SA,
Min-min, Min-max, Sufferage [2], etc. It is common to treat communication based tasks as a
DAG. There are many heuristics for DAG scheduling including the list scheduling [3],[4] the
critical path heuristics [5],[6] the clustering algorithms [7],[8] the guided search algorithms
[9],[10] and the duplication based algorithms [11],[12]. Either in the scheduling of
independent tasks or DAGs, it is assumed that each task has exclusive use of the machine and
that the machine will execute its tasks in FIFO order. However, this assumption is very

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

 86

unpractical in a grid environment. Though the grid is aiming at coordinated resource sharing,
this sharing is often conditional: resource owners make resources available, subject to
constraints on when, where and what can be done [13]. When a grid user has submitted his
task to the grid task manager, the task will enter a task queue maintained by the task
managing organization. After that, the grid scheduling module will select proper tasks from
the task queue and allocate suitable resources to these tasks to make them run. There are
usually more than one task being scheduled to the same resource and these tasks have to enter
a local task queue of the resource and be scheduled by the local scheduler before their
running. So after submitted to the grid, a task will be scheduled by the grid scheduler and
subsequently the local scheduler before its completion unless it's migrated or killed by the
grid. Due to the site autonomy of the grid, the task manager may have no control of and even
no information about the local schedulers. For a certain grid resource, there are usually many
tasks on it, including the gird tasks and the resource owner's local tasks. And the local
scheduler may schedule all these tasks in a parallel manner, which makes the execution
unrecurrable. So the grid task scheduling can hardly promise the realization of its target.
Though there are many researches in the grid scheduling and many scheduling algorithms are
proposed, little work involves this issue. In this paper, we propose EBGSA, which allows for
the simultaneous processing of grid tasks and local tasks. We also apply EBGSA to MCT
algorithm and Min-min algorithm. The result of the experiment shows that a smaller
makespan is obtained using EBGSA.

The rest of this paper is structured as follows. The next section gives the background of
grid scheduling problem and also presents MCT and Min-min. In section 3, we propose
EBGSA and apply it to MCT and Min-min. In section 4, the simulation experiment is
discussed. The last section includes the conclusion and future work.

2. Problem Definition
2.1. Performance Metrics

For simplicity, in this paper we only consider the scheduling of independent tasks and use
throughput as the only scheduling criterion thought there are other criterions, for instance the
quality of service. The expected execution time eij is defined as the amount of time taken by
machine mj to execute task ti, given mj has no load when ti is assigned. The expected
completion time cij of task ti on machine mj is defined as the wall-clock time when mj

completes ti. Let m be the total number of the machines in the grid and K the total number of
tasks to be scheduled. Let the arrival time of task ti be ai, and let the begin time of ti be bi.
From the above definitions, cij = bi + eij. Let ci be cij, where machine j is allocated to execute
task i. The makespan for the complete schedule is then defined as ()max Kti ci [14]. Makespan is

a measurement of the throughput of the computational grid.

2.2. Problems with Existing Algorithms

Task scheduling is a well-known NP-complete problem if throughput is the optimization
criterion [15] and various scheduling heuristics are proposed both for independent and
communication based tasks. Most of these heuristics are based on the following two
assumptions. First, the expected execution time eij is deterministic and will not vary with time.
Second, each task has exclusive use of the machine. As we discussed in section 1, this is not
the case actually. This inconsistency is unavoidable and has a great influence on many
heuristics. In order to illustrate this influence, consider MCT and Min-min algorithms.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

 87

Minimum Completion Time (MCT) Algorithm

The MCT heuristic assigns each task to the machine that will finish it earliest. The algorithm
is described below:
(1) for all the tasks ti (in an arbitrary order)
(2) for all machines mj in the gird
(3) cij = eij + rj
(4) find machine mp which will finish ti earliest
(5) schedule ti to mp

Min-min Algorithm
Min-min begins by scheduling the task that changes the expected machine ready time

status by the least amount that any assignment could. If two tasks compete for a particular
machine mj, Min-min will select the one that changes the ready time rj of machine mj less and
assigns it to mj. The algorithm is described below:

(1) for all tasks ti in meta-task M (in an arbitrary order)
(2) for all machines mj in the grid
(3) cij = eij + rj
(4) do until M is empty
(5) for each task in M find the earliest completion time and the corresponding machine

that obtains it
(6) find the task tp with the minimum earliest completion time
(7) assign task tp to the machine mq that gives the earliest completion time
(8) delete task tp from M
(9) update rq
(10) update all ciq for all i

Now, let's consider two scheduling examples of MCT and Min-min. Table 1 gives a scenario
in which four tasks will be scheduled onto two machines using MCT algorithm. Table 2 gives
a scenario in which four tasks will be scheduled onto two machines using Min-min algorithm.

 Table 1. A scenario for MCT scheduling

 t0 t1 t2 t3

m0 2 4 5 4

m1 3 8 7 3

Table 2. A scenario for Min-min scheduling

 t0 t1 t2 t3

m0 5 1 6 4

m1 6 2 7 4

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

 88

Figure 1. Different schedules made by MCT: (a) the schedule on dedicated
machines (b) the schedule on non-dedicated machines (c) the schedule on non-

dedicated machines with prediction

Figure 2. Different schedules made by Min-min: (a) the schedule on dedicated
machines (b) the schedule on non-dedicated machines (c) the schedule on non-

dedicated machines with prediction

 The scheduling results are illustrated in figure 1 and figure 2 respectively. We suppose that
the four tasks, t0, t1, t2 and t3, in table 1 will be scheduled in the sequence of increasing
subscript. If machine m0 and m1 are both dedicated, MCT will make a schedule as illustrated
in figure 1-(a), which results in a makespan of 9. As we discussed before, it's unpractical to
expect all the machines in a grid to be dedicated. Suppose machine m0 will execute grid task
t1 and local tasks together and this will delay e10. Let the actual e10 change from 4 to 6. If the
scheduler doesn't know this change, it will persist on the former schedule, which leads to a
makespan of 12 as illustrated in figure 1-(b). Though the change of e10 is unavoidable due to
the site autonomy, if the scheduling strategy can predict it in advance, a better schedule will
be made. In figure 1-(c), when task t3 arrives, the scheduler already predicts that the

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

 89

completion time of t1 will change from 4 to 6 and it will assign t3 to m1 in stead of m0
according to MCT, which results in a smaller makespan of 10 compared to 12. Table 2 shows
a scenario of Min-min scheduling. Figure 2-(a) and figure 2-(b) are the schedules before and
after t31 changes from 4 to 7. We can see that the makespan can be cut from 14 (in figure 2-(b))
to 12 (in figure 2-(c)) if the scheduler can predict the change of t31.

3. EBGSA

3.1. Applying EBGSA to MCT and Min-min

In this paper, we propose an Estimation Based Grid Scheduling Approach (EBGSA), which allows

for the simultaneous processing of grid tasks and local tasks. In EBGSA, we treat every expected
execution time as a random variable in stead of a predetermined constant. By estimating the value of
each random variable, the scheduler can make a better schedule, which takes into account the actual
resource status in the grid. Consider the two examples in the previous section, we apply EBGSA to
MCT and Min-min and modify them to be EMCT (Estimating MCT) and EMin-min (Estimating Min-
min). The two algorithms are described below:

EMCT Algorithm

(1) for all the tasks ti (in an arbitrary order)
(2) for all machines mj in the gird
(3) ecij = eeij + erij
(4) find machine mp which will finish ti earliest
(5) schedule ti to mp

EMin-min Algorithm
(1) for all tasks ti in meta-task M (in an arbitrary order)
(2) for all machines mj in the grid
(3) ecij = eeij + erj
(4) do until M is empty
(5) for each task in M find the earliest completion time and the corresponding machine that

obtains it
(6) find the task tp with the minimum earliest completion time
(7) assign task tp to the machine mq that gives the earliest completion time
(8) delete task tp from M
(9) update erq
(10) update all eciq for all i

Note that line 3 of EMCT algorithm differs from that of MCT. In EMCT algorithm we substitute
the estimation of cij, eij and rj, namely ecij, eeij and erj, for cij, eij and rj. And Min-min algorithm is
modified in the same way to produce EMin-min algorithm.

3.2. Estimating the Time Variable

The key issue of EBGSA is how to accurately estimate the time variable, eeij. However, because the
distribution of random variable eeij is unknown, it's impossible to form a definite formula of eeij. So we
should try to approximate it. One way people may easily think of is to figure out the value of eeij by
monitoring the resource status, such as system load. But this method has two shortcomings. First, it
isn't fit for the grid environment. Usually the resource owner's local tasks is prior to the grid tasks, so a
grid resource will not process the grid tasks assigned to it until it has finished all the local tasks or it is
released by all the local tasks. Even different grid tasks have different priorities. So, we can not derive
the value of eeij accurately only from the information of system load. Second, it will cost a lot of time

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

 90

if we have to detect the resource status before scheduling every task.
In EBGSA, we statistically estimate the random variable eeij from the past observations. The relation

between eij and eeij can be expressed as (1).

ij ij ijee e   (1)

In (1), ij is the additional amount of time needed by machine mj to finish task ti, caused by the

execution of local tasks. Let (1)ij

ij
ij

ee
e

   . Suppose that before task

ti, which is assigned to machine mj, is executed, mj has already accomplished m tasks. We use (2) to
estimate

ij , where
p j refers to the

th
p task accomplished by mj.

1 1

, 1
m m

p pij pj
p p

x x 
 

   (2)

In (2) xp is the weight of
pj , and usually the bigger p is, the more proportion xp will take up. That

means the execution of the latest task will influence the estimation the next execution most. After the
estimation of

ij , we can derive eeij and erj from (3) and (4) respectively.

ij ij ijee e (3)

1
j ij

i k
er ec

 

  (4)

In (4), k stands for the number of tasks that machine mj allows to run simultaneous and we assume that
all the k tasks assigned to mj start from time 0.

4. Simulation

4.1. Simulation Environment

In our simulation experiment we scheduler a meta-task of 200 tasks onto 4 machines. The
expected execution time of task ti on machine mj, namely eij, varies from 1 to 50.

In order to simulate the concurrent running of grid tasks and local tasks, we make use of
Java MultiThreading Programming [16]. In our experiment, for simplicity we generate a Java
thread object, localTaskThread, with a high priority, Thread.MAX_PRIORITY, to present a
local task which is running on a certain machine (Of course, it ispossible to generate more
than one thread with Thread.MAX_PRIORITY to simulate more than one local task running
concurrently). And we also generate three Java thread objects, gridTaskThread, with a low
priority, Thread.MIN_PRIORITY, to present three gird tasks running right on the previously
mentioned machine concurrently. Here, we suppose that a machine will allow at most three
grid tasks running concurrently on it. The experiment is performed using JDK1.5.0 and on the
platform of Windows XP. According to the features of Java and Windows XP scheduling
strategy, the JVM (Java Virtual Machine) scheduler will run the thread with the highest
priority first. When all the threads with a high priority are dead or blocked, the threads with a
low priority are able to get the opportunity to run. In addition, the JVM running on Windows
XP will allocate amount of CPU cycles to each of the threads with the same priority and
schedule them in turn. In our experiment, a machine will prefers a localTaskThread to a
gridTaskThread and we will call the sleep() method at intervals to let a localTaskThread sleep
for a certain period so that the gridTaskThreads are able to be scheduled. By doing this, we
simulate an actual computation grid environment described in section 1.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

 91

4.2. Simulation Procedures

The specific simulation procedures are described as follows.
1. Schedule the previously mentioned 200 tasks on to 4 different machines using MCT

algorithm.
2. Find the machine mMct which produces the makespan and denote the corresponding

schedule of tasks as sMct.
3. Suppose mMct to be non-dedicated. Generate on it a

localTaskThread and three gridTaskThreads for every three tasks in sMct as described
in the previous subsection.

4. Execute sMct on mMct and denote the finish time as makespan1.
5. Schedule the 200 tasks again using EMCT algorithm and denote the corresponding

makespan as makespan2.
6. Compare makespan1 with makespan2.
7. Substitute Min-min for MCT and repeat steps 1 to 6.

In step 1, we treat each of the 200 tasks as a Java Thread object, initialized with an

expected execution time eij between 1 and 50. For task ti assigned to machine mj, when the
total time of ti's running on mj reaches eij we will kill the thread. So the period from the time
when ti is generated to the time when it is dead is the actual execution time, which is denoted
as aeij. And in step 5, the key of EMCT is how to make the estimation of eeij as close to aeij as
possible. Here we use the observation of the last meta-task to estimate the next meta-task.
Assume the non-dedicated machine is mj. We generate 50 tasks and execute them on mj.

Let 1
,

50
pj

ppj
pj

ae
xe

   . According to (2) and (3), for task ti in the next meta-task,

50

1

1

50
pj

ij ij p
pj

ae
ee e e

  .

4.3. The Result and Discussion

The scheduling results of Min-min, EMin-min, MCT and EMCT are illustrated in figure 3
and figure 4. From figure 3, we can see that the actual makespan mp2 (568.7) is much larger
than that expected by Min-min algorithm, mp1 (512.2). This great increase of makespan is
caused by the scheduler's neglect of the non-dedication of machine mMin when using Min-min
algorithm. When the scheduler considers scheduling task ti to machine mMin has the earlier
completion time than any other assignment, it will Assign ti to mMin according to Min-min
algorithm. In fact, due to the simultaneous running of local tasks as well as other gird tasks on
mMin, ti may not be the task with the earliest completion time. Since our EMin-min algorithm
uses the estimation of execution time eeij of grid tasks instead of the predetermined expected
execution time eij, it can make a schedule more suitable to the actual grid environment than
Min-min. This can explain why mp3 (537.2) decreases by 5.5% compared to mp2 (568.7). The
experiment of MCT and EMCT has a similar result. We can see that in figure 4, mp3 (579.3)

is 5.2% less than mp2 (610.8). Note that, in our experiment we let xp be 1

50
, which makes each

task of the meta-task of 50 tasks has the same weight. This is because since we use the
observation of the last meta-task to estimate eeij of the next meta-task, every task in the last
meta-task has the same influence on the estimation. If the scheduling heuristic belongs to the
on-line mode instead of the batch mode, we can give a larger weight to the more recently

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

 92

finished task, making it have more influential on the estimation of the next task. Since it's not
the point of this paper, we do not discuss this issue here.

1mp 2mp 3mp

m
ak

es
pa

n
Minm

Figure 3. Different makespans made by Min-min and EMin-min: mp1 is the
makespan of Min-min; mp2 is the actual makespan; mp3 is the makespan of

EMin-min

1mp 2mp 3mp

mctm

m
ak

es
pa

n

Figure 4. Different makespans made by MCT and EMCT: mp1 is the makespan of
MCT; mp2 is the actual makespan; mp3 is the makespan of EMCT

5. Conclusion

Most grid scheduling heuristics assume the precondition that all the machines in the grid
are dedicated and idle and that every grid task has exclusive use of each machine. In fact, due
to the site-autonomy feature of grid, a machine may simultaneously execute local tasks and
grid tasks. Thus, the scheduler can not promise that its scheduling goal can be achieved. In
this paper EBGSA is presented, which allows for the simultaneous processing of grid tasks
and local tasks. We apply EBGSA to MCT and Min-min algorithms and the simulation
experiment shows that EMCT and EMin-min outperform MCT and Min-min respectively in
the measurement of makespan.

While the MCT and Min-min algorithms are considered in this paper, we should note that
EBGSA is applicable to any other scheduling heuristic where the predetermined execution

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

 93

time and completion time are used. In this paper, to estimate the execution time of a grid task
we use the linear estimation mode which is simple but not very adaptable to the dynamic grid
environment. The future work focuses on developing a new estimation mode for our EBGSA,
which can estimate the execution time of grid tasks more accurate under the dynamic grid
environment.

References

[1] I. Foster, C. Kesselman, “The Grid : Blueprint for a New Computing Infrastructure”,Morgan Kaufmann

Publishers, 1999.
[2] Muthucumaru Maheswaran, Shoukat Ali, “Dynamic Matching and Scheduling of a Class of Independent

Tasks onto Heterogeneous Computing Syetems”, Proceedings of the 8th IEEE Heterogeneous Computing
Workshop (HCW' 99), IEEE Computer Society Press, 1999.

[3] Martin Grajcar, “Genetic list scheduling algorithm for scheduling and allocation on a loosely coupled
heterogeneous multiprocessor system”, Proceedings of the 36th Design Automation Conference, pp. 280-285,
1999.

[4] Wai-Yip Chan, Chi-Kwong Li, “Scheduling tasks in DAG to heterogeneous processor system”, Proceedings
of the Sixth Euromicro Workshop on Parallel and Distributed Processing, pp. 27-31, January 1998.

[5] Haluk Topcuoglu, Salim Hariri and Min-You Wu, “Task scheduling algorithms for heterogeneous
processors”, Proceedings of the Eighth Heterogeneous Computing Workshop, pp. 3-14, April 1999.

[6] GyungLeen Park, Behrooz Shirazi, Jeff Marquis and Hyunseung, “Decisive path scheduling: a new list
scheduling method”, Proceedings of the 1997 International Conference on Parallel Processing, pp. 472-480,
August 1997.

[7] Wai-Yip Chan, Chi-Kwong Li, “Heterogeneous Dominant Sequence Cluster (HDSC): a low complexity
heterogeneous scheduling algorithm”, IEEE Pacific Rim Conference on Communications, Computers and
Signal Processing, pp. 956-959, August 1997.

[8] Zhen Liu, “Scheduling of random task graphs on parallel processors”, Proceedings of the Third International
Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS’95), pp. 143-147, January 1995.

[9] Sung-Ho Woo, Sung-Bong Yang, Shin-Dug Kim and Tack-Don Han, “Task scheduling in distributed
computing systems with a genetic algorithm”, High Performance Computing on the Information
Superhighway (HPC Asia’97), pp. 301-305, May 1997.

[10] E.S.H. Hou, N. Ansari and Hong Ren, “A genetic algorithm for multiprocessor scheduling”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 5, No. 2, pp. 113-120, February 1994.

[11] Yu-Kwong Kwok, “Parallel program execution on a heterogeneous PC cluster using task duplication”,
Proceedings of the 9th Heterogeneous Computing Workshop, 2000 (HCW 2000), pp. 364-374, May 2000.

[12] Zhenying Liu, Binxing Fang, Yi Zhang and Jianqi Tang, “Scheduling algorithms for a fork DAG in a
NOWs”, Proceedings of the Fourth International Conference/Exhibition on High Performance Computing in
the Asia-Pacific Region, pp. 959-960, May 2000.

[13] I. Foster, C. Kesselman, “The Grid: Blueprint for a New Computing Infrastructure”, China Machine Press,
second edition, pp. 41-41, April 2005.

[14] Michael Pinedo, “Scheduling: Theory, Algorithms, and Systems”, Prentice Hall, 1995.
[15] O. H. Ibarra, C. E. Kim, “Heuristic algorithms for scheduling independent tasks on nonidentical processors”,

Journal of the ACM, Vol. 24, No. 2, pp. 280-289, April 1997.
[16] Bruce Eckel, “Thinking in Java”, China Machine Press, pp. 825-901, January 2002.

Authors

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

 94

Zhan Gao

Born on Feb. 18, 1982. He received a B.E. degree in Computer Science &
Technology from Beijing Jiaotong University , China, 2004. He is currently
a PH.D. Candidate in Computer Application Technology at Beijing Jiaotong
University. His research interests include Grid and Distributed Computing.

Siwei Luo

Born on Dec. 23, 1943. He obtained his Ph.D. degree in computer science
form Shinshu University, Japan, in 1984. He is currently a professor and
doctoral supervisor of the School of Computer and Information Technology,
Beijing Jiaotong University. His research interests include neurocomputing,
neural networks, pattern recognition, and parallel computing.

Ding Ding

Born on Jan. 20, 1980. She received a B.E. degree in Computer Science &
Technology from Beijing Jiaotong University, China, 2000, and M.E. degree
in Computer Application Technology from Beijing Jiaotong University,
China, 2003. In 2003 she joined the faculty of Beijing Jiaotong University,
China where she is currently a lecturer in the School of Computer &
Information Technology. She is also a member of China Computer
Federation. Her current research interests include Parallel and Dstributed

Coming grid computing.

