
International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

1

A Peer Common Interest Share Model

Dennis Muhlestein and SeungJin Lim

Department of Computer Science, Utah State University
{denjmuhle, lim}@cc.usu.edu

Abstract

On-line communities on the Internet are highly self-organizing, dynamic and ubiquitous. The prime

interest of peers in this community is often sharing common interest, even when compromising privacy.
This paper presents a peer coordination strategy and a data sharing process for peers on the Internet
which allows them to discover their common interest in terms of sets of frequently visited URLs. To this
end, an algorithm was developed that allows the user to collect URLs of common interest from peers who
are currently visiting the same URLs as the user. Using the algorithm, sample data was collected by
randomly following links on popular websites to simulate the algorithm in operation. Experiments were
then performed to compare the number of discovered frequently visited URL sets and association rules
with the overhead induced by our network. An extended discussion on the experiments performed is
presented, by which the viability of the proposed model is demonstrated.

1. Introduction

On-line communities on the Internet are growing at an ever increasing rate. Not only is the number of
people accessing these communities increasing, the methods for sharing data and information are
changing [3]. Traditional sources of information are now being challenged by sources entirely made of
user contributed content. New services that allow communities to determine which content is most
relevant are becoming very popular. These services range from sites that allow users to vote on which
news or information is most important to services that allow users to “tag" or label content. The relevancy
of this user contributed data comes not from the ability given to each user, but from the combined input of
many users. Recognizing the power of the community, Time Magazine named “You", the person of the
year for 2006 [7].

It is safe to assume that the act of accessing a resource from a server, by a given user, denotes that the
user has some level of interest in that resource [4]. We propose that the set of resources accessed by user
A have some level of similarity with that of user B if A and B visited the same resource at some point in
time. In other words, if two users have each accessed a set of resources that has some intersection, it is
likely that each user will be interested in the portion of the other user's resources which they have not yet
accessed. There is currently no quick mechanism on the Internet to gain access to that information.

The World Wide Web is made up of a large number of servers that are accessible on a global network.
Clients connect to servers in a fairly unpredictable manner, e.g., it is a difficult problem for a web master
to predict the IP address of the next client to access his/her server. Each server may maintain an access
log that denotes the client, the time, and the resources that the client connected. This access log can
provide insight into information such as the number of clients that accessed resources and the number of

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

2

resources accessed on the server, but the server has no knowledge of other servers accessed by any of its
clients.

Web clients, on the other hand, keep a history of servers and resources that they visited. Web servers
and web clients each have a portion of the entire log of accessed resources on the Internet. It is
impractical and may not be possible to gather into one location the log data of all resources requested by
all clients. Only this global access log in its entirety, if exists, can answer such questions as “what are the
most commonly accessed resources on the Internet?" and “which resources are most commonly accessed
in combination with other resources?" with a high degree of confidence and accuracy. Furthermore,
because of the dynamic nature of the Internet in terms of the structure, the answers to these questions will
constantly change.

Answers to the questions above could be approximated if the relevant data are processed in a
distributed fashion where each peer in a distributed network has a small, but relevant, portion of the data.

This paper introduces a way for users to find information relevant to the data that they are currently
interested in. The proposed method is unique in resource discovery: the user discovers potentially useful
resources on the Web by peer collaboration based on the resource access behavior of peers, instead of by
conducting usual keyword search through a search engine.

The rest of this paper is organized as follows: In Section 2, existing works related to our proposal are
presented. We introduce an algorithm for peers to share and process data in Section 3. We then discuss
our usage of sample data to test our algorithm and provide an analysis of our results in Section 4 followed
by concluding remarks in Section 5.

2. Related work

The concept of knowledge discovery from web log data is not new. Much work has been done on
different data mining algorithms for web usage data in the past. Several works deal with mining web logs
to predict what the user will do next. In [8], the authors use the Apriori [1] algorithm to generate
association rules which are then processed by a recommendation engine to suggest content to new users
on a website. [5] also suggests pushing rules to a recommendation engine for processing but discovers
rules based on clustering like users according the order of resources requested and the time spent on those
resources. These methods generate rules with the intention of benefiting the web server or site operator.
Our method, while taking a similar approach for mining data, aims to provide the interesting rules to the
client for their benefit. In addition, our algorithm attempts to determine rules from all web usage across a
community of peers as opposed to data for all clients from a particular web server.

[6] presents the idea of organizing web peers based on common interests. However, their work deals
more with distributed data mining algorithms and only gives a broad overview of the idea. The authors
propose having clients in a peer-to-peer network hold a majority rules vote to determine if a proposed
frequent item set meets a minimum support/confidence. Our work has a similar intent but we organize
peers based on commonly accessed resources instead of resource subject material. Relevant data is
shared between peers, but then each client processes the information instead of determining rules on a
network level. In addition, we propose a mechanism for coordinating peers.

3. The data share model

Let S = {s1, s2, …, sn} be a set of available servers on the Internet. Let R = {r1, r2, …, rn} be the set of
all resources made available on the Internet. Let C = {c1, c2, …, cn} be the set of clients who are browsing
available resources. Each client has a history of requested resources where the server and resource are
identified, e.g., s5r3, s2r7, …. Servers on the other hand, store which resources were accessed by which
clients, e.g., c1r3, c2r7.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

3

Table 1 illustrates the difference in perspective between clients and servers for a hypothetical server s1
and hypothetical client c1. It is important to differentiate between the two perspectives. The server, while
knowing which resources are requested from its domain by clients, cannot know about resources accessed
on other server domains. The client on the other hand, while having access to resources on any domain,
cannot know which resources are accessed by any other client.

Table 1. An example of server and client access log entries.

Log entries of server
s1

Log entries of client c
1

c3r2 s1r3
c1r3 s2r3

c1r4 s1r4
.
.
.

.

.

.

3.1. The coordination server

As pointed out earlier, the global access log is not available in one location for processing. It can
however be simulated in a limited way by assigning portions of it to peer clients in a distributed network.
The purpose of the proposed data share model is to help the web client find the access pattern of other
clients across different servers. In our distributed network, this is achieved with the aid of a special type
of web server, called a coordination server (CS).

Definition 1 (Coordination server) A coordination server is a web server which is designated to

collect <client, server, resource, time> 4-tuples and serves a subset of the collection to its clients upon a
request.

It is important that clients access the same coordination server when they access the same resource.

The number of coordination servers for a particular on-line community is not important unless the
community size is very large or the scalability of the system is critical. (For our tests we used one
coordination server that is separate from any specific domain. This coordination server is responsible for
coordinating all clients in our test network.) Practically however, it would be feasible to have the primary
web server of a domain act as a coordination server. Peers are formed around the coordination server to
which they request resources in our work.

Because the location of the coordination server isn't of consequence to the client's ability to operate in
the network, there can be different mechanisms for clients to locate coordination servers. Perhaps a list of
coordination servers would be made available much the same way lists of Usenet servers are published.
The client might have the ability to select a server based on some criteria, like proximity, bandwidth, or
simply user loyalty to the provider. Most likely, a plugin for the user's client program that implements the
algorithm would be able to detect if the web server the client was accessing was acting as a coordination
server (there could be an added HTTP response header for instance). If the web server was not
participating as a coordination server, the distribution of the plugin would provide at least one
coordination server for the plugin to use as a fallback.

When a client cx makes a request to a resource siry on a particular web server si, it will then report to the
corresponding coordination server, CS, the record cxsiry. The CS will then respond to cx with the location
of other most recent peers that also accessed siry. In other words, CS stores a temporary set of {cxsiry} that

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

4

represents a portion of the most recent activity. Note that clients will use CS to locate peers, but do not
necessarily have to report every requested resource siry to CS.

The number of peers returned to the requesting client is configurable. The server makes no persistent
connection with any of its clients so it has no way of knowing if the clients being returned are still
available for data sharing. Internet clients by definition, can make requests to resources and then become
immediately unavailable on the network. It may therefore, be best to return a small number of results if
the time stamp of the accessed resources are within a short time frame. If however, a resource is rarely
requested, it may be advantageous to the client to return a greater number of peers to ensure that the client
can establish a connection with an optimal number of peers, i.e., we assume that some clients are no
longer available if the resource is infrequently accessed.

The function of the coordination server is summarized in the following pseudo code:

[on client HTTP request req]
1. read resource ry from req by client cx;
2. store cxry and current time in local database;
3. select c from local database such that c<>cx and
 r=ry ordered by latest time stamp in descending
 order, limited to n results;
4. return {c} to cx;

Example 1 Consider a particular user cx who is interested in politics. cx has browsed various resources

on the Internet and has come across a server with current information on a particular political view that
he/she would like to learn more about. cx has a plugin installed in their browser that communicates
automatically with a coordination server CS. After cx has requested this latest resource, say
http://www.someserver/someresource, a request to CS is made. A sample HTTP request to CS and the
response for cx, i.e., the set of peer addresses that have requested the same resource lately, are shown
below:

[request from cx]
POST /visit HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: <length>
Connection: close

url=http://www.someserver/someresource

[response from CS]
HTTP/1.1 200 OK
Content-type: text/javascript
Content-Length: <length>

{‘192.168.1.1:8080', ‘192.168.1.2:8090'}

After the user's plugin receives a response from the CS, the plugin possibly has the addresses of one or

more peers that have also requested the same server and resource. The plugin can now send and receive
additional information from those peers as long as those peers are still available on the network.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

5

3.2. Peer communication protocol

According to the server algorithm, clients are given a set of possible peers to communicate with as
shown in Example 1. Because clients on the Internet can come and go at any time in an ad-hoc manner,
no connections are persistent between these groups of peers. Each client has a lookup table with resources
and peers, where each entry is a resource ry corresponding to a set of peers {c}. For each resource the
client requests, the client checks to see if it has at least one peer in the lookup table. If there are no peers
for a particular resource, the client can request additional peers from the coordination server.

Example 2 Table 2 shows the hypothetical response by a coordination server for one common resource,

namely rx, between clients 4—7 assuming that the server considers 3 peers the optimal number of peers to
respond with for this resource. Peer addresses are abbreviated using unique integers for convenience.

 After a client receives a list of peers from the coordination server CS, or determines that it already has
an adequate list available, the client sends the last requested resource, e.g., cxsiry, to all of its peers and
those peers in turn add the client to their list of peers in the lookup table under the key rx. (Our test client
created a simple listen socket on a random port that was reported to the CS along with the IP address that
the client was hosted at. To report a visited resource to a peer, the client made a simple HTTP post to its
peer.)

Table 2. A hypothetical response by a coordination server to four clients 4, 5, 6 and 7 for a
particular resource rx.

Client Server response for rx
4 {1, 2, 3}
5 {2, 3, 4}
6 {3, 4, 5}
7 {4, 5, 6}

The function of a client is summarized in the following pseudo code:

1. create a set of locally visited resources;
2. create a lookup table of remote peers based on
resources;

[client visits a resource rx]
3. append rx to local visits in lookup table;
4. if lookup table does not have peer list for rx then
5. send a request containing rx to CS;
6. store any returned peer list in lookup table
 under key rx;
7. endif
8. send rx to all peers of rx in lookup table;

[incoming resource ry from client cx]
9. append cx to peer list in lookup table for key ry;

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

6

Example 3 Consider the server responses in Table 2 of Example 2 again. Figure 1 illustrates the
lookup table for the clients in Table 2. Client 4 receives peers 1, 2 and 3 from the CS with respect to the
resource rx. These peers are appended immediately to the lookup table of client 4 with resource key rx.
Client 4 then sends rx to peers 1, 2 and 3. This process is repeated for clients 5, 6 and 7 (see Figures 2
through 4). After client 7 has contacted peers 4, 5, and 6, client 4 has peers 1—7 (excluding itself) in its
lookup table for rx as illustrated in Figure 4. If the process continued further, with additional clients
requesting resource rx, eventually each client would have 6 peers for the resource rx.

3.3. Data share among peers by data mining

Pee
r

Resources requested by Peer

ci {r48, r1447, r2049, r2050, r2051, …}

cj {r57, r58, r62, r64, r136, r137, r764, …}

ck {r57, r58, r64, r463, r764}

cl {r677, r844, r846, r1544, …}
cm {r57, r494, r677, r1634, r1635, …}

Table 3. A sample lookup table for client cx that has been rearranged into a table of
transactions.

Figure 1. Lookup tables after client 4 reported to CS, and contacted peers 1, 2 and 3

according to the response from CS. rx: 1, 2, 3 at peer 4 implies that clients 1, 2 and 3 have
requested the same resource rx previously. Client 4 sends rx to all of its peers (1, 2, and 3)

and the lookup tables of clients 1, 2 and 3 are then updated as well

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

7

Figure 2. Lookup tables after client 5 reported to CS, and contacted p eers 2, 3 and 4
accordingly

Figure 3. Lookup tables after client 6 reported to CS, and contacted peers 3, 4 and 5
accordingly

Based on the proposed server and peer communication protocol, it may be useful to find out which of
the user's unvisited resources in the lookup table are most likely to be of interest to the user. To
accomplish this, the client creates a list of resources visited by each unique peer in the lookup table. Each
list of resources is seen as a transaction of items. In this step, the particular peer that requested the
resources, nor the order in which the resources were requested is taken into consideration.

Example 4 After client cx has contacted the CS several times, and other clients have become peers to cx

after requesting at least one of the same resources as cx, cx can begin to process the data. The client
rearranges its lookup table into a list of peer transactions. Table 3 shows an example lookup table that has
been rearranged into a transaction table.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

8

Figure 4. Lookup tables after client 7 reported to CS, and contacted peers 4, 5 and 6

accordingly

This list of transactions can be scanned for frequent item sets and association rules [1]. The frequent
item sets provide insight into which resources are commonly accessed together by peers. The association
rules help the client decide which previously unvisited resources are most interesting when taking the
access patterns of its peers into consideration.

The most interesting association rules [9] for each client are rules that contain the most items from the
client's local visits in the rule's antecedent. The consequent of these rules suggest to the client resources
that they may be interested in, i.e., peers who visited the same resources this client visited, also visited
these resources that this client hasn't yet visited. In other words, all the rules that are in the form {r1, r2, …,
rn}  rz, where ri (1 <= i <= n) were resources visited by the client, suggest with some degree of
confidence that rz is also of interest to the client. Clients are not interested in rules that contain locally
visited resources in the consequent (the client already requested that resource). This is a good heuristic for
limiting association rules and can be applied after generating frequent item sets and before searching for
association rules. The search space for association rules is limited by disallowing locally visited resources
in the consequent and disallowing all other items in the antecedent. After applying these two conditions,
all rules found are in the format { ri }  rx, where ri is one or more locally visited resources and rx is a
resource visited by a group of remote peers who also visited { ri }. After evaluating all discovered rules,
the most interesting rules are the rules that

1. have the most items in the antecedent,
2. have the highest support, and
3. have the greatest confidence.

We prefer rules that have the most items in the antecedent (all of which the client has requested locally)

since they may indicate that the consequent resource is more strongly associated with the antecedent
resources. Rules that have a larger support indicate that more peers visited the same group of resources. A
greater confidence indicates that more of the peers that visited the antecedent resources also visited the
consequent resource. Each of these conditions can be evaluated individually or in combination when
determining which resources to suggest to the client.

Example 5 Consider Table 3 of Example 4. After scanning the table for frequent item sets, cx

determines that the set {r57, r58, r64} meets the minimum support requirement and consists of resources

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

9

this client has visited. It next determines that r764 meets the minimum confidence for the association rule
{r57, r58, r64}  r764. The rule is kept for later consideration because cx has not visited r764.

It is likely that the confidence of a discovered rule is less than 100%. In other words, not all clients

who visited the antecedent resources of the rule, also visited the consequent resources. A client can
forward a discovered rule to all peers who have visited the antecedent resources but not the consequent
resource. This may be of value to the client's peers because peers do not necessarily find the same rules.
Note that peers are not transitive. Just because clients c1 and c2 are peers, and c2 and c3 are peers, c1 and c3
are not necessarily peers.

4. Experiments

The global access log is not currently available. There are some services currently in operation that use
a browser plugin to transmit visit data from the client to a 3rd party service but the raw data is not made
available for download. There are some data sets for web traffic analysis but they are limited to one
particular domain.

We implemented our coordination server as a stand alone web server written in Python. Our CS uses a
PostgreSQL database for temporary storage. To test the client, we developed a plugin that is installable in
the Mozilla FireFox web browser. To test the applicability of our algorithm, we needed to generate
sample data. Our sample data was generated and tested with software written in Python.

We wanted to simulate a certain number of clients visiting resources on the Internet and record each
client's local log file for analysis. We selected the top 100 websites based on the ranking provided by
Alexa.com [2]. The test client would choose a random website from this list and retrieve the content
located at the root of this web server. The client would then record the requested resource and then choose
a new resource randomly from the links within this web page. This was performed in a loop with a
random chance of continuing.

The following pseudo code illustrates how sample data was generated in our experiment:

select random site from top 100 sites;
set current domain to randomly selected site;
set current resource to /;
loop
 record current domain/resource in log file;
 select random number r in [0,1];
 if r > chance of exiting then exit;
 retrieve and cache current domain/
 resource;
 randomly select new domain and new
 resource from all links on retrieved
 content;

This client outputs one record of visits per row in the log file. After running this client many times, the

log file contains records that represent many users browsing at the same time. The next step is to convert
the log file into data that represents each client access in real time. Assuming that all clients start
browsing at approximately the same time, the data can be converted into a new log file with the following
algorithm.

Conversion algorithm:

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

10

create ordered list of clients/visits keyed from
 current visit time;
for each line in sample data log:
 current time=0;
 for each visit:
 select random integer r in (3,10);
 current time += r;
 visits[current_time] = current client/visit;
output ordered list;

Sample output:
c7s3r9
c29s4r1
c3s5r2

The output of this algorithm converts the former log file into a log file with 1 client/visit per line.

Clients and visits can appear in any order. This is somewhat indicative of what happens on the Internet.
Time is unimportant for the simulation though because the simulation results will be the same no matter
how long between visits each client takes. The important factor is the order that clients make their visits.
This is because the coordination server selects peers based on whom has most recently accessed a server
resource. It is important to note that in a real network environment, the time does start to play a factor
because old peers may become unavailable.

4.1. Analysis of sample data

Figure 5. Number of resource requests per client after rule sharing in our test network.

The sample data contains resources requested by 1,279 clients. These clients started by randomly
choosing one of 100 sites. From there however, no restrictions were placed on which resources and
servers were contacted. A total of 1,086 unique server domains were contacted and a total of 6,320 unique
resources were visited. There were 11,578 total requests to resources (which yields 9 requests per client in
average). Figure 5 shows a number of resources, and how many clients contacted that number of
resources. The average is 9 resources/client and the mode is 6.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

11

Because we used only one coordination server and started from a relatively small number of domains,
all of these clients are part of the same group of peers, meaning that one could follow references from one
peer to another, and eventually traverse to all peers in the network. In Figure 6, we show for each number
of peers, how many clients in our test network contacted that number peers. The average is 10.7
peers/client and the mode is 12. In our test network, each client contacted 10.7 peers in average.

Figure 6. Number of peers per client after rule sharing in our test network.

Our test program used the larger of 3 divided by the total number of transactions known by the client
or 10% for the minimum support percentage and a minimum confidence of 50%. With these values, 57%
of all clients found interesting rules with an average of 2.18 rules per client found. Of these rules, on
average, 2.11 rules were found to be interesting for at least one peer. After distributing interesting rules
amongst peers, 86% of all clients had access to at least one rule with an average of 5.51 rules/client.
Figure 7 shows the number of rules and the number of clients that either discovered or were presented
with that number of rules.

Figure 7. Number of rules per client after rule sharing in our test network.

In our test network there were 125 clients that found exactly 3 interesting rules. To evaluate the
effectiveness of our data sharing protocol, we measured the average number of peers, locally visited
resources, and number of resources received from these 125 peers each time a new association rule was
discovered. Table 4 contains the cumulative averages for these clients. The same information is displayed
in Figure 8 for clarity.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

12

 Vistis Peers Received Resources

1st rule 5.0 7.8 28.0

2nd rule 7.0 10.3 47.9

3rd rule 8.4 11.2 65.6

Table 4. The average number of visits made, peers identified and received resources from
the peers by the time each rule was discovered by the clients who discovered three rules.

Figure 8. The average number of visits made, peers identified and received resources from
peers shown in Table 4

From the averages listed in Table 4, we can see that there is an initialization cost before a client
receives a benefit from the network. On average, a client didn't find a rule until they had visited
approximately 5 resources and made a connection with 7 or 8 peers. After this cost however, discovery of
new rules took less network communications as it only took 3 to 4 more local visits to resources and 4
more peers to discover an additional two rules on average.

5. Conclusion and future work

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

13

We can see, that for the group of peers in our test network, by the time a client has requested 10
resources, it can be presented with another 5 or 6 resources which may be of interest to the particular
client. Since this is an ongoing process as clients browse, rules may be found at any point in time. We
believe that given enough clients in a network using our system, each client would be able to continually
find new resources of interest, which can be considered as an alternative Web resource discovery method
to popular keyword search using a Web search engine.

Our peer-to-peer model relies on a coordination server. Even though this component of the network
can be fulfilled by many actual servers, there would be benefits to creating a peer lookup model that didn't
rely on centralized servers.

In our current model, the weighting scheme for peer resource access behavior is naive. In other words,
every peer resource access is weighted equally. In order to refine the quality of common interest, it would
be worthwhile to distinguish serious, intentional resource access from casual, random access.

Our model for sharing data mining focuses on connecting peers that have similar interests. The data
mining portion simply runs the Apriori algorithm on the collected information. It may be advantageous to
use a distributed association rule mining algorithm instead. Perhaps instead of sharing resources, clients
could share association rule candidates with their peers to determine rules of interest.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining Association Rules between Sets of Items in Large Databases,” In

Proceedings of the 1993 ACM SIGMOD Int'l Conf. on Management of Data, pp. 207-216, May 1993.
[2] Alexa.com, “Alexa Web Search - Top 500,” http://www.alexa. com/site/ds/top_sites? cc=US&ts_mode=country, Last

retrieved December 2006.
[3] R. Blood, “How blogging software reshapes the online community,” Commun. ACM, Vol. 47, No. 12, pp. 53-55, 2004.
[4] M. Claypool, D. Brown, P. Le, and M. Waseda, “Inferring User Interest,” IEEE Internet Computing, Vol. 5, No. 6, pp. 32-

39, 2001.
[5] S. Gunduz and M. T. Ozsu, “A Web page prediction model based on click-stream tree representation of user behavior,” In

Proceedings of the 9th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data mining, pp. 535-540, 2003.
[6] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta, “Distributed Data Mining in Peer-to-Peer Networks,” IEEE

Internet Computing, Vol. 10, No. 4, pp. 18-26, 2006.
[7] L. Grossman, ‘Time's Person of the Year: You,” Time Magazine, December 2006.
[8] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Effective personalization based on association rule discovery from web

usage data,” In Proceedings of the 3rd Int'l Workshop on Web information and Data Management, pp. 9-15, 2001.
[9] R. J. Bayardo, Jr. and R. Agrawal, “Mining the most interesting rules,” In Proceedings of the 5th ACM SIGKDD Int'l Conf.

on Knowledge Discovery and Data mining, pp. 145-154, 1999.

Authors

Dennis Muhlestein

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 4, October, 2007

14

Dennis received a B.S. in Computer Science from Utah Valley State College, USA in 2002. He is
currently pursuing an MS degree at Utah State University and works as a software engineer and network
administrator. His interests include Distributed Computing, Algorithms, Artificial Intelligence, Data
Mining and Peer to Peer technology.

SeungJin Lim

Received a B.S. degree in Computer Science from University of Utah, USA, 1993,
and M.S. and Ph D degrees in Computer Science from Brigham Young University,
USA, in 1995 and 2001 respectively. In 2003 he joined the faculty of Utah State
University, USA where he is currently an assistant professor in Department of
Computer Science. His research interests include mainly Data Mining.

