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Abstract 
 

 
On-line communities on the Internet are highly self-organizing, dynamic and ubiquitous. The prime 

interest of peers in this community is often sharing common interest, even when compromising privacy. 
This paper presents a peer coordination strategy and a data sharing process for peers on the Internet 
which allows them to discover their common interest in terms of sets of frequently visited URLs. To this 
end, an algorithm was developed that allows the user to collect URLs of common interest from peers who 
are currently visiting the same URLs as the user. Using the algorithm, sample data was collected by 
randomly following links on popular websites to simulate the algorithm in operation. Experiments were 
then performed to compare the number of discovered frequently visited URL sets and association rules 
with the overhead induced by our network. An extended discussion on the experiments performed is 
presented, by which the viability of the proposed model is demonstrated.  
 
1. Introduction 
 

On-line communities on the Internet are growing at an ever increasing rate. Not only is the number of 
people accessing these communities increasing, the methods for sharing data and information are 
changing [3]. Traditional sources of information are now being challenged by sources entirely made of 
user contributed content.  New services that allow communities to determine which content is most 
relevant are becoming very popular.  These services range from sites that allow users to vote on which 
news or information is most important to services that allow users to “tag" or label content. The relevancy 
of this user contributed data comes not from the ability given to each user, but from the combined input of 
many users.  Recognizing the power of the community, Time Magazine named “You", the person of the 
year for 2006 [7]. 

It is safe to assume that the act of accessing a resource from a server, by a given user, denotes that the 
user has some level of interest in that resource [4]. We propose that the set of resources accessed by user 
A have some level of similarity with that of user B if A and B visited the same resource at some point in 
time. In other words, if two users have each accessed a set of resources that has some intersection, it is 
likely that each user will be interested in the portion of the other user's resources which they have not yet 
accessed. There is currently no quick mechanism on the Internet to gain access to that information. 

The World Wide Web is made up of a large number of servers that are accessible on a global network. 
Clients connect to servers in a fairly unpredictable manner, e.g., it is a difficult problem for a web master 
to predict the IP address of the next client to access his/her server. Each server may maintain an access 
log that denotes the client, the time, and the resources that the client connected. This access log can 
provide insight into information such as the number of clients that accessed resources and the number of 
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resources accessed on the server, but the server has no knowledge of other servers accessed by any of its 
clients. 

Web clients, on the other hand, keep a history of servers and resources that they visited. Web servers 
and web clients each have a portion of the entire log of accessed resources on the Internet. It is 
impractical and may not be possible to gather into one location the log data of all resources requested by 
all clients. Only this global access log in its entirety, if exists, can answer such questions as “what are the 
most commonly accessed resources on the Internet?" and “which resources are most commonly accessed 
in combination with other resources?" with a high degree of confidence and accuracy. Furthermore, 
because of the dynamic nature of the Internet in terms of the structure, the answers to these questions will 
constantly change. 

Answers to the questions above could be approximated if the relevant data are processed in a 
distributed fashion where each peer in a distributed network has a small, but relevant, portion of the data.  

This paper introduces a way for users to find information relevant to the data that they are currently 
interested in. The proposed method is unique in resource discovery: the user discovers potentially useful 
resources on the Web by peer collaboration based on the resource access behavior of peers, instead of by 
conducting usual keyword search through a search engine.  

The rest of this paper is organized as follows: In Section 2, existing works related to our proposal are 
presented. We introduce an algorithm for peers to share and process data in Section 3. We then discuss 
our usage of sample data to test our algorithm and provide an analysis of our results in Section 4 followed 
by concluding remarks in Section 5.  
 

2. Related work 
 

The concept of knowledge discovery from web log data is not new. Much work has been done on 
different data mining algorithms for web usage data in the past. Several works deal with mining web logs 
to predict what the user will do next. In [8], the authors use the Apriori [1] algorithm to generate 
association rules which are then processed by a recommendation engine to suggest content to new users 
on a website. [5] also suggests pushing rules to a recommendation engine for processing but discovers 
rules based on clustering like users according the order of resources requested and the time spent on those 
resources. These methods generate rules with the intention of benefiting the web server or site operator. 
Our method, while taking a similar approach for mining data, aims to provide the interesting rules to the 
client for their benefit. In addition, our algorithm attempts to determine rules from all web usage across a 
community of peers as opposed to data for all clients from a particular web server. 

[6] presents the idea of organizing web peers based on common interests. However, their work deals 
more with distributed data mining algorithms and only gives a broad overview of the idea. The authors 
propose having clients in a peer-to-peer network hold a majority rules vote to determine if a proposed 
frequent item set meets a minimum support/confidence. Our work has a similar intent but we organize 
peers based on commonly accessed resources instead of resource subject material.  Relevant data is 
shared between peers, but then each client processes the information instead of determining rules on a 
network level. In addition, we propose a mechanism for coordinating peers.  
 

3. The data share model 
 

Let S = {s1, s2, …, sn} be a set of available servers on the Internet. Let R = {r1, r2, …, rn} be the set of 
all resources made available on the Internet. Let C = {c1, c2, …, cn} be the set of clients who are browsing 
available resources. Each client has a history of requested resources where the server and resource are 
identified, e.g., s5r3, s2r7, …. Servers on the other hand, store which resources were accessed by which 
clients, e.g., c1r3, c2r7.   
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Table 1 illustrates the difference in perspective between clients and servers for a hypothetical server s1 
and hypothetical client c1. It is important to differentiate between the two perspectives. The server, while 
knowing which resources are requested from its domain by clients, cannot know about resources accessed 
on other server domains. The client on the other hand, while having access to resources on any domain, 
cannot know which resources are accessed by any other client.  

Table 1. An example of server and client access log entries. 

Log entries of server 
s1 

Log entries of client c
1 

c3r2 s1r3 
c1r3 s2r3

c1r4 s1r4 
. 
. 
. 

. 

. 

. 
 
3.1. The coordination server 
 

As pointed out earlier, the global access log is not available in one location for processing. It can 
however be simulated in a limited way by assigning portions of it to peer clients in a distributed network. 
The purpose of the proposed data share model is to help the web client find the access pattern of other 
clients across different servers. In our distributed network, this is achieved with the aid of a special type 
of web server, called a coordination server (CS). 

 
Definition 1 (Coordination server) A coordination server is a web server which is designated to 

collect <client, server, resource, time> 4-tuples and serves a subset of the collection to its clients upon a 
request. 

 
It is important that clients access the same coordination server when they access the same resource. 

The number of coordination servers for a particular on-line community is not important unless the 
community size is very large or the scalability of the system is critical. (For our tests we used one 
coordination server that is separate from any specific domain. This coordination server is responsible for 
coordinating all clients in our test network.) Practically however, it would be feasible to have the primary 
web server of a domain act as a coordination server. Peers are formed around the coordination server to 
which they request resources in our work. 

Because the location of the coordination server isn't of consequence to the client's ability to operate in 
the network, there can be different mechanisms for clients to locate coordination servers. Perhaps a list of 
coordination servers would be made available much the same way lists of Usenet servers are published. 
The client might have the ability to select a server based on some criteria, like proximity, bandwidth, or 
simply user loyalty to the provider. Most likely, a plugin for the user's client program that implements the 
algorithm would be able to detect if the web server the client was accessing was acting as a coordination 
server (there could be an added HTTP response header for instance). If the web server was not 
participating as a coordination server, the distribution of the plugin would provide at least one 
coordination server for the plugin to use as a fallback. 

When a client cx makes a request to a resource siry on a particular web server si, it will then report to the 
corresponding coordination server, CS, the record cxsiry. The CS will then respond to cx with the location 
of other most recent peers that also accessed siry. In other words, CS stores a temporary set of {cxsiry} that 
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represents a portion of the most recent activity. Note that clients will use CS to locate peers, but do not 
necessarily have to report every requested resource siry to CS. 

The number of peers returned to the requesting client is configurable. The server makes no persistent 
connection with any of its clients so it has no way of knowing if the clients being returned are still 
available for data sharing. Internet clients by definition, can make requests to resources and then become 
immediately unavailable on the network. It may therefore, be best to return a small number of results if 
the time stamp of the accessed resources are within a short time frame. If however, a resource is rarely 
requested, it may be advantageous to the client to return a greater number of peers to ensure that the client 
can establish a connection with an optimal number of peers, i.e., we assume that some clients are no 
longer available if the resource is infrequently accessed. 

The function of the coordination server is summarized in the following pseudo code: 
 
[on client HTTP request req] 
1. read resource ry from req by client cx; 
2. store cxry and current time in local database; 
3. select c from local database such that c<>cx and   
     r=ry  ordered by latest time stamp in descending  
     order, limited to n results; 
4. return {c} to cx; 
 
Example 1 Consider a particular user cx who is interested in politics. cx has browsed various resources 

on the Internet and has come across a server with current information on a particular political view that 
he/she would like to learn more about. cx has a plugin installed in their browser that communicates 
automatically with a coordination server CS. After cx has requested this latest resource, say 
http://www.someserver/someresource, a request to CS is made. A sample HTTP request to CS and the 
response for cx, i.e., the set of peer addresses that have requested the same resource lately, are shown 
below: 

 
[request from cx] 
POST /visit HTTP/1.1 
Content-Type: application/x-www-form-urlencoded 
Content-Length: <length> 
Connection: close 
 
url=http://www.someserver/someresource 
 
[response from CS] 
HTTP/1.1 200 OK 
Content-type: text/javascript 
Content-Length: <length> 
 
{‘192.168.1.1:8080', ‘192.168.1.2:8090'} 
 
 
After the user's plugin receives a response from the CS, the plugin possibly has the addresses of one or 

more peers that have also requested the same server and resource. The plugin can now send and receive 
additional information from those peers as long as those peers are still available on the network. 
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3.2. Peer communication protocol 
 

According to the server algorithm, clients are given a set of possible peers to communicate with as 
shown in Example 1. Because clients on the Internet can come and go at any time in an ad-hoc manner, 
no connections are persistent between these groups of peers. Each client has a lookup table with resources 
and peers, where each entry is a resource ry corresponding to a set of peers {c}. For each resource the 
client requests, the client checks to see if it has at least one peer in the lookup table. If there are no peers 
for a particular resource, the client can request additional peers from the coordination server. 

 
Example 2 Table 2 shows the hypothetical response by a coordination server for one common resource, 

namely rx, between clients 4—7 assuming that the server considers 3 peers the optimal number of peers to 
respond with for this resource. Peer addresses are abbreviated using unique integers for convenience. 

    After a client receives a list of peers from the coordination server CS, or determines that it already has 
an adequate list available, the client sends the last requested resource, e.g., cxsiry, to all of its peers and 
those peers in turn add the client to their list of peers in the lookup table under the key rx. (Our test client 
created a simple listen socket on a random port that was reported to the CS along with the IP address that 
the client was hosted at. To report a visited resource to a peer, the client made a simple HTTP post to its 
peer.)  

Table 2. A hypothetical response by a coordination server to four clients 4, 5, 6 and 7 for a 
particular resource rx. 

Client Server response for rx 
4 {1, 2, 3} 
5 {2, 3, 4} 
6 {3, 4, 5} 
7 {4, 5, 6} 

 
The function of a client is summarized in the following pseudo code: 
 
1. create a set of locally visited resources; 
2. create a lookup table of remote peers based on  
resources; 
 
[client visits a resource rx] 
3. append rx to local visits in lookup table; 
4. if lookup table does not have peer list for rx then 
5.   send a request containing rx to CS; 
6.   store any returned peer list in lookup table  
       under key rx; 
7. endif 
8. send rx to all peers of rx in lookup table; 
 
[incoming resource ry from client cx] 
9. append cx to peer list in lookup table for key ry; 
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Example 3 Consider the server responses in Table 2 of Example 2 again. Figure 1 illustrates the 
lookup table for the clients in Table 2. Client 4 receives peers 1, 2 and 3 from the CS with respect to the 
resource rx. These peers are appended immediately to the lookup table of client 4 with resource key rx. 
Client 4 then sends rx to peers 1, 2 and 3. This process is repeated for clients 5, 6 and 7 (see Figures 2 
through 4).  After client 7 has contacted peers 4, 5, and 6, client 4 has peers 1—7 (excluding itself) in its 
lookup table for rx as illustrated in Figure 4. If the process continued further, with additional clients 
requesting resource rx, eventually each client would have 6 peers for the resource rx. 

 
3.3. Data share among peers by data mining 
 

Pee
r 

Resources requested by Peer 

ci {r48, r1447, r2049, r2050, r2051, …} 

cj {r57, r58, r62, r64, r136, r137, r764, …} 

ck {r57, r58, r64, r463, r764} 

cl {r677, r844, r846, r1544, …} 
cm {r57, r494, r677, r1634, r1635, …} 

Table 3. A sample lookup table for client cx that has been rearranged into a table of 
transactions. 

 

 
Figure 1. Lookup tables after client 4 reported to CS, and contacted peers 1, 2 and 3 

according to the response from CS. rx: 1, 2, 3 at peer 4 implies that clients 1, 2 and 3 have 
requested the same resource rx previously. Client 4 sends rx to all of its peers (1, 2, and 3) 

and the lookup tables of clients 1, 2 and 3 are then updated as well 
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Figure 2. Lookup tables after client 5 reported to CS, and contacted p eers 2, 3 and 4 
accordingly 

 

Figure 3. Lookup tables after client 6 reported to CS, and contacted peers 3, 4 and 5 
accordingly 

Based on the proposed server and peer communication protocol, it may be useful to find out which of 
the user's unvisited resources in the lookup table are most likely to be of interest to the user. To 
accomplish this, the client creates a list of resources visited by each unique peer in the lookup table. Each 
list of resources is seen as a transaction of items. In this step, the particular peer that requested the 
resources, nor the order in which the resources were requested is taken into consideration. 

 
Example 4 After client cx has contacted the CS several times, and other clients have become peers to cx 

after requesting at least one of the same resources as cx, cx can begin to process the data. The client 
rearranges its lookup table into a list of peer transactions. Table 3 shows an example lookup table that has 
been rearranged into a transaction table. 
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Figure 4. Lookup tables after client 7 reported to CS, and contacted peers 4, 5 and 6 

accordingly 
 

This list of transactions can be scanned for frequent item sets and association rules [1]. The frequent 
item sets provide insight into which resources are commonly accessed together by peers. The association 
rules help the client decide which previously unvisited resources are most interesting when taking the 
access patterns of its peers into consideration. 

The most interesting association rules [9] for each client are rules that contain the most items from the 
client's local visits in the rule's antecedent. The consequent of these rules suggest to the client resources 
that they may be interested in, i.e., peers who visited the same resources this client visited, also visited 
these resources that this client hasn't yet visited. In other words, all the rules that are in the form {r1, r2, …, 
rn}  rz, where ri (1 <= i <= n) were resources visited by the client, suggest with some degree of 
confidence that rz is also of interest to the client.  Clients are not interested in rules that contain locally 
visited resources in the consequent (the client already requested that resource). This is a good heuristic for 
limiting association rules and can be applied after generating frequent item sets and before searching for 
association rules. The search space for association rules is limited by disallowing locally visited resources 
in the  consequent and disallowing all other items in the antecedent.  After applying these two conditions, 
all rules found are in the format { ri }  rx, where ri is one or more locally visited resources and rx is a 
resource visited by a group of remote peers who also visited { ri }. After evaluating all discovered rules, 
the most interesting rules are the rules that  

 
1. have the most items in the antecedent, 
2. have the highest support, and 
3. have the greatest confidence. 
 
We prefer rules that have the most items in the antecedent (all of which the client has requested locally) 

since they may indicate that the consequent resource is more strongly associated with the antecedent 
resources. Rules that have a larger support indicate that more peers visited the same group of resources. A 
greater confidence indicates that more of the peers that visited the antecedent resources also visited the 
consequent resource. Each of these conditions can be evaluated individually or in combination when 
determining which resources to suggest to the client. 

 
Example 5 Consider Table 3 of Example 4. After scanning the table for frequent item sets, cx 

determines that the set {r57, r58, r64} meets the minimum support requirement and consists of resources 
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this client has visited. It next determines that r764 meets the minimum confidence for the association rule 
{r57, r58, r64}  r764. The rule is kept for later consideration because cx has not visited r764. 

 
It is likely that the confidence of a discovered rule is less than 100%. In other words, not all clients 

who visited the antecedent resources of the rule, also visited the consequent resources. A client can 
forward a discovered rule to all peers who have visited the antecedent resources but not the consequent 
resource. This may be of value to the client's peers because peers do not necessarily find the same rules. 
Note that peers are not transitive. Just because clients c1 and c2 are peers, and c2 and c3 are peers, c1 and c3 
are not necessarily peers. 

 

4. Experiments 
 

The global access log is not currently available. There are some services currently in operation that use 
a browser plugin to transmit visit data from the client to a 3rd party service but the raw data is not made 
available for download. There are some data sets for web traffic analysis but they are limited to one 
particular domain.  

We implemented our coordination server as a stand alone web server written in Python. Our CS uses a 
PostgreSQL database for temporary storage. To test the client, we developed a plugin that is installable in 
the Mozilla FireFox web browser. To test the applicability of our algorithm, we needed to generate 
sample data. Our sample data was generated and tested with software written in Python. 

We wanted to simulate a certain number of clients visiting resources on the Internet and record each 
client's local log file for analysis. We selected the top 100 websites based on the ranking provided by 
Alexa.com [2]. The test client would choose a random website from this list and retrieve the content 
located at the root of this web server. The client would then record the requested resource and then choose 
a new resource randomly from the links within this web page. This was performed in a loop with a 
random chance of continuing.  

 
The following pseudo code illustrates how sample data was generated in our experiment: 
 
select random site from top 100 sites; 
set current domain to randomly selected site; 
set current resource to /;  
loop 
  record current domain/resource in log file; 
  select random number r in [0,1]; 
  if r > chance of exiting then exit; 
  retrieve and cache current domain/ 
     resource; 
  randomly select new domain and new  
     resource from all links on retrieved 
     content; 
 
This client outputs one record of visits per row in the log file. After running this client many times, the 

log file contains records that represent many users browsing at the same time. The next step is to convert 
the log file into data that represents each client access in real time.  Assuming that all clients start 
browsing at approximately the same time, the data can be converted into a new log file with the following 
algorithm. 

 
Conversion algorithm: 
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create ordered list of clients/visits keyed from 
     current visit time; 
for each line in sample data log: 
  current time=0; 
  for each visit: 
    select random integer r in (3,10); 
    current time += r; 
    visits[current_time] = current client/visit; 
output ordered list; 
 
Sample output: 
c7s3r9 
c29s4r1 
c3s5r2 
 
The output of this algorithm converts the former log file into a log file with 1 client/visit per line. 

Clients and visits can appear in any order. This is somewhat indicative of what happens on the Internet. 
Time is unimportant for the simulation though because the simulation results will be the same no matter 
how long between visits each client takes. The important factor is the order that clients make their visits. 
This is because the coordination server selects peers based on whom has most recently accessed a server 
resource. It is important to note that in a real network environment, the time does start to play a factor 
because old peers may become unavailable.   

 
4.1. Analysis of sample data 
 

 

Figure 5. Number of resource requests per client after rule sharing in our test network. 

The sample data contains resources requested by 1,279 clients. These clients started by randomly 
choosing one of 100 sites. From there however, no restrictions were placed on which resources and 
servers were contacted. A total of 1,086 unique server domains were contacted and a total of 6,320 unique 
resources were visited. There were 11,578 total requests to resources (which yields 9 requests per client in 
average). Figure 5 shows a number of resources, and how many clients contacted that number of 
resources. The average is 9 resources/client and the mode is 6. 
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Because we used only one coordination server and started from a relatively small number of domains, 
all of these clients are part of the same group of peers, meaning that one could follow references from one 
peer to another, and eventually traverse to all peers in the network. In Figure 6, we show for each number 
of peers, how many clients in our test network contacted that number peers. The average is 10.7 
peers/client and the mode is 12. In our test network, each client contacted 10.7 peers in average.  

 

Figure 6. Number of peers per client after rule sharing in our test network. 

Our test program used the larger of 3 divided by the total number of transactions known by the client 
or 10% for the minimum support percentage and a minimum confidence of 50%. With these values, 57% 
of all clients found interesting rules with an average of 2.18 rules per client found. Of these rules, on 
average, 2.11 rules were found to be interesting for at least one peer. After distributing interesting rules 
amongst peers, 86% of all clients had access to at least one rule with an average of 5.51 rules/client. 
Figure 7 shows the number of rules and the number of clients that either discovered or were presented 
with that number of rules. 

 

Figure 7. Number of rules per client after rule sharing in our test network. 

In our test network there were 125 clients that found exactly 3 interesting rules. To evaluate the 
effectiveness of our data sharing protocol, we measured the average number of peers, locally visited 
resources, and number of resources received from these 125 peers each time a new association rule was 
discovered. Table 4 contains the cumulative averages for these clients. The same information is displayed 
in Figure 8 for clarity. 
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 Vistis Peers Received Resources 

1st rule 5.0 7.8 28.0 

2nd rule 7.0 10.3 47.9 

3rd rule 8.4 11.2 65.6 

Table 4. The average number of visits made, peers identified and received resources from 
the peers by the time each rule was discovered by the clients who discovered three rules. 

 

 

 

 

Figure 8. The average number of visits made, peers identified and received resources from 
peers shown in Table 4 

From the averages listed in Table 4, we can see that there is an initialization cost before a client 
receives a benefit from the network. On average, a client didn't find a rule until they had visited 
approximately 5 resources and made a connection with 7 or 8 peers. After this cost however, discovery of 
new rules took less network communications as it only took 3 to 4 more local visits to resources and 4 
more peers to discover an additional two rules on average. 

 
5. Conclusion and future work 
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We can see, that for the group of peers in our test network, by the time a client has requested 10 
resources, it can be presented with another 5 or 6 resources which may be of interest to the particular 
client. Since this is an ongoing process as clients browse, rules may be found at any point in time. We 
believe that given enough clients in a network using our system, each client would be able to continually 
find new resources of interest, which can be considered as an alternative Web resource discovery method 
to popular keyword search using a Web search engine. 

Our peer-to-peer model relies on a coordination server. Even though this component of the network 
can be fulfilled by many actual servers, there would be benefits to creating a peer lookup model that didn't 
rely on centralized servers. 

In our current model, the weighting scheme for peer resource access behavior is naive. In other words, 
every peer resource access is weighted equally. In order to refine the quality of common interest, it would 
be worthwhile to distinguish serious, intentional resource access from casual, random access. 

Our model for sharing data mining focuses on connecting peers that have similar interests. The data 
mining portion simply runs the Apriori algorithm on the collected information. It may be advantageous to 
use a distributed association rule mining algorithm instead. Perhaps instead of sharing resources, clients 
could share association rule candidates with their peers to determine rules of interest. 
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