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Abstract

The particle swarm optimization (PSO) is a new swarm intelligence technique inspired by 

social behavior of bird flocking. In this paper, the optimal multi-objective particle swarm 

optimization (OMOPSO) is presented. Since the parameters determine the optimization 

performance of the algorithm, the uniform design is introduced to obtain the optimal 

combination of the parameters. Additionally, a new crowding operator is used to improve the 
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���-dominance is used to fix the size of the set of 

final solutions. OMOPSO is applied to optimize the parameters of blind color image fusion. 

First the model of blind color image fusion in YUV color space is established, and then the 

proper evaluation metrics without the reference image are given, in which a new metrics of 

conditional mutual information is proposed. Experimental results indicate that the method of 

blind color image fusion based on OMOPSO realizes the Pareto optimal blind color image 

fusion.

     Keyword: Blind color image fusion, Particle swarm optimization, Multi-objective optimization, Uniform design

1. Introduction

At present, multi-objective evolutionary algorithms include Pareto Archive Evolutionary 

Strategy (PASE) [1], Strength Pareto Evolutionary Algorithm (SPEA2) [2], Nondominated 

Sorting Genetic Algorithm II (NSGA-II) [3], Multiple Objective Particle Swarm Optimization 

(MOPSO) [4], etc, where MOPSO has a higher convergence speed and better optimization 

capacities [5]. However, MOPSO uses an adaptive grid [1] to record the searched particles, 

once the number of the objectives is greater than 3, MOPSO will need too much computing 

time. So we presented an adaptive multi-objective particle swarm optimization (AMOPSO) in 

[6], in which the adaptive grid is discarded, and a crowding distance [3], an adaptive inertia 

weight and an adaptive mutation are introduced to improve the search capacity. But the 

crowding distance needs too much time and the optimal combination of the parameters is 

difficult to obtain, so we propose OMOPSO (the Optimal MOPSO). OMOPSO introduces the 

uniform design to obtain the optimal combination of parameters, adopts a new crowding 
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 ��	
�-dominance to keep the 

size of the external archive. In contrast to MOPSO and AMOPSO, OMOPSO has a higher 

convergence speed and better exploratory capabilities.

Blind color image fusion can be defined as the process of combining two or more color 

images into a single composite image with extended information content [7], in the case that 

the reference image doesn’t exist. In fact, color image fusion can be regarded as an 

optimization problem using several source images, and there are various kinds of evaluation 
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metrics. In order to realize the optimal image fusion, it is highly necessary to introduce multi-

objective optimization algorithms to search the optimal parameters. In [6], an approach to 

image fusion in the gray-scale space based on multi-objective optimization was explored. 

However, for the blind color image fusion, a nave approach might include performing image 

fusion separately and independently on each color channel, then providing the resulting three 

color channels as a single color image. In practice, this does not work for two reasons: 

interpretation of color scale space for feature selection and dependencies between the color 

components. Furthermore, the reference image may not exist in many cases. Therefore, the 

approach to blind color image fusion in YUV color space is presented, and OMOPSO is used 

to optimize the fusion parameters.

The remainder of this paper is organized as follows. The OMOPSO algorithm is designed 

in Sect. 2. The methodology of blind color image fusion is introduced in Sect. 3. The 

evaluation metrics are given in section Sect. 4. The experimental results and analysis are 

given in Sect. 5. Finally, a review of the results and the future research areas are discussed in 

Sect. 6.

2. OMOPSO Algorithm

Kennedy and Eberhart brought forward particle swarm optimization (PSO) inspired by the 

choreography of a bird flock in 1995 [8]. PSO has shown a high convergence speed in multi-

objective optimization [4], [5], [6]. In order to improve the performance of the algorithm, we 

propose “OMOPSO” (the Optimal Multi-Objective Particle Swarm Optimization), in which 

not only the adaptive mutation operator and the adaptive inertia weight is used to raise the 

searching capacity, but also the uniform design is used to obtain the optimal combination of 

the algorithm parameters, a new crowding operator is used to improve the distribution of 

nondominated solutions along the Pareto front and maintain the population diversity, and the 

�-dominance is used to keep the capacity of the external archive.

2.1. OMOPSO Flow

The flow of OMOPSO is the following.

Step 1. Initialize the position of each particle: pop[i]=arbitrary, where i=1,…,NP, NP

is the particle number; initialize the velocity of each particle: vel[i]=0; initialize the 

record of each particle: pbests[i]=pop[i]; evaluate each of the particles in the POP

where POP is defined as {pop[1], ..., pop[NP]}: fun[i, j], where j=1,…,NF, and NF is 

the objective number; and store the positions that represent nondominated particles in 

the repository of the REP according to the Pareto optimality, where REP is defined as 

{rep[1], ..., rep[NP]}, then send the resolutions in the REP to the �-archive.

Step 2. Update the velocity of each particle using the following expression

])[][(

])[][(][][

22
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ipophreprandc

ipopipbestsrandcivelWivel

����

������                                                                        (1.)

                                

where W is the adaptive inertia weight; c1 and c2 are the learning factors [5], rand1

and rand2 are random values in the range [0, 1]; pbests[i] is the best position that 

particle i has had; h is the index of the resolution in the repository with maximum 
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crowding distance that implies the particle is located in the sparse region, as aims to 

maintain the population diversity; pop[i] is the current position of particle i.

Step 3. Update the new positions of the particles adding the velocity produced from 

the previous step.

][][][ ivelipopipop ��                                                                                                  (2.)

Step 4. Maintain the particles within the search space in case they go beyond their 

boundaries (to avoid generating solutions that do not lie on valid search space).

Step 5. Adaptively mutate each of the particles in the POP at a probability of Pm.

Step 6. Evaluate each of the particles in the POP.

Step 7. Update the contents in the REP, and insert all the current nondominated 

positions into the repository, then update the �-archive.

Step 8. Update the record of each particle. When the current position of the particle 

is better than the position contained in its memory, the latter is updated. 

][][ ipopipbests �                                                                                                        (3.)

Step 9. If the maximum cycle number is reached, stop the process and output the Pareto 

solutions in the �- archive; else go to Step 2.

2.2. Repository Control

The external repository of REP is used to record the nondominated particles in the primary 

population. At the beginning of the search, the REP is empty. The nondominated vectors 

found at each iteration are compared with respect to the contents of the REP. If the REP is 

empty, the current solution will be accepted. If this new solution is dominated by an 

individual within the REP, such a solution will be automatically discarded. Otherwise, if none 

of the elements contained in the REP dominates the solution wishing to enter, such a solution 

will be stored in the REP. If there are solutions in the REP that are dominated by a new 

element, such solutions will be removed out of the REP. Finally, if the REP has reached its 

maximum capacity, the new nondominated solution and the contents of the REP will be 

combined into a new population, according to the objectives, the individuals with lower 

crowding distances (located in the dense region) will not enter into the REP.

2.3. � Dominance

We adopt the concept of �-dominance [9] in order to fix the size of the external 

archive that contains the (nondominated) solutions that will be reported by the 

algorithm. A decision vector x1 is said to �-dominate a decision vector x2 for some ����

0, iff �i (i = 1, . . . , m) 

)()1/()( 21 xfxf ii ���                                                                                                   (4.)

and for at least one i (i = 1, . . . , m) 

)()1/()( 21 xfxf ii ���                                                                                                  (5.)

where m is the objective number. It is worth noting that, when using �-dominance, 

the size of the final external archive depends on the �-value, which is normally a user 
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defined parameter [9]. For the sake of simplicity, we consider the same value of � for 

all the objective functions of a given problem.

2.4. Adaptive Inertia Weight

A large inertia weight of W facilitates global exploration (searching new areas), 

while a small one tends to facilitate local exploration, i.e. fine-tuning the current search 

area. When W is in the range [0.8, 1.2], the algorithm has a higher convergence speed. 

Y. Shi adopted an adaptive linear weight
.

In order to make the algorithm have better 

global exploration ability at the beginning of the search, and better local exploration 

ability in the end, we proposed an adaptive concave exponent weight.
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�                                                                                              (6.)                                         

where Wmin is the minimum of the adaptive inertia weight, Wmax is the maximum of the 

weight, g is the loop counter, Gmax is the maximum number of circles.

2.5. Crowding Distance

In order to improve the distribution of nondominated solutions along the Pareto front, 

we introduce a concept of crowding distance from NSGA-II [3] that indicates the 

population density. When comparing the Pareto optimality between two individuals, we 

find that the one with a higher crowding distance (locating the sparse region) is 

superior. In [3], the crowding distance has O(mn log n) computational complexity, and 

may need too much time because of sorting order. Here we propose a new crowding 

distance that can be calculated using the level sorting. The crowding distance of the 

boundary points is set to infinity so that they can be selected into the next generation. 

The others can be calculated with respect to their objectives. For objective j, we divide 

its value range into special levels according to the boundary, then sort these levels in 

descending order of the number of the particles, and compute the crowding distance 

using the following expression

ijijij NSd /�
                                                                                                             (7.)

where dij is the crowding distance of particle i at objective j, Sij is the sequence 

number of the level where particle i locates, Nij is the number of the particles in level 

Sij. The crowding distance of particle i is defined as

	�
j

ijdiDis ][
                                                                                                             (8.)

The new crowding distance doesn’t need to sort order for every objective and has 

less complexity, and it is superior to the grid [1], [4] because the latter may fail to 

allocate memory when there exist too many objectives.

2.6. Adaptive Mutation
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PSO is known to have a very high convergence speed. However, such a convergence 

speed may be harmful in the context of multi-objective optimization. An adaptive 

mutation operator is applied not only to the particles of the swarm, but also to the range 

of each design variable of the problem [4]. What this does is to cover the full range of 

each design variable at the beginning of the search and then we narrow the range 

covered over time, using a nonlinear function.

5.1
max ))/(1()( GpgLowerUpperR m����                                                                          (9.)

where Upper is the upper of the design variable, Lower is the lower, R is the value 

range of the variables.

2.7. Uniform Design of Parameters

We introduce the uniform design [10] to optimize the parameters of OMOPSO. The 

main objective of uniform design is to sample a small set of points from a given set of 

points, such that the sampled points are uniformly scattered. Let there be n factors and q

levels per factor. When n and q are given, the uniform design selects q combinations 

out of qn
possible combinations, such that these q combinations are scattered uniformly 

over the space of all possible combinations. The selected combinations are expressed in 

terms of a uniform array U(n, q)=[Ui,j]q
n, where Ui,j is the level of the jth
factor in the 

ith
combination. When q is prime and q>n, it has been proved that is given by

1)mod( 1
, �� � qiU j
ji �

                                                                                              (10.)

where � is determined by the number of factors and the number of levels [10].

3. Blind Color Image Fusion in YUV Space

The result of the fusion process applied to color images should preserve the 

following consistency criteria from the original images: color blending consistency and 

color spatial consistency, i.e. color must be preserved and boundaries between colors 

must be preserved [7]. For our methods, we choose the YUV color space, which has 

components representing luminance, saturation, and hue. In the case of fusing source 

images, it is desired that the structural details of the image be emphasized while the 

color and its saturation are preserved. The edge energy of an image can usually be 

discerned from the gray-scale representation of the image alone, which represents the 

luminance band of the YUV color space. Thus, YUV is a convenient representation for 

assessing edge energy. As shown in Figure 1, the approach to multi-objective color 

image fusion in YUV color space is as follows.

Step 1: Input the source images A and B and convert the two images from RGB color 

space into YUV color space respectively. The conversion from RGB to YUV is given 

by
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114.0587.0299.0

                                                                                      (11.)
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Since the source images can be assumed to have similar saturation and hue, the 

average of the U and V components from source images can be substituted for the U 

and V components in the fused image respectively, which can also reduce the 

computation complexity.

Step 2: Component Y represents the luminance, hence both the selection functions 

are based on the discrete wavelet transform (DWT) of the luminance components. Find 

the DWT of component Y of A and B to a specified number of the decomposition level; 

we will get one approximation and 3×J details at each level, where J is the 

decomposition level. In general, J is not greater than 3.

Step 3: For the details of component Y in DWT domain, salient features in each 

source image are identified. The coefficient with the largest salience is substituted for 

the fused coefficient [11].

		 ��� ),(),( 2 nymxWyxS jj ,  Jj ,...,1� .                                                                    (12.

)

where Wj(x, y) is the wavelet coefficient at location (x, y), and (m, n) defines a 

window of coefficients around the current coefficient. The size of the window is 

typically small, e.g. 3 by 3.

The coefficient with the largest salience is substituted for the fused coefficient while 

the less salient coefficient is discarded. The selection mode is implemented as

�
�
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otherwiseyxW
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),(                                           

(13.)

where WFj(x, y) are the final fused coefficient in DWT domain, WAj  and WBj  are the 

current coefficients of A and B at level j in the Y components.

Step 4: For approximations of component Y in DWT, let CF , CA, and CB be the 

approximations of F, A, and B respectively, two different fusion rules will be adopted. 

One rule called “uniform weight method (UWM)” is given by 
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),(),(),( 21 yxCwyxCwyxC BAF ����                                                                              (14.

)

where w1 and w2 are the decision variables with the values in the range [0, 1].

The other called “adaptive weight method (AWM)” is given by

),(),(),(),(),( 21 yxCyxwyxCyxwyxC BAF ����                                                                  (15.

)

where w1(x, y) and w2(x, y) are decision variables.

Step 5: Using OMOPSO, we can find the optimal decision variables of the Y 

component in DWT domain, and realize the optimal blind color image fusion.

Step 6: The new sets of coefficients are used to find the inverse transform to get the 

Y component of the fused image F.

Step 7: The fused image in RGB color space can be attained using the inverse YUV 

conversion.

4. Evaluation of Blind Color Image Fusion

To establish an evaluation metric system is the basis of the optimization that determines 

the performance of the final fused image [12]. However, in the image fusion literature only a 

few indices for quantitative evaluation of different image fusion methods have been proposed. 

Generally, the construction of the perfect fused image is an illdefined problem since in most 

case the optimal combination is unknown in advance. In this study, we explore the possibility 

to establish an impersonal evaluation metric system and get some meaningful results. In fact, 

the evaluation metrics of blind color image fusion can be divided into two categories with 

respect to the subjects reflected. One category reflects the image features, such as gradient 

and entropy. The second reflects the relation of the fused image to the resource images, such 

as conditional mutual information and information symmetry.

4.1. Gradient

Gradient reflects the change rate in the details that can be used to represent the 

clarity degree of an image. The higher the gradient of the fused image is, the clearer it 

is. In the YUV representation, Y represents the luminance of the image; hence gradient 

in the luminance component can also reflect the characteristics of human vision system.

Gradient is given by

)1)(1(2

)]1,(),([)],1(),([ 22
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where M and N are the numbers of the row and column of the color image 

respectively.

4.2. Entropy
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Entropy is an metric to evaluate the information quantity contained in an image. If the 

value of entropy becomes higher after fusing, it indicates that the information quantity 

increases and the fusion performances are improved. Entropy in one color channel is defined 

as

	��
�

L

i
iiH ppE

0
2log                                                                                                           (17.)

                                               

where H=R, G, B, L is the total of gray levels of each color channel, ip is the probability 

distribution of level i.

The entropy in a color image is given by

3/)( BGR EEEE ���                                                                                                    (18.)

                                            

where R, G, and B denote the three color channel respectively, ER denotes the entropy in 

channel R..

4.3. Conditional Mutual Information

Qu [13] et al adopted mutual information to represent the amount of information that is 

transferred from the source images to the final fused image, where no attention has been paid 

to the overlapping information of the source images, so this metric can’t effectively evaluate 

the mutual information among the fused image and the source images. Tsagaris [14] proposed 

the conditional mutual information which can avoid overlapping information of the source 

images. However, the calculation expression is a little complex.

We make an improvement and get new conditional mutual information (CMI). CMI are 

used to evaluate the correlative performances of the fused image and the source images. Let A 

and B be two random variables, and joint entropy is H(A, B), the conditional entropy given F 

is H(A, B|F), the conditional mutual information is defined as

),(

)|,(
1

BAH

FBAH
CMIH ��                                                                                                     (19.)

A higher value of CMI indicates that the fused image contains fairly good quantity of 

information presented in both the source images. CMI takes values in the range [0, 1], where 

zero corresponds to total lack of common information between the source images and the 

fused image and one corresponds to an effective fusion process that transfers all the 

information from the source images to the fused image (in the ideal case). The conditional 

mutual information in a color image is given by

3/)( BGR CMICMICMICMI ���                                                                                    (20.)

                                                    

4.4. Information Symmetry

A high value of CMI doesn’t imply that the information from both the images is 

symmetrically fused, e.g. when F is identical with A, CMI will be high and take the value of 

International Journal of Multimedia and Ubiquitous Engineering 
Vol. 2, No. 3, July, 2007 



•• •• •• • ••• • • ••• • • •• • • • ••• • •••• • • •• •• • • •• • •• • ••• • • •• • • •• • • ••• • • • • • • • • • • • • • • • • • • • • • • •

• • •••• ••• • ••• ••• • •• ••• • • • • • • • • • • • • • • • • • • • • • • • • • •

59

H(A). Therefore, we introduce the metric of information symmetry (InfS) from [15] and make 

an improvement. InfS is defined as

)];(),;(max[

);();(
1
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FXIFXI

FXIFXI
InfSH

�
��                                                                                 (21.)

                             

where I(A, F) is the mutual information of A and F, and I(B,F) is the mutual information of 

B and F. 

InfS is an indication of how much symmetric the fused image is, with respect to input 

images. The higher the value of InfS is, the better the fusion result is. InfS also takes values in 

the range [0, 1], where zero implies that the fused image is identical with some one of source 

images, while one implies that both the images is symmetrically fused. The information 

symmetry in a color image is given by

3/)( BGR InfSInfSInfSInfS ���                                                                                     (22.)

                                                 

5. Experiments

The performances of the proposed blind color image fusion approach using OMOPSO is 

tested and compared with those of different fusion schemes. The image “cemetery” from Lab. 

for Image and Video Engineering of Texas University is selected as the reference image of R 

with 256 × 256 pixels in size, each pixel being represented by three bytes (one for each of the 

R, G, and B channels). The two source images of A and B is shown in Figure 2(a) and Figure

2(b) We use OMOPSO to search the Pareto optimal weights of the blind color image fusion 

model and compare the results with those of SSM (Simple Space Method), and SWM (Simple 

Wavelet Method), where SSM and SWM take a fixed weight of 0.5 in spatial domain and in 

wavelet domain respectively. In order to get common evaluations, the sum of the weights at 

each position in source images is limited to 1. Since the solutions to blind color image fusion 

are nondominated by one another, we give preference to the four metrics so as to select the 

Pareto optimal solutions, e.g. one order is CMI, Gradient, InfS, Entropy.

5.1. Uniform Design of the Parameters

The more important and representative parameters of OMOPSO include the number of 

particles, the number of cycles, the value for bounding the size of the �-archive, and the 

mutation probability. We construct a uniform array with four factors and five levels as 

follows, where � is equal to 2. We compute U(4, 5) based on (10) and get
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The value range of the number of particles is [40, 120]; the range of the number of cycles 
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��
��	
�-archive) is [0.005, 0.009]; 

the range of the mutation probability is [0.02, 0.06]. All combinations are run for a maximum 

value of 100 evaluations. Table 1 shows the evaluation metrics of the fused images from 

different combinations. Results show that the third combination is the optimal in the problem. 

Thus, the parameters of OMOPSO are as follow: the particle number is 100; the maximum 

cycle number is 100; the value of � for bounding the size of the �-archive is 0.007; the 

mutation probability is 0.06.

Table 1. Evaluation of Different Combinations

Comb. Gradient Entropy CMI InfS

1 10.0314 7.4336 0.5326 0.9992

2 10.0336 7.4386 0.5346 0.9993

3 10.0423 7.4415 0.5383 0.9993

4 10.0304 7.4329 0.5362 0.9994

5 10.0293 7.4324 0.5317 0.9992

5.2. Comparison among Different Fusion Schemes 

The experiments of blind color image fusion using OMOPSO are done, and the results is 

shown in Figure 2(e) and Figure 2(f), where the fused images at level 3 in DWT are given, for 

a higher level decreases the decision variables and improves the adaptability. From Figure 2, 

we can see that OMOPSO performs well, the results of AWM and UWM are superior to those 

of SWM and SSM, and the result of AWM is superior to that of UWM, because SWM and 

SSM cannot attain the optimal fusion parameters, and the weights of AWM are adaptive in 

different regions. Therefore, the approach to blind color image fusion that uses OMOPSO to 

search the adaptive fusion weights at level 3 in DWT domain is the optimal method. It is also 

be seen that this approach can overcome the limitations of given fusion parameters, obtain the 

optimal fusion results, and effectively enhance the features of the color image.

6. Conclusions

OMOPSO proposed is an effective algorithm to solve the parameter optimization of blind 

color image fusion. OMOPSO has the optimal parameter combination and is especially 

suitable for the case when there are too many objectives. One aspect that we would like to 

explore in the future is to analyze the evaluation metrics system to acquire a meaningful 

measurement. We are also considering improving the optimization performances of 

OMOPSO further.
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Figure 2. Source and fused images
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