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Abstract 
 

  The mobile computing paradigm is becoming a reality due to the advent of mobile devices 

such as, PDA and Smart Phones having wireless interface to WWW. As a result, the high-end 

applications related to mobile multimedia and distributed digital contents have gained much 

attention. However, the existing distributed and mobile file systems are not adequately 

suitable to support such applications handling the challenges offered by mobile computing 

systems. In this paper, the concept, design architecture and consistency model of Virtual 

memory based Mobile Distributed File System (VMDFS) are proposed based on thin-mobile-

client/fat-server model. VMDFS creates the migrate-able virtual memory based mobile file 

system on top of the disk file systems of remote servers employing dynamic frame-lock to 

reduce network latency and to attain high-performance. An abstract mathematical model of 

VMDFS is constructed and associated properties are evaluated. The kernel-level 

implementation framework of VMDFS is illustrated based on Linux 2.4.22. The network 

paging latencies for LAN, Wireless VPN and 2.5G GPRS are measured experimentally. The 

results indicate that VMDFS is realizable. 

 

Keywords: Virtual Memory, Mobile Computing, MDVM, File System, Kernel, Network 

Latency. 
 

1. Introduction 
 

  Due to the advent of mobile computing devices having wireless communication interface 

and access to internet such as, PDA, Smart-Phone, the mobile computing paradigm is 

becoming a reality [28][29][30]. As a result, a set of high-end mobile applications, for 

example mobile multimedia systems and digital contents, has emerged [1]. In general, the 

distributed multimedia applications rely on the static client-server computing model based on 

high-speed wired network and fail to handle the challenges imposed by mobile computing 

paradigm. The technical challenges associated to mobile computing system are the resource 

constraints of mobile devices and the intermittent low-bandwidth wireless network [28][29]. 

Researchers have directed to utilize the resources of remote servers by mobile clients through 

the wireless communication interface in order to realize the high-end mobile distributed 

applications [16][29][30]. The resources and storage offered by servers enable the mobile 

devices to create, store and distribute/share the digital contents under mobility. In order to 

realize the location transparent and high-available mobile digital contents, a mobility-aware, 

distributed and high-performance file system is required. The traditional file system interfaces 

need to be extended to achieve high-performance coping with the larger file sizes and 

mobility [1]. The existing distributed file systems such as, NFS, DAFS and DFS, perform 

poorly in the mobile computing environment [6][24][25]. Researchers have directed to design 

the kernel-level NFS [27] and kernel-level resource management architecture to achieve QoS 
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and better resource utilization [2][3][5]. The traditional RAM-disk file system tries to achieve 

comparatively lower data-access latency, however, it suffers from the poor performance, 

volatility of data and the duplicate buffer copy [10]. In addition, the multimedia data must not 

be paged-out of main memory to maintain high-performance [21]. On the other hand, the 

proposed file system for mobile computing suffers from the complexity and lack of location 

transparency [31]. In this paper, the design architecture, a model and an implementation 

framework of Virtual memory based Mobile Distributed File System (VMDFS) are proposed. 

In addition, the consistency model of VMDFS is described. The proposed VMDFS 

architecture may serve as a platform to develop a set of high-end mobile applications such as, 

mobile multimedia system and the electronic briefcase of digital contents. The VMDFS 

model incorporates location transparency by employing the concept of Server-Group (SG) 

embedded into the mobile communication infrastructure. An abstract mathematical model of 

VMDFS is constructed to establish detail analysis and verification considering the mobility of 

clients. In order to design and implement VMDFS, the monolithic kernel of Linux 2.4.22 is 

chosen. The round-trip network paging latencies are measured experimentally for the wired 

LAN, wireless VPN and 2.5G GPRS considering variable page-sized data blocks. The 

experimental results demonstrate that VMDFS would be realizable based on 2.5G, 3G or 

higher mobile communication systems. The distinguishing features of the proposed VMDFS 

model are as followings. 

 

● The VMDFS design architecture implements the virtual memory based mobile file system 

on top of the local disk file system to achieve better resource monitoring and utilization along 

with the reduction of complexity of developing a new mobile  file system. 

● The VMDFS design incorporates location transparency along with the reduction of 

network-latency using the concept of Server-Group (SG) residing in the cells allowing inter-

SG page migration. 

● The VMDFS combines the file system and virtual memory system employing the selective 

page-locks to reduce file access latency and to eliminate duplicate buffer copy. 

● Unlike the NFS [6], the VMDFS does not require the high-speed reliable network between 

clients and servers. 

● Contrasting the DAFS and RDMA based designs [8], the VMDFS does not require any 

specific hardware support. 

● In contrast to Segank [23], the VMDFS does not require the mobile-clients to be always 

power-on. 

● Contrasting the proposed client-centric file system for mobile computing [31], the mobile 

clients of VMDFS are free from the task of distributed resource management under mobility. 

● Unlike Sprite [36], VMDFS does not rely on large client cache and entire cache eviction on 

client side to maintain write-consistency of files.  

 

  The rest of the paper is organized as followings. Section 2 describes the related works. The 

architecture of VMDFS is illustrated in section 3. An abstract mathematical model and 

consistency model of VMDFS are illustrated in section 4. Section 5 describes the 

implementation framework of VMDFS along with the experimental evaluation of network-

paging latency.  Section 6 concludes the paper. 

 

 

2. Related Works 
 

  In order to realize the mobile computing paradigm, the MDVM system is proposed aiming 

to reduce the computational resource constraints of mobile devices [29]. The MDVM system 
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advocates utilizing the resources of remote server by the mobile clients through wireless 

communication interface. The existing Distributed Virtual Memory (DVM) systems do not 

provide an easy way to dynamically use and share DVM resources preserving transparency, 

adaptability and extensibility [29][30]. The DVM systems become non-scalable under the 

condition of mobility of clients [29]. The present design architectures of operating systems 

make it difficult to establish a low latency communication path between the application or 

middleware and the kernel to access the resources [1][2]. The user-level and middleware-

level management of resources to maintain QoS have restrictions due to the granularity of 

resource management and insufficient fidelity [2]. The KECho [5], Q-channels and ELinux 

[2][3][4] are the kernel-level architectures to implement the distributed resource management 

based on event-oriented communication and QoS characteristics. The distributed multimedia 

file systems have two broad classifications namely, (1) Partitioned FS such as, FFS, RIO, 

Shark and a combination of UFS and CMFS [1] and, (2) Integrated FS based on multiplexing 

the disk bandwidth, storage space and the buffer cache among all the multimedia data [1]. 

The examples of integrated FS are Nemesis FS, Fellini and Symphony [1]. Apart from these, 

MMFS handles the interactive multimedia applications by extending the UNIX file system 

[1]. The file systems designed for high-bandwidth and low-latency client-server model are 

unable to perform in the low-bandwidth and high-latency mobile computing environment [6]. 

Researchers have suggested implementing the disconnected file operations using cache, for 

example the Coda file system, although this technique fails to take advantage of the network 

opportunities and is inappropriate for fully connected systems [6]. On the other hand, a data 

staging architecture is proposed to improve the performance of DFS running on the storage 

limited mobile devices [7]. This technique opportunistically prefetches the files and caches 

them on nearby un-trusted surrogate machines [7]. However, such data staging mechanism is 

complex and requires multi-path communication between the mobile clients and servers. The 

DAFS design relies on the kernel-server of FreeBSD operating system, which is a direct-

access file system based on the supports provided by the networking hardware (NIC) for user-

level networking [8]. It suffers from the hardware dependency and permanent page locking to 

employ RDMA [8]. In a different approach, the Federated DAFS combines user-space DAFS 

with a low overhead clustering layer to prepare a scalable DAFS cluster [9]. However, the 

Federated DAFS does not consider the mobility of the clients. The Sprite uses large main-

memory to cache disk blocks providing non-write-through file caching [36]. The difficulties 

associated to Sprite are that it does not consider the mobility of the clients and requires a large 

cache size in the main memory of the clients. The Sprite bases on entire cache eviction on 

each client side on the event of file update by any client resulting in repeated file re-caching 

consuming network bandwidth and time. Inspired by RAM-disk system, a page-able memory 

based file system is developed [10]. The proposed design architecture aims to reduce the poor 

utilization of available main memory. However, the proposed solution employs duplicate data 

copy between file system cache and the system buffers [10]. It is reported that when the 

variable sized file cache and the virtual memory are coexisting in a system, the concurrent 

execution of file-intensive processes degrades the overall system performance if the cache 

pages and the virtual memory system are not treated differently [11]. Instead of permanently 

locking the virtual memory pages, an adaptive page-locking policy is proposed to maintain 

the QoS for the large-file-intensive applications [12]. The proposed solution performs 

adequately to maintain the QoS, however, could not reduce the page faults considerably and 

its performance is dependent on the behaviour of the applications. The architecture of a 

virtual memory based distributed file system in high-speed wired network environment is 

proposed in [13]. It is noted that establishing a large file cache in the virtual memory is 

possible without introducing any performance degradation [14]. Apart from designing the file 

system, an intelligent file hoarding for mobile computers is proposed, which heuristically 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 2, No. 3, July, 2007 

 

 

4

creates the file set based on file access patterns [15]. The network file system such as, NFS, 

does not utilize the warm cache on the face of disconnection between a client and the server 

and hence, is not suitable for mobile computing systems [24][25]. Researchers have directed 

to design the kernel-level NFS client architecture bypassing the kernel buffer cache and thus 

avoiding data copy [26][27]. A mobile distributed file system using client-centric update and 

caching along with lazy propagation has been proposed [31]. However, the main difficulties 

of this design are the client initiated primary-to-primary lazy copy of entire file set and the 

client initiated localization of server, which degrades the criteria of location transparency. In 

addition, due to the lazy update propagation and the client resident cache, the updates are 

vulnerable to the client crash. The other works related to the clusters, mobile storage systems 

and data partitioning include DATOM [16], e-vault [17], COMA [19], PersonalRAID [22] 

and Segank [23]. In order to enhance performance, a dynamic set model is developed to 

overlap the file data fetch and processing [18][20]. This approach is useful for weakly 

connected mobile clients. However, the fetching policy of dynamic set model may degrade 

the performance by stalling the applications and it performs poorly in the high-speed network 

environment [18][20].     

 

 

3. The VMDFS Architecture 
    
 

 

 

 

 

 

 

 

 

 

 

     

  

 

 
Figure 1. Conceptual Architecture of VMDFS. 
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Figure 2. Architectural Components of VMDFS. 
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The design architecture of VMDFS considers the Server-Group (SG) in a cell and SGs of 

the other cells of the mobile communication architecture. A SG is comprised of a set of 

resource-fat servers residing in the cells [29]. The servers of a SG in a cell as well as different 

SGs are connected by high-speed wired TCP/IP network. 

The VMDFS architecture can be viewed as a distributed file system layered across servers 

in the SGs accessible by mobile clients with location transparency. The conceptual 

architecture of VMDFS is shown in Figure 1. The servers in a SG are connected by TCP/IP 

bus and are attached to the mobile communication backbone. The VMDFS is constructed in 

the kernel of the operating system of the individual servers in order to achieve better 

monitoring and utilization of available resources at servers and to establish faster inter-kernel 

communication system. The detailed architecture of VMDFS residing in the kernel of two 

servers is shown in Figure 2. The VMDFS architecture can be decomposed into two 

functional entities namely, VMDFS client and VMDFS server. The VMDFS client has dual 

functionalities. The VMDFS client residing in the user-space of a server of a SG acts as a 

server to the mobile clients. On the other hand, the same VMDFS client acts as a client to its 

local VMDFS server residing in the kernel-space. The user-space resident VMDFS clients in 

a SG communicate through TCP/IP bus. The kernel-space resident VMDFS servers in a SG 

communicate using a separate inter-kernel communication channel based on events. The 

VMDFS servers resident in SGs construct a distributed file system on top of individual local 

disk file systems. The VMDFS servers create the virtual memory resident page-able file 

system utilizing available free main memory. As the disk access latency is an order higher 

than the memory access latency, this enables to reduce data-access latency by decreasing the 

disk access frequency. Due to the mobility of clients, the resource-load on servers may vary 

randomly in short time. In order to handle the unpredictable variation of resource-load, the 

VMDFS servers use a dynamically varying set of virtual memory pages to establish the file 

system. In order to avoid swapping of file system pages to the high latency disk drive, the 

page frames are locked temporarily. Based on the resource-load of the system, the page 

frames are unlocked and flushed to disk if the pages are dirty. Otherwise, the page frames are 

released to the kernel to balance the resource-load. On the other hand, in case of the long time 

stability of the system in terms of resource-load, a periodic flushing of dirty pages to the disk 

storage is employed to attain durability property of the file systems without releasing the page 

frames to the kernel. 
 

3.1. File System Structure 
 

  This section describes various components of the file system structure associated to 

VMDFS. The file system design of VMDFS uses data-caching model based on page-level 

transfer. The advantages of such design are the reduction of network traffic and the suitability 

to the diskless mobile thin-clients. Conceptually, the VMDFS residing in the virtual memory 

pages of a server can be segmented into the metadata structure and the list of data blocks. The 

file metadata structure of VMDFS maintains per client file status and IO information along 

with the page update information. The file metadata structure can be marshaled and stored on 

disk as a file for future reconstruction. The components of the file system structure of 

VMDFS are depicted in Figure 3. The file structure is fundamentally composed of the 

sequential stream of File System Blocks (FSB). Each FSB is comprised of File Metadata 

Structure (FMS), Page Frame List (PFL) and Migrated Page List (MPL). The FMS contains 

the file metadata information, whereas, the PFL contains the information related to page 

frames residing in virtual memory area holding the file data blocks. The MPL holds the 

globally resolvable addresses of pages those are migrated to another server. The List Index 

(LI) is used to locate a page list of an open file at a VMDFS server in a SG. The LI of each 
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open file at each server is distinct and is formed by concatenating the File Home Address 

(FHA) and a monotonically increasing integer Sequence Number (SN) assigned to the open 

files.  The File Path Name (FPN) gives the complete path and name of an open file. The File 

Update Flag (FUF) denotes the consistency states of the file in the file system, whereas, the 

mobile Client List (CL) denotes the list of client profiles accessing a file. The Number of 

Disk Blocks (NDB) of a file contains the file size as a multiple of page size and the Number 

of File Blocks (NFB) depicts the number of file blocks present in virtual memory at any time.  

The File Security and Sharing Option (FSSO) states the file sharing and security parameters 

as set by the file owner. The FSSO allows realizing a set of specialized policies such as, 

selective group-sharing, time-limited sharing, file-fragment sharing and, many-read/once-

write sharing of files. The Page Rank (PR ≥ 0) is a monotonically increasing integer 

associated to each page frame holding the file data block and is immutable as long as the file 

blocks are memory resident. The Page Frame Descriptor (PFD) holds the mutable physical 

address of the page frame containing file data and the other information related to the page 

frame. The Write Limit (WL) of each page denotes the length of valid data in a frame from 

the starting address of the corresponding page frame. The Page Write Log (PWL) contains the 

updated data of a page in a newly attached page frame having null PR and results in the 

formation of a tree of page frames. It is to be noted that the page frame in a PWL will have 

the PR equal to null until the update is merged. Update merging is done by simply readjusting 

the page frame addresses of the parent PFD and the PFD in PWL. This avoids the memory 

copy operation and facilitates the roll-back mechanism to recover from the failure. The tree of 

page frames containing the update log is depicted in Figure 4. The Disk Block Pointer (DBP) 

of each PFD contains the mutable disk block pointer of the underlying file system for the 

pages in PFD. During the flush of the updated pages, the pages of each PR are updated based 

on the update log given in PWL and are sequentially written to the disk starting from the DBP 

of the page having lowest PR in the PFL. Hence, the future reconstruction of PFL may have 

different PFD, DBP but the PR remains the same as earlier denoting the file segment marks in 

the stream of data. The DBP of a page may change due to the file append and truncation 

operations. Due to the mobility of clients, the network-distance between a server in SG and a 

mobile client may increase. On the event of hand-off, a mobile client may cross the cell 

boundary entering in the domain of another SG. In order to reduce the network-cost and data-

access latency, VMDFS servers employ inter-SG page migration while maintaining 

consistency of the data blocks. Hence, instead of employing a static file replication among 

SGs, a page-set replication of a file is created dynamically through page migration. Any 

update of the migrated page is propagated periodically to the home-location server of the 

corresponding file. The MPL holds the PR and Page Remote Address (PRA) of the migrated 

pages where, PRA is a globally resolvable page address of a migrated page given as 

〈Remote_Server_Address, LI〉. The mobile clients accessing a file are denoted by individual 

Client ID (CID), File Mode (FM) of operations such as, read/write and, File Handle (FH) 

where, FH is given as 〈LI, PR, Offset〉. Each PFD contains the Frame Address (FA) giving 

the physical address of a page frame and the Frame Lock Bit (FLB) to control the locking of a 

frame in the main memory. The page migration involves the transaction of 〈FMS, PR, 〈PFL-

PFD, WL〉, 〈PWL-PFD, WL〉〉 between the source and destination VMDFS servers. The 

VMDFS server incorporates page-based file IO using memory mapping approach. The 

duplicate data copy is avoided by mapping the set of memory-locked page frames into the 

address space of VMDFS client. As a trusted entity, the VMDFS client releases the page 

frames on demand due to the increase of memory-load above a predefined threshold in a 

server. 
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Figure 3. The File System Structure of VMDFS. 
 

 

                 PFD1           PFD2                                                           PFDn 
 

 

 

                {PRi}             {PRj}                                                                  {PRn} 

 

                                         PWL 

                                                  {∅}    

 

Figure 4. The Tree of Page Frames and Update Log, PRn >>>> PRj >>>> PRi. 

 

 

4. The VMDFS Model  
 

  The memory management system of the operating systems can be modeled with abstract and 

precise formalism in order to represent the design architecture [33][34]. The abstract 

modeling of the system architecture and memory management mechanisms allow the 

generalization of the concept and the easiness of understanding without tying up to a 

particular kind of implementation [33][34][35]. In this section, the architectural model of 

VMDFS is constructed in abstract mathematical formulation for detail analysis and 

verification considering the mobility of clients. A set of properties of VMDFS architecture is 

explained as theorems. Let, a set of cells is denoted by Cα = {αi : i≥ 0, i ∈ I
+
} and a set of 

servers S = { sj : j> 0, j ∈ I
+
}. Let, the binary relation η is defined as η: S → Cα such that, 

∀αi,αj∈Cα, ∃sn ∈ S, (sn , αi) ∈ η ⇒  (sn , αj) ∉ η. Hence, S will have m = | Cα | number of 

partitions denoted by π1, π2……πm such that, ∪i=1, m πi = S and πi∩πj = ∅, i,j ≤ m and i ≠ j. A 

SG is defined as πi ⊂ S for a αi ∈ Cα such that, ∀ si , sj ∈ S, (si , αi) ∈ η ∧ (sj , αi) ∈ η ⇒  si , 

sj ∈ πi. Again, ∀sj ∈ πi, Fj denotes a set of home-located files at sj and Fj = {fj1, fj2,….fja}, a ∈ 

I
+
, a >0. Now, ∀fjx ∈ Fj, the set of file blocks is denoted by fjx = 〈bjxn: n∈I

+〉. Similarly, a set 

of virtual memory pages resident in main memory at sj is denoted by ρj = {pjm : m ∈ I+, m > 

0}. For all sj ∈ S, a binary relation Γj is defined as, Γj : π
ρ
jx → ρj, where π

ρ
jx ⊆ ∪k=1,a fjk, fjk ∈ 

Fj. The property of relation Γj is that, ∃ bjxl ∈ π
ρ
jx and ∀pjy, pjz ∈ ρj , such that, (bjxl, pjy) ∈ Γj 

⇒ (bjxl, pjz) ∉ Γj. In addition, in a πi, the total number of virtual memory pages distributed 

globally can be computed as Vi = ∪h=1, x ρh , where x = |πi|.  

 

File System Block1 (FSB1)        ………….           FSBn 

FMS   PFL    MPL 

LI   FPN  FUF  CL  NDB  NFB  FSSO PR   PFD WL  DBP  PWL PR PRA 

CID FM  FH FHA   SN FA    FLB PFD  WL 
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4.1. Definition of  ◊◊◊◊ 
 

  Let, the symbol ◊ denotes a relation between Cα and C, where C is a set of mobile clients, C 

= {c1, c2, …cn}, n >> 0 such that, at time t, if ci ∈ C and ci is in the cell αi ∈ Cα then, (ci ◊ αi)|t. 

 

4.2. Definition of ⊥⊥⊥⊥ 
 

  Let, the symbol ⊥ denotes a precedence relation on ◊ such that, ∃ αi , αj ∈ Cα and ∀ci∈C, the 

following holds, (ci ◊ αi)|t-1 ∧ (ci ◊ αj)|t ⇒ (ci ⊥ αi)|t, αi ≠ αj. 

 

4.3. Definition of || 

 

  Let, a symbol || denotes the association relation between πVi and the ci∈C and is presented as 

ci || π
V
i , where π

V
i ⊂ Vi, such that (ci ◊ αi)|t ⇒ ci || π

V
i , αi ∈ Cα.  

 

4.4. Definition of ci ||ππππ
V
ij 

 

  If, at time instant t-1 and at the next time instant t, ∀ αi , αj ∈ Cα , ∃ ci∈C then, (ci ◊ αi)|t-1 ∧ 

(ci ◊ αj)|t ⇔  ci ||π
V
ij, where π

V
ij = π

V
j ∪ (βj ο Γi), βj : Γi → Vj, π

V
j ⊂ Vj and  Vj = ∪h=1, x ρh , 

where x = |πj|. 
 

4.5. Definition of VMDFS 

 

  For all ci∈C and an integer n > 1, if (ci ◊ αi)|t-n ∧ (ci ◊ αj)|t-n+1 …….∧ (ci ◊ αm)|t then, the 

VMDFS of ci is defined as, ci || π
V
ij....m where, π

V
i ⊂ Vi, π

V
j ⊂ Vj,..….πVm ⊂ Vm and αi , αj , … 

αm ∈ Cα. 

  

4.6. Properties of VMDFS Model 
 

Theorem 1: Conjunctive predicate property 

Statement: (ci ◊ αi)|t-1 ∧ ¬ (ci ◊ αi)|t ⇒ (ci ⊥ αi)|t, where αi∈ Cα , ci∈C. 

Proof: Let, αj ∈ Cα and αi ≠ αj such that (ci ◊ αj)|t.  Then, (ci ◊ αi)|t-1 ∧ (ci ◊ αj)|t ⇒ (ci ◊ αi)|t-1 ∧ 

¬ (ci ◊ αi)|t. Again, at time t, (ci ◊ αj)|t and at time t-1, (ci ◊ αi)|t-1. Hence, ¬ (ci ◊ αi)|t ⇔ (ci ◊ 

αj)|t. So, (ci ◊ αi)|t-1 ∧ ¬ (ci ◊ αi)|t ⇒ (ci ◊ αi)|t-1 ∧ (ci ◊ αj)|t. However, from the definition of ⊥, 

(ci ◊ αi)|t-1 ∧ (ci ◊ αj)|t ⇒ (ci ⊥ αi)|t. Hence, (ci ◊ αi)|t-1 ∧ ¬ (ci ◊ αi)|t ⇒ (ci ⊥ αi)|t. 

Description: The conjunctive predicate property of VMDFS constructs the mobility-graph of 

a mobile client. Let, at time t, (ci ◊ αi)|t. If the mobile client notifies to a VMDFS server in αi 

that (ci ⊥ αj)|t then, the server in αi may contact another VMDFS server in αj ∈ Cα to discover 

that (ci ⊥ αk)|t-1, αk∈ Cα. Hence, the VMDFS server in αi will construct a conjunctive predicate 

denoted by (ci ◊ αk)|t-2 ∧ (ci ◊ αj)|t-1 ∧ (ci ◊ αi)|t , which is a mobility-graph of ci∈C in this case. 
This enables a VMDFS server to construct and maintain the page-set of a mobile client by 

dynamically constructing the mobility-graph.          

 

Theorem 2: Distribution property 

Statement:  (ci ◊ αj)|t ∧ (ci ⊥ αi)|t ⇒ ci ||π
V
ij , where αi , αj ∈ Cα , ci∈C. 

Proof:  As, (ci ⊥ αi)|t ⇒ ¬ (ci ◊ αi)|t, hence, (ci ◊ αj)|t ∧ (ci ⊥ αi)|t ⇒  (ci ◊ αj)|t ∧ ¬ (ci ◊ αi)|t. 

However, according to the statement (ci ◊ αj)|t is true. Hence, in the two consecutive time 
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intervals t-1 and t, (ci ◊ αj)|t ∧ ¬ (ci ◊ αi)|t ⇒ (ci ◊ αi)|t-1 ∧ (ci ◊ αj)|t ⇒ ci ||π
V
ij (from the 

definition 4.4). 

Description: The distribution property of VMDFS explains that pages of a file in VMDFS 

may be located at a set of servers residing in different SGs. 

 

Theorem 3: Vector property 

Statement: ci ||π
V
ij ≠ ci ||π

V
ji. 

Proof: Let, πVi ⊂ Vi , π
V
j ⊂ Vj , π

ρ
ix ⊆ ∪k=1,a fik, π

ρ
jx ⊆ ∪k=1,b fjk , pix ∈ ρi and pjy ∈ ρj. 

Now, from the definition 4.4, ci ||π
V
ij ⇒ ci ||π

V
j ∪ βj(Γi (π

ρ
ix)) ⇒ ci ||π

V
j ∪ βj(ei) ⇒ ci ||π

V
j ∪ vj, 

where vj ⊂ Vj and ei ⊂ ρi. Again, ci ||π
V
ji ⇒ ci ||π

V
i ∪ βi(Γj (π

ρ
jx)) ⇒ ci ||π

V
i ∪ βi(ej) ⇒ ci ||π

V
i 

∪ vi, where vi ⊂ Vi and ej ⊂ ρj. Hence, ci ||π
V
ij ≠ ci ||π

V
ji. 

Description: The vector property captures the location dependent page migration concept of 

the VMDFS model. The mobility of a client from cell to cell incorporates the corresponding 

page-set migration from the source location to the destination, where the characteristics of the 

page-set are vectors. 

 

Theorem 4: Convergence property 

Statement: ci ||π
V
iji ⊂ ρi. 

Proof: Let, πVi ⊂ Vi , π
V
j ⊂ Vj . Following the definition of ci ||π

V
ij , ci ||π

V
iji  ⇒ (ci ◊ αi)|t-2 ∧ (ci 

◊ αj)|t-1 ∧ (ci ◊ αi)|t. Let, t-1 = x. So, (ci ◊ αi)|t-2 ∧ (ci ◊ αj)|t-1 = (ci ◊ αi)|x-1 ∧ (ci ◊ αj)|x. However, 

from the definition 4.2, (ci ◊ αi)|x-1 ∧ (ci ◊ αj)|x ⇒ (ci ⊥ αi)|x. Hence, ci ||π
V
iji ⇒ (ci ◊ αi)|t ∧ (ci ⊥ 

αi)|t-1 ⇒  (ci ◊ αi)|t ∧ ¬ (ci ◊ αi)|t-1. But, at time instant t-1, ¬ (ci ◊ αi)|t-1 ⇒ (ci ◊ αj)|t-1. Hence, ci 

||πV
iji ⇒   (ci ◊ αj)|t-1 ∧ (ci ◊ αi)|t ⇒ ci ||π

V
ji (from definition 4.4). Again, ci ||π

V
ji ⇒ ci ||π

V
i ∪ vi 

where, vi ⊂ Vi. As, (π
V
i ∪ vi ) ⊂ Vi, hence, ci ||π

V
iji ⊂ ρi. 

Description: The convergence property of VMDFS denotes that based on the circuit in 

mobility-graph of a client, the migration of distributed pages of a file converges to a vertex in 

the set of vertices of the corresponding circuit.  

 
4.7. VMDFS Consistency Model 

 
  The VMDFS model employs dynamic page-set replication of the files among the servers of 

SGs based on the access pattern of the files and the hand-off of the mobile clients. A 

complete file may get replicated dynamically if all the pages of that file are hot for the mobile 

clients while initiating a hand-off. Instead of employing directory-level lock granularity, the 

VMDFS design incorporated file-level lock granularity to maintain consistency. The VMDFS 

follows the concept of Pipeline RAM (PRAM) consistency model with memory coherence 

where, the write operations of a mobile client on pages are seen in a pipeline by all the other 

mobile clients accessing the file. For example, if a mobile client updates two pages p1 and p2 

of a file in that order then, all the other mobile clients will see either (w1, w2) or (w2, w1). A 

file in VMDFS may have three read/write consistency states namely, read-consistent state 

(RC), write-wait-consistent state (WC) and read-write-consistent state (RWC). The read-

consistent state denotes that the file is opened in read mode by mobile clients and hence, the 

cached data is read consistent. The write-wait consistent state of a file indicates that at most 

one mobile client has opened the file in write mode, however, the update is not propagated to 

the other mobile clients. In this state, a portion of the file data cached as pages at mobile 

clients may become stale and needs update propagation. The read-write-consistent state 

indicates that a mobile client, who is in read-consistent or write-consistent states, has failed or 

disconnected and hence, the data cache held by such client is stale needing entire cache 

update. According to the PRAM consistency model, the write updates by a mobile client are 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 2, No. 3, July, 2007 

 

 

10

propagated in a pipeline to all the other mobile clients holding the data page in the cache. 

Whenever a mobile client requests and gets a write-lock of a file from the home server of the 

file, all the other mobile clients holding the file pages of that file in read mode are notified by 

the server about the transition of the file from read-consistent state to write-wait-consistent 

state. The file home server periodically pulls the updated pages from the mobile client 

holding the write-lock and pushes the updated pages to the other mobile clients. When the 

mobile client releases the write-lock, the file home server notifies to all other mobile clients 

about the change of file state from write-wait-consistent state to read-consistent state and the 

file home server marks internally the file state as read-consistent state. At any time, at most 

one mobile client can acquire the write-lock of a file and the other concurrent requests to 

acquire a write-lock will be in the queue. The write-lock requests in the queue are processed 

in the FIFO order. On the event of detection of failure of a mobile client, the VMDFS server 

enforces the release of the write lock held by the failed mobile client. This prevents the 

starvation of the other mobile clients. A failed mobile client, after its recovery, puts itself in 

the read-write-consistent state and updates the entire cache as well as the current file state. 

The VMDFS server can detect a potential failure of a mobile client holding a write lock 

through the non-responding periodic pull of the page updates. The server-side and mobile 

client-side consistency models are illustrated in Figure 5.  
 

 

5. Implementation 
 

5.1. Components of VMDFS   
 

  The entire implementation of VMDFS is segmented into five parts namely, (1) Establishing 

the kernel framework, (2) Realizing the file system structures and handling page-block 

oriented update logging and data consistency, (3) Handling resource-load balancing, page 

migration and global page addressing, (4) Periodic update propagation to home server based 

on periodic-pull model and, (5) Realizing security and sharing policies. This section briefly 

describes the implementation framework of VMDFS in the Linux kernel 2.4.22. The entire 

VMDFS system architecture is composed of two components namely, VMDFS client and 

VMDFS server. The VMDFS client resides in the user-space and corresponding VMDFS 

server resides in the kernel-space. The VMDFS client communicates with the VMDFS server 

using the device interface exported by the VMDFS server. The designing of the VMDFS 

architecture considers the allocation of VMA (Virtual Memory Areas) such that each mobile 

client will have individual VMA. However, the totally allocated VMA to a mobile client 

consists of the sum of virtual memory areas allocated separately. Each of the allocated virtual 

memory area is represented by a file descriptor. Each mobile client is distinguished by the 

individual client IDs. There are two types of file descriptors allocated to a mobile client. One 

file descriptor is allocated to a mobile client for accessing the device file (fd_D) and another 

one is assigned to access the disk file system (fd_F). The fd_D descriptor is used to map page 

frames in the VMDFS client address space through VMDFS server interface. Based on the 

mobility, the state of mobile clients and resource-load on server, the page frames are 

selectively locked forcing the virtual memory system of kernel to make the hot pages memory 

resident. On the other hand, the fd_F descriptor is used to swap a part of the mapped page 

frames to local disk file system by the VMDFS client. The components of VMDFS 

implementation showing the organizational structure of VMA allocation is shown in Figure 6. 

The advantages of such design are: (1) selective page-frame locking is employable for active 

mobile clients achieving load-balancing and reduction in access latency, (2) selective page 

swap is possible for a client depending on the size of the VMA and, (3) the freeing of memory 
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can be done by spanning the VMA of multiple clients. Towards the lower end of the 

implementation, the VMDFS client maintains all the VMA in a list having a root VMA. The 

root VMA does not allocate any virtual memory area descriptor but points to the list of VMA 

devices. Each of the VMA devices contains a list of page frame descriptors. Each of the page 

frame descriptors associated to a VMA device contains a number of page frames and 

associated data members. In addition to the list of the page frame descriptors, each VMA 

device contains a reference to the virtual_memory_area data structure of kernel associated to 

each VMA device. The page fault handler routine of VMDFS server is same for all VMA 

devices and is installed in the kernel through the virtual_memory_operations data structure of 

the kernel. 
 

5.2. Network Paging Latency 

 

The network paging latencies of the existing networking technologies are experimentally 

measured to compare and understand the impact of page migration on VMDFS. The 

communication technologies chosen for the experimentations are, 1. Wired LAN (100Mbps), 

2. Wireless Virtual Private Network (10Mbps) and 3. Cellular network 2.5G (57.6Kbps 

GPRS). The round-trip latencies are depicted in Table 1. The results indicate that VMDFS is a 

promising reality considering 2.5G and higher systems having substantially higher bandwidth 

and reliability as compared to the 2G. 

 

 
 

Figure 5. The Server-side and Mobile-client-side Consistency Models, QL : Queue Length. 
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Figure 6. Implementation Framework of VMDFS.  
 
 

Table 1. Round-trip Network Latency of Page Transfers. 

Networks 4KB  8KB  16KB  32KB  

Wired LAN 7.06ms 106.7ms 108.4ms 207.35ms 

Wireless VPN 290.25ms 312.75ms 354.5ms 346.25ms 

2.5G Mobile Network  6.4sec 9.52sec 17.26sec 33.45sec 

 

 

6. Conclusions 

 
  This paper proposes the concept, design architecture, model and an implementation 

framework of Virtual memory-based Mobile Distributed File System (VMDFS). The 

VMDFS will allow the resource constrained mobile devices to access remote resources to 

create, distribute/share and access the digital contents comprised of heterogeneous data under 

the mobility of clients. The VMDFS may serve as a platform to develop the high-end mobile 

applications. An abstract mathematical model of VMDFS is constructed and a set of 

properties is evaluated for detail analysis and verification considering the mobility of clients. 

The consistency model of VMDFS is illustrated. The VMDFS design incorporates dynamic 

page-locks and page migration in order to achieve better resource utilization providing high-

performance and reduction of network-cost along with data access latency. The monolithic 

Linux kernel is chosen for experimental prototype development. The round-trip network 

paging latencies for page-sized file blocks are experimentally evaluated in wired LAN, 

wireless VPN and 2.5G GPRS. The round-trip network paging latency values illustrate that 

VMDFS would be a promising reality utilizing the 2.5G, 3G and higher mobile 

communication systems. 

 

 

 

MobileClient_x-ID, File Mode, File Handle (FH) 

MobileClient_x VMA 

 File System Interface 

Page list Disk File System 

VMDFS Server 

VMDFS client (fd_F, fd_D) 

VM Manager 
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