
International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

1

VMDFS: Virtual Memory based Mobile Distributed File System

Susmit Bagchi

ATD/CS Research Laboratory, Samsung India Software Operations

Bagmane Lake View, C.V. Raman Nagar, Bangalore, India

susmitbagchi@yahoo.co.uk

Abstract

 The mobile computing paradigm is becoming a reality due to the advent of mobile devices

such as, PDA and Smart Phones having wireless interface to WWW. As a result, the high-end

applications related to mobile multimedia and distributed digital contents have gained much

attention. However, the existing distributed and mobile file systems are not adequately

suitable to support such applications handling the challenges offered by mobile computing

systems. In this paper, the concept, design architecture and consistency model of Virtual

memory based Mobile Distributed File System (VMDFS) are proposed based on thin-mobile-

client/fat-server model. VMDFS creates the migrate-able virtual memory based mobile file

system on top of the disk file systems of remote servers employing dynamic frame-lock to

reduce network latency and to attain high-performance. An abstract mathematical model of

VMDFS is constructed and associated properties are evaluated. The kernel-level

implementation framework of VMDFS is illustrated based on Linux 2.4.22. The network

paging latencies for LAN, Wireless VPN and 2.5G GPRS are measured experimentally. The

results indicate that VMDFS is realizable.

Keywords: Virtual Memory, Mobile Computing, MDVM, File System, Kernel, Network

Latency.

1. Introduction

 Due to the advent of mobile computing devices having wireless communication interface

and access to internet such as, PDA, Smart-Phone, the mobile computing paradigm is

becoming a reality [28][29][30]. As a result, a set of high-end mobile applications, for

example mobile multimedia systems and digital contents, has emerged [1]. In general, the

distributed multimedia applications rely on the static client-server computing model based on

high-speed wired network and fail to handle the challenges imposed by mobile computing

paradigm. The technical challenges associated to mobile computing system are the resource

constraints of mobile devices and the intermittent low-bandwidth wireless network [28][29].

Researchers have directed to utilize the resources of remote servers by mobile clients through

the wireless communication interface in order to realize the high-end mobile distributed

applications [16][29][30]. The resources and storage offered by servers enable the mobile

devices to create, store and distribute/share the digital contents under mobility. In order to

realize the location transparent and high-available mobile digital contents, a mobility-aware,

distributed and high-performance file system is required. The traditional file system interfaces

need to be extended to achieve high-performance coping with the larger file sizes and

mobility [1]. The existing distributed file systems such as, NFS, DAFS and DFS, perform

poorly in the mobile computing environment [6][24][25]. Researchers have directed to design

the kernel-level NFS [27] and kernel-level resource management architecture to achieve QoS

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

2

and better resource utilization [2][3][5]. The traditional RAM-disk file system tries to achieve

comparatively lower data-access latency, however, it suffers from the poor performance,

volatility of data and the duplicate buffer copy [10]. In addition, the multimedia data must not

be paged-out of main memory to maintain high-performance [21]. On the other hand, the

proposed file system for mobile computing suffers from the complexity and lack of location

transparency [31]. In this paper, the design architecture, a model and an implementation

framework of Virtual memory based Mobile Distributed File System (VMDFS) are proposed.

In addition, the consistency model of VMDFS is described. The proposed VMDFS

architecture may serve as a platform to develop a set of high-end mobile applications such as,

mobile multimedia system and the electronic briefcase of digital contents. The VMDFS

model incorporates location transparency by employing the concept of Server-Group (SG)

embedded into the mobile communication infrastructure. An abstract mathematical model of

VMDFS is constructed to establish detail analysis and verification considering the mobility of

clients. In order to design and implement VMDFS, the monolithic kernel of Linux 2.4.22 is

chosen. The round-trip network paging latencies are measured experimentally for the wired

LAN, wireless VPN and 2.5G GPRS considering variable page-sized data blocks. The

experimental results demonstrate that VMDFS would be realizable based on 2.5G, 3G or

higher mobile communication systems. The distinguishing features of the proposed VMDFS

model are as followings.

● The VMDFS design architecture implements the virtual memory based mobile file system

on top of the local disk file system to achieve better resource monitoring and utilization along

with the reduction of complexity of developing a new mobile file system.

● The VMDFS design incorporates location transparency along with the reduction of

network-latency using the concept of Server-Group (SG) residing in the cells allowing inter-

SG page migration.

● The VMDFS combines the file system and virtual memory system employing the selective

page-locks to reduce file access latency and to eliminate duplicate buffer copy.

● Unlike the NFS [6], the VMDFS does not require the high-speed reliable network between

clients and servers.

● Contrasting the DAFS and RDMA based designs [8], the VMDFS does not require any

specific hardware support.

● In contrast to Segank [23], the VMDFS does not require the mobile-clients to be always

power-on.

● Contrasting the proposed client-centric file system for mobile computing [31], the mobile

clients of VMDFS are free from the task of distributed resource management under mobility.

● Unlike Sprite [36], VMDFS does not rely on large client cache and entire cache eviction on

client side to maintain write-consistency of files.

 The rest of the paper is organized as followings. Section 2 describes the related works. The

architecture of VMDFS is illustrated in section 3. An abstract mathematical model and

consistency model of VMDFS are illustrated in section 4. Section 5 describes the

implementation framework of VMDFS along with the experimental evaluation of network-

paging latency. Section 6 concludes the paper.

2. Related Works

 In order to realize the mobile computing paradigm, the MDVM system is proposed aiming

to reduce the computational resource constraints of mobile devices [29]. The MDVM system

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

3

advocates utilizing the resources of remote server by the mobile clients through wireless

communication interface. The existing Distributed Virtual Memory (DVM) systems do not

provide an easy way to dynamically use and share DVM resources preserving transparency,

adaptability and extensibility [29][30]. The DVM systems become non-scalable under the

condition of mobility of clients [29]. The present design architectures of operating systems

make it difficult to establish a low latency communication path between the application or

middleware and the kernel to access the resources [1][2]. The user-level and middleware-

level management of resources to maintain QoS have restrictions due to the granularity of

resource management and insufficient fidelity [2]. The KECho [5], Q-channels and ELinux

[2][3][4] are the kernel-level architectures to implement the distributed resource management

based on event-oriented communication and QoS characteristics. The distributed multimedia

file systems have two broad classifications namely, (1) Partitioned FS such as, FFS, RIO,

Shark and a combination of UFS and CMFS [1] and, (2) Integrated FS based on multiplexing

the disk bandwidth, storage space and the buffer cache among all the multimedia data [1].

The examples of integrated FS are Nemesis FS, Fellini and Symphony [1]. Apart from these,

MMFS handles the interactive multimedia applications by extending the UNIX file system

[1]. The file systems designed for high-bandwidth and low-latency client-server model are

unable to perform in the low-bandwidth and high-latency mobile computing environment [6].

Researchers have suggested implementing the disconnected file operations using cache, for

example the Coda file system, although this technique fails to take advantage of the network

opportunities and is inappropriate for fully connected systems [6]. On the other hand, a data

staging architecture is proposed to improve the performance of DFS running on the storage

limited mobile devices [7]. This technique opportunistically prefetches the files and caches

them on nearby un-trusted surrogate machines [7]. However, such data staging mechanism is

complex and requires multi-path communication between the mobile clients and servers. The

DAFS design relies on the kernel-server of FreeBSD operating system, which is a direct-

access file system based on the supports provided by the networking hardware (NIC) for user-

level networking [8]. It suffers from the hardware dependency and permanent page locking to

employ RDMA [8]. In a different approach, the Federated DAFS combines user-space DAFS

with a low overhead clustering layer to prepare a scalable DAFS cluster [9]. However, the

Federated DAFS does not consider the mobility of the clients. The Sprite uses large main-

memory to cache disk blocks providing non-write-through file caching [36]. The difficulties

associated to Sprite are that it does not consider the mobility of the clients and requires a large

cache size in the main memory of the clients. The Sprite bases on entire cache eviction on

each client side on the event of file update by any client resulting in repeated file re-caching

consuming network bandwidth and time. Inspired by RAM-disk system, a page-able memory

based file system is developed [10]. The proposed design architecture aims to reduce the poor

utilization of available main memory. However, the proposed solution employs duplicate data

copy between file system cache and the system buffers [10]. It is reported that when the

variable sized file cache and the virtual memory are coexisting in a system, the concurrent

execution of file-intensive processes degrades the overall system performance if the cache

pages and the virtual memory system are not treated differently [11]. Instead of permanently

locking the virtual memory pages, an adaptive page-locking policy is proposed to maintain

the QoS for the large-file-intensive applications [12]. The proposed solution performs

adequately to maintain the QoS, however, could not reduce the page faults considerably and

its performance is dependent on the behaviour of the applications. The architecture of a

virtual memory based distributed file system in high-speed wired network environment is

proposed in [13]. It is noted that establishing a large file cache in the virtual memory is

possible without introducing any performance degradation [14]. Apart from designing the file

system, an intelligent file hoarding for mobile computers is proposed, which heuristically

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

4

creates the file set based on file access patterns [15]. The network file system such as, NFS,

does not utilize the warm cache on the face of disconnection between a client and the server

and hence, is not suitable for mobile computing systems [24][25]. Researchers have directed

to design the kernel-level NFS client architecture bypassing the kernel buffer cache and thus

avoiding data copy [26][27]. A mobile distributed file system using client-centric update and

caching along with lazy propagation has been proposed [31]. However, the main difficulties

of this design are the client initiated primary-to-primary lazy copy of entire file set and the

client initiated localization of server, which degrades the criteria of location transparency. In

addition, due to the lazy update propagation and the client resident cache, the updates are

vulnerable to the client crash. The other works related to the clusters, mobile storage systems

and data partitioning include DATOM [16], e-vault [17], COMA [19], PersonalRAID [22]

and Segank [23]. In order to enhance performance, a dynamic set model is developed to

overlap the file data fetch and processing [18][20]. This approach is useful for weakly

connected mobile clients. However, the fetching policy of dynamic set model may degrade

the performance by stalling the applications and it performs poorly in the high-speed network

environment [18][20].

3. The VMDFS Architecture

Figure 1. Conceptual Architecture of VMDFS.

 Server 1 Server 2

Inter-kernel communication channel Inter-client communication channel

Figure 2. Architectural Components of VMDFS.

Mobile Communication Backbone

VMDFS

SG m SG n

TCP/IP

bus

User-space

Kernel-space

VMDFS client

VMDFS server VMDFS server

Disk FS Disk FS

RAM

Network Network

RAM

VMDFS client

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

5

The design architecture of VMDFS considers the Server-Group (SG) in a cell and SGs of

the other cells of the mobile communication architecture. A SG is comprised of a set of

resource-fat servers residing in the cells [29]. The servers of a SG in a cell as well as different

SGs are connected by high-speed wired TCP/IP network.

The VMDFS architecture can be viewed as a distributed file system layered across servers

in the SGs accessible by mobile clients with location transparency. The conceptual

architecture of VMDFS is shown in Figure 1. The servers in a SG are connected by TCP/IP

bus and are attached to the mobile communication backbone. The VMDFS is constructed in

the kernel of the operating system of the individual servers in order to achieve better

monitoring and utilization of available resources at servers and to establish faster inter-kernel

communication system. The detailed architecture of VMDFS residing in the kernel of two

servers is shown in Figure 2. The VMDFS architecture can be decomposed into two

functional entities namely, VMDFS client and VMDFS server. The VMDFS client has dual

functionalities. The VMDFS client residing in the user-space of a server of a SG acts as a

server to the mobile clients. On the other hand, the same VMDFS client acts as a client to its

local VMDFS server residing in the kernel-space. The user-space resident VMDFS clients in

a SG communicate through TCP/IP bus. The kernel-space resident VMDFS servers in a SG

communicate using a separate inter-kernel communication channel based on events. The

VMDFS servers resident in SGs construct a distributed file system on top of individual local

disk file systems. The VMDFS servers create the virtual memory resident page-able file

system utilizing available free main memory. As the disk access latency is an order higher

than the memory access latency, this enables to reduce data-access latency by decreasing the

disk access frequency. Due to the mobility of clients, the resource-load on servers may vary

randomly in short time. In order to handle the unpredictable variation of resource-load, the

VMDFS servers use a dynamically varying set of virtual memory pages to establish the file

system. In order to avoid swapping of file system pages to the high latency disk drive, the

page frames are locked temporarily. Based on the resource-load of the system, the page

frames are unlocked and flushed to disk if the pages are dirty. Otherwise, the page frames are

released to the kernel to balance the resource-load. On the other hand, in case of the long time

stability of the system in terms of resource-load, a periodic flushing of dirty pages to the disk

storage is employed to attain durability property of the file systems without releasing the page

frames to the kernel.

3.1. File System Structure

 This section describes various components of the file system structure associated to

VMDFS. The file system design of VMDFS uses data-caching model based on page-level

transfer. The advantages of such design are the reduction of network traffic and the suitability

to the diskless mobile thin-clients. Conceptually, the VMDFS residing in the virtual memory

pages of a server can be segmented into the metadata structure and the list of data blocks. The

file metadata structure of VMDFS maintains per client file status and IO information along

with the page update information. The file metadata structure can be marshaled and stored on

disk as a file for future reconstruction. The components of the file system structure of

VMDFS are depicted in Figure 3. The file structure is fundamentally composed of the

sequential stream of File System Blocks (FSB). Each FSB is comprised of File Metadata

Structure (FMS), Page Frame List (PFL) and Migrated Page List (MPL). The FMS contains

the file metadata information, whereas, the PFL contains the information related to page

frames residing in virtual memory area holding the file data blocks. The MPL holds the

globally resolvable addresses of pages those are migrated to another server. The List Index

(LI) is used to locate a page list of an open file at a VMDFS server in a SG. The LI of each

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

6

open file at each server is distinct and is formed by concatenating the File Home Address

(FHA) and a monotonically increasing integer Sequence Number (SN) assigned to the open

files. The File Path Name (FPN) gives the complete path and name of an open file. The File

Update Flag (FUF) denotes the consistency states of the file in the file system, whereas, the

mobile Client List (CL) denotes the list of client profiles accessing a file. The Number of

Disk Blocks (NDB) of a file contains the file size as a multiple of page size and the Number

of File Blocks (NFB) depicts the number of file blocks present in virtual memory at any time.

The File Security and Sharing Option (FSSO) states the file sharing and security parameters

as set by the file owner. The FSSO allows realizing a set of specialized policies such as,

selective group-sharing, time-limited sharing, file-fragment sharing and, many-read/once-

write sharing of files. The Page Rank (PR ≥ 0) is a monotonically increasing integer

associated to each page frame holding the file data block and is immutable as long as the file

blocks are memory resident. The Page Frame Descriptor (PFD) holds the mutable physical

address of the page frame containing file data and the other information related to the page

frame. The Write Limit (WL) of each page denotes the length of valid data in a frame from

the starting address of the corresponding page frame. The Page Write Log (PWL) contains the

updated data of a page in a newly attached page frame having null PR and results in the

formation of a tree of page frames. It is to be noted that the page frame in a PWL will have

the PR equal to null until the update is merged. Update merging is done by simply readjusting

the page frame addresses of the parent PFD and the PFD in PWL. This avoids the memory

copy operation and facilitates the roll-back mechanism to recover from the failure. The tree of

page frames containing the update log is depicted in Figure 4. The Disk Block Pointer (DBP)

of each PFD contains the mutable disk block pointer of the underlying file system for the

pages in PFD. During the flush of the updated pages, the pages of each PR are updated based

on the update log given in PWL and are sequentially written to the disk starting from the DBP

of the page having lowest PR in the PFL. Hence, the future reconstruction of PFL may have

different PFD, DBP but the PR remains the same as earlier denoting the file segment marks in

the stream of data. The DBP of a page may change due to the file append and truncation

operations. Due to the mobility of clients, the network-distance between a server in SG and a

mobile client may increase. On the event of hand-off, a mobile client may cross the cell

boundary entering in the domain of another SG. In order to reduce the network-cost and data-

access latency, VMDFS servers employ inter-SG page migration while maintaining

consistency of the data blocks. Hence, instead of employing a static file replication among

SGs, a page-set replication of a file is created dynamically through page migration. Any

update of the migrated page is propagated periodically to the home-location server of the

corresponding file. The MPL holds the PR and Page Remote Address (PRA) of the migrated

pages where, PRA is a globally resolvable page address of a migrated page given as

〈Remote_Server_Address, LI〉. The mobile clients accessing a file are denoted by individual

Client ID (CID), File Mode (FM) of operations such as, read/write and, File Handle (FH)

where, FH is given as 〈LI, PR, Offset〉. Each PFD contains the Frame Address (FA) giving

the physical address of a page frame and the Frame Lock Bit (FLB) to control the locking of a

frame in the main memory. The page migration involves the transaction of 〈FMS, PR, 〈PFL-

PFD, WL〉, 〈PWL-PFD, WL〉〉 between the source and destination VMDFS servers. The

VMDFS server incorporates page-based file IO using memory mapping approach. The

duplicate data copy is avoided by mapping the set of memory-locked page frames into the

address space of VMDFS client. As a trusted entity, the VMDFS client releases the page

frames on demand due to the increase of memory-load above a predefined threshold in a

server.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

7

Figure 3. The File System Structure of VMDFS.

 PFD1 PFD2 PFDn

 {PRi} {PRj} {PRn}

 PWL

 {∅}

Figure 4. The Tree of Page Frames and Update Log, PRn >>>> PRj >>>> PRi.

4. The VMDFS Model

 The memory management system of the operating systems can be modeled with abstract and

precise formalism in order to represent the design architecture [33][34]. The abstract

modeling of the system architecture and memory management mechanisms allow the

generalization of the concept and the easiness of understanding without tying up to a

particular kind of implementation [33][34][35]. In this section, the architectural model of

VMDFS is constructed in abstract mathematical formulation for detail analysis and

verification considering the mobility of clients. A set of properties of VMDFS architecture is

explained as theorems. Let, a set of cells is denoted by Cα = {αi : i≥ 0, i ∈ I
+
} and a set of

servers S = { sj : j> 0, j ∈ I
+
}. Let, the binary relation η is defined as η: S → Cα such that,

∀αi,αj∈Cα, ∃sn ∈ S, (sn , αi) ∈ η ⇒ (sn , αj) ∉ η. Hence, S will have m = | Cα | number of

partitions denoted by π1, π2……πm such that, ∪i=1, m πi = S and πi∩πj = ∅, i,j ≤ m and i ≠ j. A

SG is defined as πi ⊂ S for a αi ∈ Cα such that, ∀ si , sj ∈ S, (si , αi) ∈ η ∧ (sj , αi) ∈ η ⇒ si ,

sj ∈ πi. Again, ∀sj ∈ πi, Fj denotes a set of home-located files at sj and Fj = {fj1, fj2,….fja}, a ∈

I
+
, a >0. Now, ∀fjx ∈ Fj, the set of file blocks is denoted by fjx = 〈bjxn: n∈I

+〉. Similarly, a set

of virtual memory pages resident in main memory at sj is denoted by ρj = {pjm : m ∈ I+, m >

0}. For all sj ∈ S, a binary relation Γj is defined as, Γj : π
ρ
jx → ρj, where π

ρ
jx ⊆ ∪k=1,a fjk, fjk ∈

Fj. The property of relation Γj is that, ∃ bjxl ∈ π
ρ
jx and ∀pjy, pjz ∈ ρj , such that, (bjxl, pjy) ∈ Γj

⇒ (bjxl, pjz) ∉ Γj. In addition, in a πi, the total number of virtual memory pages distributed

globally can be computed as Vi = ∪h=1, x ρh , where x = |πi|.

File System Block1 (FSB1) …………. FSBn

FMS PFL MPL

LI FPN FUF CL NDB NFB FSSO PR PFD WL DBP PWL PR PRA

CID FM FH FHA SN FA FLB PFD WL

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

8

4.1. Definition of ◊◊◊◊

 Let, the symbol ◊ denotes a relation between Cα and C, where C is a set of mobile clients, C

= {c1, c2, …cn}, n >> 0 such that, at time t, if ci ∈ C and ci is in the cell αi ∈ Cα then, (ci ◊ αi)|t.

4.2. Definition of ⊥⊥⊥⊥

 Let, the symbol ⊥ denotes a precedence relation on ◊ such that, ∃ αi , αj ∈ Cα and ∀ci∈C, the

following holds, (ci ◊ αi)|t-1 ∧ (ci ◊ αj)|t ⇒ (ci ⊥ αi)|t, αi ≠ αj.

4.3. Definition of ||

 Let, a symbol || denotes the association relation between πVi and the ci∈C and is presented as

ci || π
V
i , where π

V
i ⊂ Vi, such that (ci ◊ αi)|t ⇒ ci || π

V
i , αi ∈ Cα.

4.4. Definition of ci ||ππππ
V
ij

 If, at time instant t-1 and at the next time instant t, ∀ αi , αj ∈ Cα , ∃ ci∈C then, (ci ◊ αi)|t-1 ∧

(ci ◊ αj)|t ⇔ ci ||π
V
ij, where π

V
ij = π

V
j ∪ (βj ο Γi), βj : Γi → Vj, π

V
j ⊂ Vj and Vj = ∪h=1, x ρh ,

where x = |πj|.

4.5. Definition of VMDFS

 For all ci∈C and an integer n > 1, if (ci ◊ αi)|t-n ∧ (ci ◊ αj)|t-n+1 …….∧ (ci ◊ αm)|t then, the

VMDFS of ci is defined as, ci || π
V
ij....m where, π

V
i ⊂ Vi, π

V
j ⊂ Vj,..….πVm ⊂ Vm and αi , αj , …

αm ∈ Cα.

4.6. Properties of VMDFS Model

Theorem 1: Conjunctive predicate property

Statement: (ci ◊ αi)|t-1 ∧ ¬ (ci ◊ αi)|t ⇒ (ci ⊥ αi)|t, where αi∈ Cα , ci∈C.

Proof: Let, αj ∈ Cα and αi ≠ αj such that (ci ◊ αj)|t. Then, (ci ◊ αi)|t-1 ∧ (ci ◊ αj)|t ⇒ (ci ◊ αi)|t-1 ∧

¬ (ci ◊ αi)|t. Again, at time t, (ci ◊ αj)|t and at time t-1, (ci ◊ αi)|t-1. Hence, ¬ (ci ◊ αi)|t ⇔ (ci ◊

αj)|t. So, (ci ◊ αi)|t-1 ∧ ¬ (ci ◊ αi)|t ⇒ (ci ◊ αi)|t-1 ∧ (ci ◊ αj)|t. However, from the definition of ⊥,

(ci ◊ αi)|t-1 ∧ (ci ◊ αj)|t ⇒ (ci ⊥ αi)|t. Hence, (ci ◊ αi)|t-1 ∧ ¬ (ci ◊ αi)|t ⇒ (ci ⊥ αi)|t.

Description: The conjunctive predicate property of VMDFS constructs the mobility-graph of

a mobile client. Let, at time t, (ci ◊ αi)|t. If the mobile client notifies to a VMDFS server in αi

that (ci ⊥ αj)|t then, the server in αi may contact another VMDFS server in αj ∈ Cα to discover

that (ci ⊥ αk)|t-1, αk∈ Cα. Hence, the VMDFS server in αi will construct a conjunctive predicate

denoted by (ci ◊ αk)|t-2 ∧ (ci ◊ αj)|t-1 ∧ (ci ◊ αi)|t , which is a mobility-graph of ci∈C in this case.
This enables a VMDFS server to construct and maintain the page-set of a mobile client by

dynamically constructing the mobility-graph.

Theorem 2: Distribution property

Statement: (ci ◊ αj)|t ∧ (ci ⊥ αi)|t ⇒ ci ||π
V
ij , where αi , αj ∈ Cα , ci∈C.

Proof: As, (ci ⊥ αi)|t ⇒ ¬ (ci ◊ αi)|t, hence, (ci ◊ αj)|t ∧ (ci ⊥ αi)|t ⇒ (ci ◊ αj)|t ∧ ¬ (ci ◊ αi)|t.

However, according to the statement (ci ◊ αj)|t is true. Hence, in the two consecutive time

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

9

intervals t-1 and t, (ci ◊ αj)|t ∧ ¬ (ci ◊ αi)|t ⇒ (ci ◊ αi)|t-1 ∧ (ci ◊ αj)|t ⇒ ci ||π
V
ij (from the

definition 4.4).

Description: The distribution property of VMDFS explains that pages of a file in VMDFS

may be located at a set of servers residing in different SGs.

Theorem 3: Vector property

Statement: ci ||π
V
ij ≠ ci ||π

V
ji.

Proof: Let, πVi ⊂ Vi , π
V
j ⊂ Vj , π

ρ
ix ⊆ ∪k=1,a fik, π

ρ
jx ⊆ ∪k=1,b fjk , pix ∈ ρi and pjy ∈ ρj.

Now, from the definition 4.4, ci ||π
V
ij ⇒ ci ||π

V
j ∪ βj(Γi (π

ρ
ix)) ⇒ ci ||π

V
j ∪ βj(ei) ⇒ ci ||π

V
j ∪ vj,

where vj ⊂ Vj and ei ⊂ ρi. Again, ci ||π
V
ji ⇒ ci ||π

V
i ∪ βi(Γj (π

ρ
jx)) ⇒ ci ||π

V
i ∪ βi(ej) ⇒ ci ||π

V
i

∪ vi, where vi ⊂ Vi and ej ⊂ ρj. Hence, ci ||π
V
ij ≠ ci ||π

V
ji.

Description: The vector property captures the location dependent page migration concept of

the VMDFS model. The mobility of a client from cell to cell incorporates the corresponding

page-set migration from the source location to the destination, where the characteristics of the

page-set are vectors.

Theorem 4: Convergence property

Statement: ci ||π
V
iji ⊂ ρi.

Proof: Let, πVi ⊂ Vi , π
V
j ⊂ Vj . Following the definition of ci ||π

V
ij , ci ||π

V
iji ⇒ (ci ◊ αi)|t-2 ∧ (ci

◊ αj)|t-1 ∧ (ci ◊ αi)|t. Let, t-1 = x. So, (ci ◊ αi)|t-2 ∧ (ci ◊ αj)|t-1 = (ci ◊ αi)|x-1 ∧ (ci ◊ αj)|x. However,

from the definition 4.2, (ci ◊ αi)|x-1 ∧ (ci ◊ αj)|x ⇒ (ci ⊥ αi)|x. Hence, ci ||π
V
iji ⇒ (ci ◊ αi)|t ∧ (ci ⊥

αi)|t-1 ⇒ (ci ◊ αi)|t ∧ ¬ (ci ◊ αi)|t-1. But, at time instant t-1, ¬ (ci ◊ αi)|t-1 ⇒ (ci ◊ αj)|t-1. Hence, ci

||πV
iji ⇒ (ci ◊ αj)|t-1 ∧ (ci ◊ αi)|t ⇒ ci ||π

V
ji (from definition 4.4). Again, ci ||π

V
ji ⇒ ci ||π

V
i ∪ vi

where, vi ⊂ Vi. As, (π
V
i ∪ vi) ⊂ Vi, hence, ci ||π

V
iji ⊂ ρi.

Description: The convergence property of VMDFS denotes that based on the circuit in

mobility-graph of a client, the migration of distributed pages of a file converges to a vertex in

the set of vertices of the corresponding circuit.

4.7. VMDFS Consistency Model

 The VMDFS model employs dynamic page-set replication of the files among the servers of

SGs based on the access pattern of the files and the hand-off of the mobile clients. A

complete file may get replicated dynamically if all the pages of that file are hot for the mobile

clients while initiating a hand-off. Instead of employing directory-level lock granularity, the

VMDFS design incorporated file-level lock granularity to maintain consistency. The VMDFS

follows the concept of Pipeline RAM (PRAM) consistency model with memory coherence

where, the write operations of a mobile client on pages are seen in a pipeline by all the other

mobile clients accessing the file. For example, if a mobile client updates two pages p1 and p2

of a file in that order then, all the other mobile clients will see either (w1, w2) or (w2, w1). A

file in VMDFS may have three read/write consistency states namely, read-consistent state

(RC), write-wait-consistent state (WC) and read-write-consistent state (RWC). The read-

consistent state denotes that the file is opened in read mode by mobile clients and hence, the

cached data is read consistent. The write-wait consistent state of a file indicates that at most

one mobile client has opened the file in write mode, however, the update is not propagated to

the other mobile clients. In this state, a portion of the file data cached as pages at mobile

clients may become stale and needs update propagation. The read-write-consistent state

indicates that a mobile client, who is in read-consistent or write-consistent states, has failed or

disconnected and hence, the data cache held by such client is stale needing entire cache

update. According to the PRAM consistency model, the write updates by a mobile client are

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

10

propagated in a pipeline to all the other mobile clients holding the data page in the cache.

Whenever a mobile client requests and gets a write-lock of a file from the home server of the

file, all the other mobile clients holding the file pages of that file in read mode are notified by

the server about the transition of the file from read-consistent state to write-wait-consistent

state. The file home server periodically pulls the updated pages from the mobile client

holding the write-lock and pushes the updated pages to the other mobile clients. When the

mobile client releases the write-lock, the file home server notifies to all other mobile clients

about the change of file state from write-wait-consistent state to read-consistent state and the

file home server marks internally the file state as read-consistent state. At any time, at most

one mobile client can acquire the write-lock of a file and the other concurrent requests to

acquire a write-lock will be in the queue. The write-lock requests in the queue are processed

in the FIFO order. On the event of detection of failure of a mobile client, the VMDFS server

enforces the release of the write lock held by the failed mobile client. This prevents the

starvation of the other mobile clients. A failed mobile client, after its recovery, puts itself in

the read-write-consistent state and updates the entire cache as well as the current file state.

The VMDFS server can detect a potential failure of a mobile client holding a write lock

through the non-responding periodic pull of the page updates. The server-side and mobile

client-side consistency models are illustrated in Figure 5.

5. Implementation

5.1. Components of VMDFS

 The entire implementation of VMDFS is segmented into five parts namely, (1) Establishing

the kernel framework, (2) Realizing the file system structures and handling page-block

oriented update logging and data consistency, (3) Handling resource-load balancing, page

migration and global page addressing, (4) Periodic update propagation to home server based

on periodic-pull model and, (5) Realizing security and sharing policies. This section briefly

describes the implementation framework of VMDFS in the Linux kernel 2.4.22. The entire

VMDFS system architecture is composed of two components namely, VMDFS client and

VMDFS server. The VMDFS client resides in the user-space and corresponding VMDFS

server resides in the kernel-space. The VMDFS client communicates with the VMDFS server

using the device interface exported by the VMDFS server. The designing of the VMDFS

architecture considers the allocation of VMA (Virtual Memory Areas) such that each mobile

client will have individual VMA. However, the totally allocated VMA to a mobile client

consists of the sum of virtual memory areas allocated separately. Each of the allocated virtual

memory area is represented by a file descriptor. Each mobile client is distinguished by the

individual client IDs. There are two types of file descriptors allocated to a mobile client. One

file descriptor is allocated to a mobile client for accessing the device file (fd_D) and another

one is assigned to access the disk file system (fd_F). The fd_D descriptor is used to map page

frames in the VMDFS client address space through VMDFS server interface. Based on the

mobility, the state of mobile clients and resource-load on server, the page frames are

selectively locked forcing the virtual memory system of kernel to make the hot pages memory

resident. On the other hand, the fd_F descriptor is used to swap a part of the mapped page

frames to local disk file system by the VMDFS client. The components of VMDFS

implementation showing the organizational structure of VMA allocation is shown in Figure 6.

The advantages of such design are: (1) selective page-frame locking is employable for active

mobile clients achieving load-balancing and reduction in access latency, (2) selective page

swap is possible for a client depending on the size of the VMA and, (3) the freeing of memory

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

11

can be done by spanning the VMA of multiple clients. Towards the lower end of the

implementation, the VMDFS client maintains all the VMA in a list having a root VMA. The

root VMA does not allocate any virtual memory area descriptor but points to the list of VMA

devices. Each of the VMA devices contains a list of page frame descriptors. Each of the page

frame descriptors associated to a VMA device contains a number of page frames and

associated data members. In addition to the list of the page frame descriptors, each VMA

device contains a reference to the virtual_memory_area data structure of kernel associated to

each VMA device. The page fault handler routine of VMDFS server is same for all VMA

devices and is installed in the kernel through the virtual_memory_operations data structure of

the kernel.

5.2. Network Paging Latency

The network paging latencies of the existing networking technologies are experimentally

measured to compare and understand the impact of page migration on VMDFS. The

communication technologies chosen for the experimentations are, 1. Wired LAN (100Mbps),

2. Wireless Virtual Private Network (10Mbps) and 3. Cellular network 2.5G (57.6Kbps

GPRS). The round-trip latencies are depicted in Table 1. The results indicate that VMDFS is a

promising reality considering 2.5G and higher systems having substantially higher bandwidth

and reliability as compared to the 2G.

Figure 5. The Server-side and Mobile-client-side Consistency Models, QL : Queue Length.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

12

 FH = 〈LI, PR, offset〉

 User-space

 Kernel-space

Figure 6. Implementation Framework of VMDFS.

Table 1. Round-trip Network Latency of Page Transfers.

Networks 4KB 8KB 16KB 32KB

Wired LAN 7.06ms 106.7ms 108.4ms 207.35ms

Wireless VPN 290.25ms 312.75ms 354.5ms 346.25ms

2.5G Mobile Network 6.4sec 9.52sec 17.26sec 33.45sec

6. Conclusions

 This paper proposes the concept, design architecture, model and an implementation

framework of Virtual memory-based Mobile Distributed File System (VMDFS). The

VMDFS will allow the resource constrained mobile devices to access remote resources to

create, distribute/share and access the digital contents comprised of heterogeneous data under

the mobility of clients. The VMDFS may serve as a platform to develop the high-end mobile

applications. An abstract mathematical model of VMDFS is constructed and a set of

properties is evaluated for detail analysis and verification considering the mobility of clients.

The consistency model of VMDFS is illustrated. The VMDFS design incorporates dynamic

page-locks and page migration in order to achieve better resource utilization providing high-

performance and reduction of network-cost along with data access latency. The monolithic

Linux kernel is chosen for experimental prototype development. The round-trip network

paging latencies for page-sized file blocks are experimentally evaluated in wired LAN,

wireless VPN and 2.5G GPRS. The round-trip network paging latency values illustrate that

VMDFS would be a promising reality utilizing the 2.5G, 3G and higher mobile

communication systems.

MobileClient_x-ID, File Mode, File Handle (FH)

MobileClient_x VMA

 File System Interface

Page list Disk File System

VMDFS Server

VMDFS client (fd_F, fd_D)

VM Manager

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

13

7. References

[1] Plagemann T., Goebel V., Vorsen P. H., Operating System Support for Multimedia Systems, Computer

Communication Journal, Elsevier Science, 1999.

[2] Poellabauer C. et al., Kernel Support for the Event- Based Cooperation of Distributed Resource Managers,

Proc. of 8th IEEE Real-Time and Embedded Technology and Applications Symposium, IEEE CS, 2002.

[3] Poellabauer C. et al., Flexible User/Kernel Communication for Real-Time Applications in ELinux, Proc. of

Workshop on Real Time Operating Systems and Applications, 2000.

[4] Poellabauer C., Schwan K., West R., Lightweight Kernel/User Communication for Real-Time and

 Multimedia Applications, ACM NOSSDAV, 2001.

[5] Poellabauer C. et al., KECho- Event Communication for Distributed Kernel Services, In the Intl. Conference

on Architecture of Computing Systems: Trends in Network and Pervasive Computing, Springer LNCS, Vol.

2299, 2002.

[6] Honeyman P., Huston L. B., Communications and Consistency in Mobile File Systems, CITI technical Report

95-11, Center for Information Technology Integration, University of Michigan, USA, 1995.

[7] Flinn J. et al., Data Staging on Untrusted Surrogates, In the Proc. of 2nd USENIX Conference on File and

Storage Technologies, USA, 2003.

[8] Magoutis K., Design and Implementation of a Direct Access File System (DAFS) Kernel Server for FreeBSD,

Proc. of USENIX BSDCon, USA, 2002.

[9] Rangarajan M. et al., Federated DAFS: Scalable Cluster-Based Direct Access File Servers, Proc. of 2nd

Workshop on Novel Uses of System Area Networks (SAN-2), 2003.

[10] McKusick M., Karels M., Bostic K., A Pageable Memory Based File System, Technical Report, Computer

Systems Research Group, Computer Science Division, University of California,

Berkeley,www.docs.freebsd.org/44doc/papers/memfs.pdf.
[11] Nelson M., Virtual Memory vs. The File System, WRL Research Report 90/4, Digital Western Research Lab.,

USA, 1990.

[12] Nakajima T., Tezuka H., Virtual Memory Management for Interactive Continuous Media Applications, Proc.

of International Conference on Multimedia Computing and Systems, IEEE CS Press, USA, 1997.

[13] Murphy D., A Virtual Memory Distributed File System, Technical Report, Digital Equipment Corp., USA, 1989.

[14] Park Y., Scott R., Sechrest S., Virtual Memory versus File Interfaces for Large, Memory-Intensive Scientific

Applications, Proc. of ACM/IEEE Conference on Supercomputing, IEEE CS Press, 1996.

[15] Tait C. et al., Intelligent File Hoarding for Mobile Computers, Proc. of ACM MOBICOM, 1995.

[16] Policroniades C. et al., A Data Repository for Fine-Grained Adaptation in Heterogeneous Environments,

Proc. of 3rd ACM International Workshop on Data Engineering for Wireless and Mobile Access (MobiDE),

USA, 2003.

[17] Iyengar A. et al., Design and Implementation of a Secure Distributed Data Repository, Proc. of 14th IFIP

Internet, Information Security Conference, 1998.

[18] Steere D. et al., A Case for Dynamic Sets in Operating Systems, Technical Report, CMU-CS-94-216, CMU,

1994.

[19] Renaud L., Christine M., A Cluster Operating System Based on Software COMA Memory Management, Proc.

of 2nd Workshop on Software Distributed Shared Memory (WSDSM), Santa Fe, 2000.

[20] Satyanarayanan M., An Agenda for Research in Large-Scale Distributed Data Repositories, Proc. of

International Workshop on Operating Systems of the 90s and Beyond, Springer-verlag LNCS, 1991.

[21] Steinmetz R., Analyzing the Multimedia Operating System, Proc. of IEEE Multimedia, Vol. 2, Issue 1, IEEE

CS Press, 1995.

[22] Sobti S. et al., PersonalRAID: Mobile Storage for Distributed and Disconnected Computers, In the Proc. of

1st USENIX Conference on File and Storage Technologies, Monterey, 2002.

[23] Sobti S. et al., Segank: A Distributed Mobile Storage System, In the Proc. of 3rd USENIX Conference on File

and Storage Technologies, San Francisco, 2004.

[24] Michalakis N. et al., Designing an NFS-based Mobile Distributed File System for Ephemeral Sharing in

Proximity Networks, Proc. of 4th Workshop on Applications and Services in Wireless Networks, IEEE CS

Press, 2004.

[25] Anderson A. et al., Serverless Network File Systems, ACM Transactions on Computer Systems, 1996.

[26] Agarwala S. et al., System-Level Resource Monitoring in High-Performance Computing Environments,

Journal of Grid Computing, Kluwer Academic Publishers, 2003.

[27] Magoutis K. et al., Making the Most out of Direct-Access Network Attached Storage, Proc. of 2nd USENIX

Conference ob File and Storage Technologies, San Francisco, 2003.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 2, No. 3, July, 2007

14

[28] Bagchi S. et al., MDVM System Concept, Paging Latency and Round-2 randomized Leader Election

Algorithm in SG, Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol. 10, No. 5,

Japan, 2006.

[29] Bagchi S., Design Architecture and Model of MDVM System, IFIP International Conf. on Intelligence in

Comm. Systems, Springer LNCS, 3283, 2004.

[30] Bagchi S., MDVM: Architecture, Design Goals and Requirements, In the Proc. of 2nd International

Conference on Advances in Mobile Multimedia, Austrian CS Press (OCG), 2004.

[31] Tait C. D., A File System for Mobile Computing, PhD Thesis, Columbia University, 1993.

[32] Moertiyoso N., Yow K., Designing Wireless Enterprise Applications on Mobile Devices, In Proc. of

International Conference on Information Technology and Applications, Australia, November, 2002.

[33] Liedtke J., On µ-kernel Construction, 15th ACM SOSP, Colorado, December 1995.

[34] Morrisett G. et al., Abstract Models of Memory Management, Proc. of 7th International Conf. on Functional

Programming Languages and Computer Architecture, La Jolla, 1995.

[35] Nutt G., Operating Systems, 3rd Edition, Addison Wesley, 2004, pp. 152-154, 773.

[36] Nelson M. et al., Caching in the Sprite Network File System, ACM Transactions on Computer Systems, Vol.

6, No. 1, 1988.

Author

 Susmit Bagchi

 Received B.Sc.(Hons.) from Calcutta University in 1993. He received B.E.

and M.E. in Electronics & Telecommunication engineering in 1997 and

1999 from Nagpur University and Bengal Engineering and Science

University, respectively. His research interests are in the domain of

Operating Systems, Distributed OS/ Systems and Mobile Computing.

Currently, he is holding the Technical Lead position at ATD/CS Research

Laboratory, Samsung Electronics Ltd. (SISO), India.

