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Abstract We analyzed a model of a chaotic neural network consisting of a chaotically forcing neuron and two
stable neurons in the previous study. In the study, we showed that the dynamics of a chaotically forcing neuron is
embedded in the form of a code sequence on a fractal attractor of a two-neuron response system. As an engineering
application on the information processing, we show that a desirable message can be encoded into an attractor space

by using a chaotic neural network in the present study.
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1. Introduction

Many studies on the relations between chaos and
fractals[4,13,6] have been done in recent years. Rossler et
al.[9] reported some models representing chaos-driven
contraction mapping. Their paper describes a hierarchy of
models exhibiting fractal attractors including strange
nonchaotic attractors found by Grebogi et al. and singular-
continuous nowhere differentiable(SCND) attractors, too.
Tsuda[11] have also found the SCND attractor in a neural
system consisting of chaotic neuron models proposed by
Aihara et al.[1]. On the other hand, a lot of research on the
use of chaos for nonlinear digital communications,
especially for the encoding of digital information, has been
reported[5,3,7]. Based on these researches, we can
expect that if a dynamical system has well-defined
symbolic dynamics, the encoding of digital information is
accomplished using the principle of controlling chaos[8].
Furthermore it has been showed by Hayes et at.[5] that a
chaotic system can be manipulated to generate controlled
chaotic time series whose symbolic representation
corresponds to the digital information via arbitrarily small
time-dependent perturbations.

The purpose of the present paper is to further develop
fractal symbolic encoding in a chaotically-forced
contraction system that exhibits fractal attractor. We
generate a chaotic time series corresponding to a ternary
desirable message by applying proper perturbations to the
initial values of a chaotic neuron at each time[7]. At this
time, we use two peaks of the return map of a chaotic
neuron to assign a symbolic representation to the signal.
And then, we observe a 2-dim. fractal aftractor of two
almost linear neurons forced by the chaotic orbits obtained
by the time series for the desirable message. To clarify the
encoding property, we introduce hard-limit functions, or
Heaviside functions as transfer functions from the forcing
neuron to the response system, thereby the system is
converted to an IFS(lterated Function System)-like model
which is composed of not affine but rather nonlinear
transforms. According to Barnsley[2], if the IFS is totally
disconnected and if the points on the attractor are
distributed sparsely, it is possible to improve memories
with a very high storage capacity and robustness against
noise. Although the transformation of the proposed system
is nonlinear rather than affine, and it may not be

completely invertible, a kind of coding of information may
also be possible [11],[12].

2. Encoding code sequences using a chaotic
neuron

2.1 Chaotic neuron model

We use a chaotic neuron model proposed by Aihara[1]
to encode the desired code sequence into a trajectory of
the chaotic neuron. The equation of the chaotic neuron is
as follows.

X1 =J€(—a1;k{‘xn_, +1) ™)

Where «, is a positive parameter, /, is the strength of
the external input to the neuron x, k is a decay
parameter with 0 <k <1, and the function f(x) is the

following sigmoidal function:
1
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where ¢ is a steepness parameter. We can represent

the dynamics of the chaotic neuron as fallows by defining
new variables X

er+l :len 7a1.f1(Xn)+I (3)

where [=1(1-k) which is used to control the chaotic

dynamics of the neuron X .
Fig. 1 shows a chaotic neuron map and an example of
generating a code sequence.

2.2 Encoding code sequences

We show an example of encoding digitized information
into a trajectory of a chaotic neuron map. We use the
algorithm of Lai [7] for the logistic map. The steps of
encoding ternary codes are as follows.

1. Choose an initial value.

2. Determine m symbols corresponding to m
points on the trajectory starting from the initial
value x,.
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3. Examine whether the mth symbol is identical to
the first message bit.

@ |If so, iterate the process from x, to obtain
x, and determine the (m+1)th symbol from
x,. Then examine whether it is identical to
the second message bit.

@ Otherwise, apply some perturbation to x,
for the m th symbol from x, to make
accordance with the first message bit.

4. Continue this procedure by the time that all
message bits are encoded into a chaotic trajectory.
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Fig. 1. Definition of a code sequence based on a chaotic neuron

The coding function[5] is

map

used for calculating

perturbations. The procedure obtaining the coding function
is as follows[7].

1.

Divide the unit interval in x into N bins of

size o0x=1/N, where Jdx<<1/3" and sis
the maximally allowed perturbation.

Determine the symbol sequence of length
m:aal a (a €0,1,2) by choosing a point
from each bin and performing Determine the
symbol sequence of length m:aal a
(a. €0,1,2) by choosing a point from each bin
and performing m iterations.

The symbolic value R can be calculated as follows:

R=Ya/3,a<R<l. (4)

Fig. 2 shows the coding function for a chaotic neuron map.
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at k=0.98,6=0.02
values of perturbations are determined by the

coding function as following procedures.

1.

Let the m -bit symbol sequence a, generated
from x, be aal a,a, and let the first
message bit to be encoded be 5, .

Calculate JR=(a,—5)/3" by comparing

a a_ with

m=1"m

a, b.

m-l

generated symbol sequence aa,L
the desirable symbol sequence aa,L

Compute the perturbation dx from the coding
function R(x).

An example of encoding the sequence “21011202
10202102 11212020 20111201" into a chaotic trajectory is

shown

in Fig. 3. Fig. 4 shows the perturbation &x

applied to the initial value.
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Fig. 3. Time series for the perturbed initial values



Compensation of the initial value
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Fig. 4. The perturbation JSx applied to the initial value

3. Fractal encoding
3.1 Chaotic neural network model

We have considered the nonlinear dynamics of a type
of chaotic neural network[1], which consists of a
chaotically forcing neuron and two almost linear
neurons[10]. The latter stable neurons are forced by the
chaotic neuron described in subsection 2.1 through
transfer functions as shown in Fig. 5. In this model, we use

~ two hard-limit functions, or Heaviside functions as transfer
functions from the chaotic neuron X to the static
neurons Y and Z to encode the dynamics of the
chaotic neuron. The equations of the two stable neurons
are as follows:

Vo = S, Y Ky, +w S Kz,
r=0 r=0
w YA, ©6)
r=0

" "
Zm] = j; (_aj Zk;‘zn—f + W:_\' Z kli y.w r
r=0

=0

w. Y EREx ), (6)

is a positive parameter, k& is a decay

i

where ¢«
parameter with 0 <k, <1(i=2,3); w, is the connection
weight from neuron wu to and
w_w_w_>0; and the function f(x)(i=2,3)

sigmoidal function.
The hard-limit transfer functions

defined as follows:

v with w, <0 ,
is the

h(x)(i=12) are

h (x)={0 i )
1 (x=a)

hz(x)={° sy )
1 (x28)

where ¢ and b are the threshold parameters assumed
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to be a<b in this paper. The functions #X(x)(i=12)

represent wave-shaping effect of axons producing all-or-
none behaviors of propagating action potentials[1].

] —

Fig. 5 Network configuration of a chaotically forced
contracting system

Then we can represent the dynamics of the network
except for X as follows:

Y= kY -a.f()+w.[(Z)

RAVACH) ©
Z., = kZ —af(Z)+w,f.(¥,)
. R (£ (X)) (10)

3.2 Fractal attractor

We next consider the relation between the structure of
a code and that of an attractor. We divide the region of the
state in the chaotic neuron map into three subintervals and
label the symbols 0, 1, and 2 for each one as shown in Fig.

1. We then express the dynamical series {X,} as a code

sequence consisting of the symbols 0, 1, and 2. For
example, the point M on the chaotic map in Fig. 1,
which corresponds to the point 0 on the attractor shown
Fig. 6, can be labeled as 1202012112L. . Fig. 6 shows the
hierarchical relation between the codes generated by the
symbolic dynamics of the forcing chaotic neuron and the
structure of the attractor. It has been shown that the
attractors on Y-Z space have self-similar fractal
structures where the hierarchy of the structure of the
attractor corresponds to the hierarchy of the symbolic
code generated by the forcing chaotic neuron in the
previous study[10]. Fig. 7 shows the attractor driven by the
chaotic time series of Fig. 3.

4. The relation between the distance on a code
space and that on an attractor space

4.1 The distance space

The distance function on a set X has the following
properties.

e d(x,y)20if x#y ;ifandonlyif x#y

° d(x,y)=d(y,x)
e d(x,y)<d(x,z)+d(z,y) forany ze X
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d(x,y) represents the distance between x and .
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Fig. 6. Hierarchy of codes on the fractal attractor for [=0.58
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Fig. 7 Attractor for the chaotic time series of Fig. 3

(X,d) is referred to as a distance space. For example,
the Hausdorff distance D(4,B) between A
B(A,B € H) can be defined as following equations:

and

D(4,B) = max{d(4.B), d(B,4)} (11)
d(4,B) = inf{fe >0 : Ac N_(B)} (12)
d(B,4) = inf{e>0 : Bc N_(4)} (13)
N (4) = {xeR* : d(x,a)<¢, ac 4} (14)

where (H,D) is the distance space.

22

4.2 Continuous mapping
Let the mapping f:X - ¥ be a mapping from a
distance space (X,d) to a distance space (Y,d,). The

mapping f is continuous on xe€Xin case that the
following condition is satisfied.
For Ve>0 , there exists ¢>0

d(x,y)<d implies d,(f(x), f(»)<e.

such that

4.3 Calculation of the distance on a code space using
symbolic dynamics

A code sequence space can be defined as follows.
D ={r={x},:x,=012}

on

(15)

And then, a distance function for

x={x}, y={y}, x,ye ) Iisdefined as the following
equation.

=[x, -
d(x, )=~
o 3
Table 1-3 represent the examples of the distance
between the codes of some points on the Fig. 6 calculated
by the above definition.

(16)

Table 1. Distance on the code space(Region 0)

4 6 8 13 16

0 0.5933 | 0.1836 | 0.5950 | 0.5951

0.5933 0 0.5537 | 0.0023 | 0.0022

0.1836 | 0.5537 0 0.5515 | 0.5514

0.5950 | 0.0023 | 0.5515 0 0.0001

>l m||o |

0.5951 | 0.0022 | 0.5514 | 0.0001 0

Table 2. Distance on the code space(Region 1)

0 5 7 1 12 17

0

0.6605

0.1735

0.6605

0.6685

0.0192

0.6605

0

0.4879

0.0000

0.0021

0.6523

0.1735

0.4879

0

0.4879

0.4863

0.1680

0.6605

0.0000

0.4879

0

0.0021

0.6523

Sj—emo

0.6685

0.0021

0.4863

0.0021

0.6530

17 | 0.0192

0.6523

0.1680

0.6523

0.6530

Table 3. Distance on the code space(Region 2)

1

3

9

10

14

15

0

0.2172

0.3407

0.0023

0.0000

0.0007

0.2172

0

0.5423

0.2167

0.2172

0.2179

0.3407

0.5423

0

0.3401

0.3407

0.3413

0.0023

0.2167

0.3401

0

0.0023

0.0016

0.0000

0.2172

0.3407

0.0023

0

0.0007

1
3
9

10

14

15

0.0007

0.2179

0.3413

0.0016

0.0007

0

4.4 The calculated
attractor for the above distance between the codes

Hausdorff distances on the

are showed in Table 4-6.




Table 4. Distance on the attractor space(Region 0)

4 6 8 13 16
4 0 0.1792 | 0.0554 | 0.1793 | 0.1791
6 0.1792 0 0.1368 | 0.0020 | 0.0022
8 0.0554 | 0.1368 0 0.1368 | 0.1366
13 0.1793 | 0.0020 | 0.1368 0 0.0003
16 0.1791 | 0.0022 | 0.1366 | 0.0003 0

Table 5. Distance on the attractor space(Region 1)

0 5 7 11 12 17
0 0 0.2254 | 0.1636 | 0.2254 | 02248 | 0.0172
5 | 0.2254 0 0.0618 | 0.0000 | 0.0034 | 0.2082
7 10.1636 | 0.0618 0 0.0618 | 0.0612 | 0.1464
11 | 0.2254 | 0.0000 | 0.0618 0 0.0034 | 0.2082
12 | 02248 | 0.0034 | 0.0612 | 0.0034 0 0.2076
17 | 0.0172 | 0.2082 | 0.1464 | 0.2082 | 0.2076 0

Table 6. Distance on the attractor space(Region 2)

1 3 9 10 14 15
1 0 0.1251 | 0.1547 | 0.0063 | 0.0001 | 0.0005
3 10.1251 0 0.2559 | 0.1314 | 0.1251 | 0.1252
9 | 0.1547 | 0.2559 0 0.1567 | 0.1547 | 0.1542
10 | 0.0063 | 0.1314 | 0.1567 0 0.0063 | 0.0062
14 | 0.0001 | 0.1251 | 0.1547 | 0.0063 0 0.0006
15 | 0.0005 | 0.1252 | 0.1542 | 0.0062 | 0.0006 0

The above tables show that the relative distances on
the code space and those of the attractor space are
almost the same. It can be said that the attractor space
contains the information of code space substantially.

5. Conclusions

In out previous study[10], the network composed of a
chaotic neuron and two linearly static neurons has been
proposed and implemented as a hardware system with
analog discrete devices to investigate whether or not the
fractal encoding is actually realized. An attractor structure
with three regions 0, 1, and 2 has been clearly
demonstrated in the study. The robustness of the fractal
attractor for noise to a certain degree also has been
observed. Furthermore, the LS| chip for the network has
been designed and fabricated. From the viewpoint of
engineering, it is interesting to apply the concept of
encoding on the fractal attractor to practical information
processing. In this respect, we showed that a desirable
message can be encoded into an aftractor space by using
a chaotic neural network in the present study.
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