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Abstract   With the development of computer games, different game worlds and various game characters 
are found within them. Various Artificial Intelligence (AI) techniques are usually used to define behavior s of the 
characters within game worlds, which are controlled by AI algorithms in the computer as well as by the user. The 
AI techniques defined for these characters are generally developed by the game creators and cannot be changed 
without going to some effort, which means that if a user wished to control the behavior s of a character within a 
game, they could not easily do so. Being able to edit the behavior s of AI characters is beneficial as it gives the 
user extra control over their characters. Therefore a method for allowing a user to easily personalize the AI 
characters was needed. This goal was achieved by using an incremental knowledge acquisition method, called the 
MCRDR. The MCRDR allows the user to easily acquire new control knowledge of the AI characters by combining 
rule-based and case-based knowledge acquisition approach. Our experiment results showed that AI of a character 
could be personalized with this method of knowledge extraction. 
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1. Introduction 

Artificial Intelligence (AI) can be found within the 
various characters of a computer game. Being able to 
personalize the AI of a character would allow the user to 
gain higher levels of control over game characters that 
they can command. Some games such as Quake 2, 
Unreal Tournament and Half-Life provide an interface that 
allows anyone to write code to control a character within 
the game [1]. The problem with this approach is that one 
would need knowledge of programming to use such an 
interface. Similarly, these interfaces are generally only 
used to create purely computer-controlled character AI. It 
can be seen that it is hard to personalize the AI of a 
character for the average game player. To try and find an 
easy way to allow someone to edit the AI of a character, 
one must understand what goes into a game character’s 
AI.  

The aim of this research is to try and place the 
knowledge of the user into a game character such that the 
user can personalize AI of the game character to what 
they believe is appropriate behavior and therefore give the 
user higher levels of control. MCRDR is a proven way to 
extract knowledge from an expert in their respective field. 
Therefore it has been chosen as the method for extracting 
knowledge from the game player to increase the levels of 
control the game player can have within a game. For the 
purpose of our study, an RTS game was created as well 
as an AI editor to allow the user to create AI using MCRDR. 

This paper consists of following contents: Section 2 
summarizes various AI architectures that are employed in 
the computer game area and provide limitations of current 
approach. Section 3 provides a detailed explanation of our 
approach, called MCRDR. Section 4 explains 
implementation details, including game itself, MCRDR, 
and AI editor. Section 5 summaries what experiments are 
conducted and what results are obtained from them. The 
conclusions of this paper are in the Section 6. 

 
2. AI Techniques in the Game Characters 

Following are some different types of AI techniques that 

are applied in the computer game: 
Finite State Machine (FSM). FSM works by pre-

programming a set of states that a game character can be 
in. A state is chosen for the character depending on the 
information about the game world that the character is 
given, as well as the current state that the character is 
already in [2],[3],[4]. A state is basically a condition. The 
FSM can be seen as a ‘black box’ that takes inputs 
(information about the game world) and produces outputs 
(actions that the character can perform in the game world) 
[2]. The output is an abstraction of a set of lower level 
movement and actions [1]. The benefit of a FSM is that it 
is considered reliable and still has a good enough result. 
From the issues that were discussed in the AI roundtables 
at the 2000 Game Developers Conference, the general 
trend for game character AI tended to be for more 
traditional FSM methods than neural nets and genetic 
algorithms [5]. This is due to the fact that a FSM is useful 
for reducing complex behavior s into smaller and simpler 
behaviors that make it easier to debug and tune than 
neural nets and genetic algorithms [6]. The drawback of 
this approach is that the states are pre-programmed, and 
therefore the character’s actions will generally be 
predictable. The programmer can try to add new rules to 
make the character more complex and unpredictable; 
however there will always be a limited level of 
unpredictability. 

SOAR. SOAR architecture [7] consists of operators. 
Each operator can be primitive performable actions, 
internal actions such as remembering the last position of 
the enemy or more abstract higher-level actions that 
decompose into lower-level primitive actions. SOAR can 
be viewed as a set of user-written if-else rules [2]. The 
way in which SOAR works is by continually proposing, 
selecting, and applying operators to the current state with 
the if-else rules that match against the current state. There 
is the possibility that if an operator is selected it cannot be 
applied immediately. In this case a sub-state is created 
where additional operators are chosen until the original 
operator can be applied or the state changes so much that 
the original operator is no longer required [1].  
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Explanation-base Learning (EBL). EBL is a method 
for learning that increasing execution speed. By 
remembering actions that were selected for previously 
similar situations, the sequence of conditions that lead to 
the original conclusion are remembered and a new rule is 
proposed that gives the same conclusion given the same 
conditions. As the character’s AI does not have to compute 
the same result given similar input, the speed of execution 
time is increased [1]. 

AI Scripts. A script is a way of defining AI outside of the 
actual program [4, 8, 9]. Scripts are used to specify an 
action or sequence of actions that should occur given a 
specific event. Therefore if the condition holds true, then 
the scripted action will fire. The AI script is read into the 
game and is therefore useful for allowing people to create 
their own AI and have it imported [3].  

Many programmers consider a method from those 
described in the above to be good enough when creating 
AI. However, one needs to have a top-down view of the 
entire internal representation of the character in order to 
create the desired actions. This makes it harder for a non-
programmer to implement such an AI, especially since 
they probably did not create it in the first place or have 
access to the AI now. In a similar respect, these methods 
make the assumption that knowledge can be successfully 
extracted from the user such that they can represent the 
knowledge in the intended way. Therefore, a method is 
needed that easily allows a user to place their knowledge 
into the game character. It must also be easy to change 
this knowledge without disrupting the previous 
performance of the rest of the system. This would allow 
the user to be able to change a small piece of a 
character’s AI without having to consider the entire 
structure. Knowledge must also be quickly retrieved so 
that the system will cope in a game-playing environment. A 
solution that incorporates these areas is a method of 
knowledge acquisition known as Multiple Classification 
Ripple Down Rules (MCRDR).  

  
3. MCRDR 

MCRDR. MCRDR is an altered version of standard 
RDR, an approach to building a knowledge-based system 
without the aid of knowledge engineers to extract or 
maintain the knowledge [10]. As the name suggests, the 
main differences between RDR and MCRDR is that 
multiple classifications for a case can be returned with 
MCRDR [11]. There are, however, differences in how the 
inference processes work. MCRDR is represented in a 
tree structure. However, MCRDR is an n-ary tree rather 
than a binary tree and therefore each rule in the tree can 
have any number of children [11]. Each rule has a 
condition and a classification associated with it. When a 
case is to be classified in MCRDR, the case is given to the 
root rule. From here, the condition evaluates the case to 
be either true or false. If it is true, then the root rule passes 
the case onto its children. If the condition evaluates the 
case to false, then case is not passed. The case can 
follow multiple paths down the rule tree [12], unlike RDR 
where it can only go down one unique path. For every 
path that is taken down the rule tree, the classification 
associated with the last rule on every path that returns true 
for the evaluation of the case is considered to be a 
classification for that case. In this way, MCRDR can return 
multiple classifications for a given case [13]. 

Example. An example of the MCRDR classification 
process is shown in Fig.1 The case has attributes A, B, C, 
D, H, X, Y. This case is given to the root rule and is 

evaluated. It can be seen that the case is evaluated by the 
root rule to be true as the condition for the root rule 
requires that A holds for the case, which it does. The case 
is then passed to the children of the root rule. Rule 5 
evaluates the case to be false and therefore the case is 
not passed down that path any further. Rule 2 evaluates 
the case to be true and therefore it is passed down to Rule 
2’s children. Each rule that is passed the case can pass it 
down to its children if they evaluate the case to be true. At 
the end of this process, Rule 10 and Rule 8 are the last 
rules on their paths to have evaluated the case to true and 
therefore whatever classification is associated with these 
cases is considered to be the classifications for the given 
case. Therefore this case is considered to be a 
Classification 7, and a Classification 15. 

 

 

(Fig.1) MCRDR inference example. After the case is 
given to the root rule, the final classifications that are 
returned are Classification 7 and Classification 15 

How the MCRDR Grows. There are several ways in 
which a new rule can be added to prevent 
misclassifications. The first way is to simply add a rule with 
the appropriate classification after the node that caused 
the misclassification [14]. Adding a rule in this way may be 
thought of as a refinement of the parent rule. The expert 
can, however, add a new rule higher in the rule tree 
anywhere along the path that lead to the misclassifying 
rule [15]. This can be done to add another classification 
path. 

Since MCRDR allows for multiple classifications, it is 
possible for a case to be correctly classified by some of 
the rules, but wrongly classified by others. Therefore it is 
possible that the only change to the rule-base that is to be 
made is to stop the rules that are causing the 
misclassification. The user can do this by inserting a 

Case 
A, B, C, D, 
H, X, Y 

Rule 1 
Condition: A 
Classification 1 

Rule 5 
Condition: Z 

Rule 2 
Condition: C 
Classification 2 Classification 3 

Rule 7 
Condition: B 
Classification 8 

Case

Rule 3 
Condition: D,E 
Classification 4 

Rule 4: 
Condition: Y 
Classification 5 

Rule 11 
Condition: E 
Classification 14 

Rule 8: 
Condition: D 
Classification 7 Rule 6 

Condition: X, B 
Classification 6 

Rule 9 
Condition: Z, E 
Classification 11 Rule 10 

Condition: H 
Classification 15 

Classification  
of the case is 
Classification 7 and 
Classification 15 

= Rule with 
Condition 
that has 
evaluated 
to true 
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stopping rule. This rule is inserted and used in the same 
way as a refinement rule, except that the classification is a 
null classification [11, 12]. This means that if the stopping 
rule is called upon to provide a classification, then there 
will be no classification from this rule, as it will give null. 
The condition, however, must still be carefully chosen so 
that the stopping rule does not break the previous 
performance of the system. Stopping rules are a major 
way for preventing wrong classifications [12]. 

In a similar way to RDR, MCRDR stores cornerstone 
cases with every rule in the rule tree. RDR only requires a 
single cornerstone case, whereas MCRDR requires one or 
more [12]. When a new rule is created, the case that 
prompted the creation of the new rule is stored with the 
new rule as its cornerstone case. This case also becomes 
a cornerstone case for all the rules that gave a correct 
evaluation (i.e. evaluate to true) for the case along the 
path to the new rule [11, 12]. It can be seen that the root 
rule will have a copy of all the cornerstone cases in the 
rule tree since it is the beginning of every path. Similarly, 
rules that are lower down the tree have less cornerstone 
cases associated with them [12].  

MCRDR requires validation for the same reasons that 
RDR does, however MCRDR must validate against more 
cornerstone cases. All rules share the same parent. When 
the parent passes down the cornerstone case of any of its 
children, all of its children will receive this case. Therefore 
a rule can be reached by the cornerstone cases that are 
associated with any of its sibling rules. Similarly, a rule can 
also be reached by the cornerstone cases associated with 
the children of sibling rules. For this reason, a rule must 
make sure that its condition does not evaluate to true for 
these cases [12]. Otherwise, the addition of the new rule 
may give a new and unwanted classification to a 
previously stored cornerstone case. When these 
cornerstones cases are being used to create a new 
condition, the expert is presented with a difference list of 
all the cornerstone cases that are to be considered in the 
creation of the condition for the new rule. The difference 
list is used to determine which features of the current case 
make it different from the stored cornerstone cases [15].  

Benefits of MCRDR. Using MCRDR/RDR has 
following benefits: From the method just described, it can 
be seen that the MCRDR rule tree can grow without the 
help of a knowledge engineer. This means that the 
knowledge engineer is not relied upon for the acquisition 
of knowledge [16]. This is beneficial as the expert may not 
be able to convey their ideas correctly to the knowledge 
engineer. MCRDR/RDR also operates on a case-by-case 
basis. Knowledge acquisition can be improved with 
MCRDR/RDR because experts generally tend to be good 
at judging between cases rather than giving knowledge in 
abstract form. Similarly, the explanation of certain data can 
be situation dependant and the justification may vary with 
context [12]. Therefore, if such situations occur, the expert 
may be able to give more accurate information dealing 
with that specific case. Since MCRDR/RDR grows from 
fixing errors as they occur, it does not require any 
modeling or analysis of the domain for knowledge 
acquisition and maintenance. Studies have shown that 
knowledge bases produced by correcting errors as they 
occur are similarly as compact and accurate as those 
produced by induction [11]. On average, a knowledge 
base created with MCRDR will only be about 10% to 15% 
larger than the same knowledge base created using 
standard machine learning methods. As well as size, a 
benefit of MCRDR is that information is retrieved quickly.  

In addition common benefits of MCRDR/RDR, MCRDR 
gives another benefit because it obviously supports 
multiple classifications. A result of this is that the rule tree 
for an MCRDR system can be considerably smaller than 
the rule tree for an RDR system. The reason for this is 
because in an RDR rule tree, there tends to be more 
duplication of information. The duplication occurs because 
only a single path through the rule tree can be made for a 
classification. Therefore if a classification was to be made 
for a certain case, and another classification was to be 
made for a similar case with a slightly different property, 
then a new rule would have to be created with a combined 
classification [17]. 

 
4. Implementation 

4.1 AI and Game Considerations 
 
Game World Considerations. The character’s AI will 
depend on the type of game world that is created. From a 
movement point of view, the game world has been 
segmented into logical squares. Any object within the 
game has to occupy a square. The reason that this 
approach was taken rather than a more continuous game 
world was to simplify the game. The AI creation process 
was simplified with the square system due to the fact that 
users could determine a position on the game area simply 
with an x y coordinate. The game area was limited to a 40 
x 30 square grid size. There are two main reasons for this. 
Firstly, because the game was designed more for AI 
creation rather than advanced game features, it was more 
beneficial to have the entire game area visible at the one 
time so that an AI creator can see exactly what is going. 
Therefore the game area is not large and fits on the entire 
screen. Secondly, the path-finding algorithm is 
recommended to work on a maximum area of 40 x 40 
squares [18]. To make the game more realistic, a fog of 
war was implemented to stop the user (and game 
characters) from knowing the positions of enemy units that 
are not within sight range of any friendly units. Therefore, 
the game world that was created was made inaccessible. 
To help make the game more non-deterministic, the 
random action selection was introduced. Similarly, the 
user can use the mouse and keyboard to control the user 
team’s characters, making the environment more random. 
The game area itself is static, however, the characters 
themselves can move, making the general environment 
dynamic. The game area was designed to be discrete as 
there are only a limited number of positions on the game 
area that can be reached.  

Character Movement Considerations. Since the 
individual character takes care of its own movement and 
path-finding, then a path-finding algorithm must be 
implemented. The A* algorithm is a commonly used and 
effective path-finding algorithm for computer games [5, 19, 
20]. To try and increase the speed and realism of path-
finding, some alterations were made to the base A* 
algorithm. When considering if a square is taken or not 
taken, other game characters are only considered if they 
are within sight range of the character. Though this varies 
with the character type, it is roughly 4 squares. Otherwise 
the character would implicitly know about characters that it 
could not see. If the destination square is occupied by a 
game object (i.e. terrain, a character, a mine or a factory), 
the closest non-taken square is selected as the destination. 
This is to stop the character from trying to reach an 
unattainable goal. The game area is split up into two 
regions, one for each side of the river. If the destination 
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square is over the river, then the path-finding algorithm 
first finds a path to the bridge and then from the bridge to 
the destination. This saves some path-finding time. Finally, 
if a destination square is surrounded (i.e. unattainable), 
then the A* algorithm searches the entire game area to try 
and find a way in. To stop this, a check is done to see if 
the destination is within sight range. If it is, then a path 
from the destination to the character is attempted. If a path 
is found, then there is no problem. If the path is not found 
but leads outside the sight range of the character, then this 
is acceptable as the character itself may be surrounded 
and when the real path-finding starts it will terminate very 
quickly. If no path is found, then the destination is 
surrounded and therefore a path cannot be found to that 
location.  

 
4.2 Implementation of MCRDR  
 

Cases. The AI’s decision making process depends on 
information regarding the game world in its current state 
and from previous states of the game world. Information is 
examined by an MCRDR engine via cases. The case must 
include all the information regarding the game world’s 
current state at the point in time when the decision is 
being made. If more complex AI is to be created, then the 
case should also contain information regarding the 
previous events and game states that have already 
occurred. For this study, the only information used 
regarding the previous state was the previous five actions.  

It is preferred to have computer-controlled characters to 
only have access to information that a human controlled 
character would have in the same position [1]. This allows 
for more realistic behavior, as well as making the game 
fairer. Therefore, the only information that a case for a 
character will contain is information regarding itself (eg the 
character’s hit points, position etc), its fellow team 
members (eg a team member is being attacked, number 
of team members left etc), its team’s factory (eg the 
number of units produced etc) as well as any enemies that 
are seen by the character or its team members. Regarding 
actions, the character can only know what action it is 
currently performing or has performed. The character does 
not know what actions its team members are performing, 
or what actions the enemy is performing. The exception to 
this is if a character or a character’s team member is being 
attacked. This would indicate to the character that the 
enemy is attacking since it is attacking a friendly unit. This, 
however, is the only time when a character can specifically 
know what action an enemy is performing. When an 
enemy is seen, the only information that a character can 
know about that enemy is its position, hit points, and unit 
type. The location of the enemy’s factory is always known, 
as it does not move. However, information about the 
enemy’s factory such as the number of units produced 
cannot be known.  

Classifications. The next major consideration when 
implementing MCRDR is how to represent classifications 
in the game environment. In the computer game context, 
AI aims to allow computer controlled characters to show 
some kind of cognitive process when taking actions or 
reacting to human players. The cognitive process that 
must be shown can be seen by the action the computer 
controlled character decides to perform. Therefore, at the 
end of the MCRDR inference process, the classifications 
that are found are actions that the character can perform.  

Number of MCRDR Engines. It had to be decided 
whether there was to be only one MCRDR engine for the 

entire game, an MCRDR engine for each team, an engine 
for each character type or whether each character was to 
have its own individual MCRDR engine. The choice of 
having only one engine would be useful in terms of saving 
memory space as some rules may be reused for several 
characters. The problem with this approach is that there 
would need to be some easy way of determining which 
character is which and from what team.  

If there would be separate sub-trees for each character 
types, then there is no real need to put them all together 
into one tree. There may as well be just a separate tree for 
each character type. This has a benefit as it means that 
there does not need to be rules deciding which team or 
which character a case is for. After these considerations it 
was decided that the best approach for this 
implementation was to use either a separate MCRDR 
engine for each character or a separate engine for each 
character type of a team.  

MCRDR Structure Considerations. MCRDR deals 
with multiple classifications. The problem with using a 
multiple classification system in the context of AI for a 
game character is that the game character can only apply 
one action at a time. To address the problems resulting 
from using traditional MCRDR, an alternative was chosen. 
This alternative was to use the MCRDR engine but to 
remove the multiple classification aspect. From doing this, 
the problem of having to handle many cornerstone cases 
when creating a new rule is addressed. This simplifies the 
process of validation and the problem of deciding which 
action to apply from the list of actions is also no longer an 
issue as there is only one action returned. Since pure 
MCRDR returns multiple classifications, there are also 
multiple contexts for which these rules were created. 
Therefore the user would only have to consider one 
context for a given case when the multiple classification 
aspects were removed. The one draw back of using 
MCRDR in this manner is that, like RDR, rules may need 
to be repeated. Similarly, the knowledge base will be 
slightly larger than a traditional MCRDR knowledge base. 
Despite this problem, using MCRDR in this way was 
considered more beneficial, as it is less complex for the AI 
creator.  

Rule Considerations. As with the typical MCRDR 
structure, a rule would need to incorporate a condition and 
a classification. Because the case is a game situation 
taken from the point of view of the character, the condition 
of a rule must specify what aspect of the game situation 
must hold true for that rule to fire. Therefore the AI editor 
allows the user to select conditions regarding the game 
situation that would return true or false. The case is only 
the game situation from the point of view of the character. 
Therefore conditions that can be selected in the AI editor 
cannot check for information that is not allowed to be 
known for that character. Apart from the condition, a rule 
must contain a classification that is an action that the 
character can perform. MCRDR only stores one action per 
rule. Therefore it can be seen that if the same case is 
given to the MCRDR engine, then the same action will 
always be returned. A desirable game feature is to have a 
character that is unpredictable [2, 21]. It can be seen that 
MCRDR does not support this feature. Therefore the 
MCRDR engine was modified to try and add an element of 
randomness. The way it works is that a rule does not have 
to store a single action as its classification, it can store 
several. When that rule is reached, then one of its actions 
is chosen at random. Returning more than one action from 
a rule can be thought of as similar to traditional MCRDR. 

 4 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 1, No. 1, March, 2006 

The main difference is that with this method, the same set 
of actions is always given for a case as only the one rule is 
ever returned. This method of action selection is random; 
however it is not completely emergent. This is because the 
actions of a rule are all relevant to the situation for which 
the rule was created and if multiple actions are not desired, 
they are simply not added. It was considered that the 
random actions could be weighted, so that certain actions 
have a higher chance of getting picked than others. This 
would be useful; however, it was discarded for this 
experiment as it was considered to add an extra level of 
complexity. 

 
4.3 The Game and AI Editor 
 

The Game. A game called “Forsaken Malice” was 
developed in C++, and was created for the purpose of this 
paper. The game allows for the ability to import and use 
the artificial intelligence created by the AI Editor. While the 
game is being played, the AI that has been imported does 
not change at all. The game is purely used to test and 
explore the AI from the editor. The game is a basic RTS 
game that allows the user to control their team either by 
selecting characters with the mouse and manually 
commanding them, and/or by creating AI for the 
characters with the AI editor. There are two teams, where 
each starts with ten characters and a factory that is a 
production plant for more characters. The only restriction 
on unit production is how long it takes to make a unit. The 
characters within this game environment can be one of 
five classes.  

 
 Infantry – This unit has no special abilities and is the 

quickest to build at the factory.  
 Mine Layer – Abilities such as firepower etc of the 

Mine Layer are reduced, however it can lay mines.  
 Mine Sensor – The mines laid by enemy Mine Layers 

can be found with this unit.  
 Bazooka – This unit runs slower, however it has 

greater firepower. 
 Malice Warrior – Being the strongest unit in the game, 

the Malice Warrior has twice the abilities of the other 
units. The weakness of this unit is that it can be killed 
with one shot of the Bazooka unit. 

 
Each character can perform actions. Following is a list 

of all the actions that can be performed by a character. 
 
 Move – Simply move from one place to another. 
 Attack – Attack a specified target. 
 Follow – Follow a specified target. 
 Move Attack – Move from one location to another. If 

an enemy is seen along the way, then attack them. 
Once the enemy is lost or killed, then resume to the 
specified location. 

 Scout – The character progressively sweeps across 
the game area. This can be done aggressively (attack 
enemies if seen) or passively (ignore enemies).  

 Patrol – A character continually Move Attacks 
between a specified source and destination. 

 Nothing – The character does nothing and just stands 
idle. 

 Lay Mine – If the character is a Mine Layer, then they 
possess the ability to lay a mine onto the game area.  

  
The game is won when a team destroys all characters and 
the factory of the other team. The terrain is randomly 

generated, however, the elements are roughly the same 
and there is always a river that divides the game area into 
two halves. Each team starts on a different side of the river. 
There is also an indestructible bridge that is the only way 
to cross the river. A user can only see enemy units that are 
within the sight range of their units. An AI editor was also 
created that allowed the user to edit and create AI for the 
game. The user had to load or create a character’s AI 
engine, then give this engine a case (which is a game 
situation). The AI engine could then evaluate this case. 
The user could then create a new rule for this case if they 
believed the currently returned action or actions were 
unsatisfactory. If a rule were to be created, then the user 
would have to create a condition and an action (or list of 
actions if desired) for the rule before it was added. The 
rule’s condition was only excepted if it evaluated to true for 
the current case. Cases could be saved while the game 
was being played. This allowed the user to view and use 
cases in the AI editor later. A case in the AI editor could 
either be constructed manually or imported from the ones 
saved during the game. A case in the AI editor is 
represented textually. The AI created in the AI editor is 
team independent. This means that the AI can be used for 
the user’s team, or it can be used for the computer’s team. 
In this way, the user can play against their own or other 
people’s AI if they wish. 

The MCRDR process within the Game. Each 
character in the game receives a new action from their 
engine every time an event happens within the game. 
These events include when a character is produced at the 
factory, when a character is killed and when a character 
moves position. In the event that the engine does not 
return an action, then the character simply does nothing. 
Otherwise, the action retrieved from the engine is 
examined before it is applied to the character. If there are 
several actions stored within a rule, then a different one 
could be chosen each time that rule is reached. If a rule is 
reached several times in a row (eg when the game 
situation has not changed), then a different action will 
probably be returned each time. However, if the same 
situation occurs later in the game then any of the actions 
listed for a rule could be returned. After that check, the 
new action is compared to the previous action, where 
parameters are considered as well. For example, “Move to 
location x, y” is different from “Move to location x, z”. In the 
previously mentioned situation where the new action is the 
previous action, it is still compared to itself as the 
parameter it points to may have changed (eg the “Any 
Attacker” parameter of “Attack Any Attacker” may not be 
the same attacker as when it was first called). The 
comparison is to see if the new action gives the same 
result as the current action. If the actions are different, 
then the new action is applied. If the new action gives the 
same result as the previous action, then the character’s 
current state is checked. If the current state of the player is 
the same as the state the character would be in if they 
applied the new action, then the player is currently 
performing that action and it does not need to be reapplied. 
If the current state is different, then the previous action has 
either finished or could not be completed for some reason 
(eg the character’s path is blocked etc), therefore the new 
action is applied again.   

 
4.4 Experiments 
 
The experiment consisted of recruiting subjects to use 

the AI editor in order to create AI for the game. All but two 
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of the participants were university students, where most 
were doing degrees in computing or engineering. The 
subjects where given the user manual and offered a 
tutorial on how to use the system, although not all 
participants opted for the tutorial. The subjects were asked 
to return relevant files that were generated while the 
software was being used. From this, the returned files 
were examined. There were several files that were 
collected from the participants of the experiment when 
they returned their results. The first was the log file from 
the AI editor. This log file contained all information about 
anything that was done while the AI editor was being used.  

 
5. Results 

 
5.1 Selected Actions 
 

From the results that were collected, the AI editor log 
files and the final AI engines were examined first. The 
actions that were selected by the participants were 
then inspected, followed by the selected conditions. 
When an action for a rule was being created in the AI 
editor, the selected action was written to the log file. 
(Fig.2) Number and type of actions created with the AI 
Editor vs. the number and type of actions found in the 
final AI Engines 

 shows all the action types graphed against the number 
of times each one was created in the AI editor and the 
number of times each action type actually appeared in the 
final AI engines. 
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ermine what feature of 
a case must hold true for this rule to be activated. 
Therefore it would be naturally harder to create a condition 
than to create an action. Since this area is one of trouble 
for the user, the user-interface must be considered 
carefully as to not add confusion.  

 

(Fig.2) Number and type of actions created with the AI 
Editor vs. the number and type of actions found in the 
final AI Engines 

It can be seen from Fig. 2 that the most used action in 
the final AI engines was Move Attack. After this, the next 
most used action was Attack. If one considers the basic 
fundamental actions that can occur within the game, they 
would be to either move to a location or attack an object. It 
can be seen that the users preferred to use these basic 
commands than to use the more abstract higher-level 
commands such as Patrol or Scout. This could be 
because Patrol and Scout were the only higher-level 
commands and participants would have used the higher-
level commands more often if there were more of them. 
Alternatively, p

blocks for strategy. If the 
e to become more comfortable with the process, they 

may have ventured further and used the higher level 
commands.  

 
6. Selected Conditions 

In the Section 6.1, it could be seen that the number of 
actions created in the AI editor were greater than the 
number found within the actual AI engines. From Fig. 3 it 
can be seen that the same applies to conditions. Also from 
this figure, it can be seen that the ratio of AI editor to AI 
engine Boolean values (roughly 4:1) is higher than the 
ratio of AI editor to AI engine actions (roughly 3:1). 
Therefore the user created more Boolean values than 
actions in the AI editor compared to the final AI engines. 
This implies that the user may have had more trouble 
creating a condition for a rule than simply deciding on the 
action. The condition is used to det
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ig.3) The number of actions and conditions that 
were created in the AI Editor vs. the number of actions 
and conditions found in the final AI Engines 
Knowledge Acquisition Activities 

From all the AI engines that were gathered from the 
participants, there were 60 in total. From all of these 
engines, there were 251 rules. On average, each 
participant created 14 to 15 rules for their team, where the 
maximum number of rules for a participant was 40. Given 
more time, participants would have started to create more 
complex AI. If the participants were asked to swap their AI 
engines and use them for the computer team’s AI, then the 
participants could then try and make their AI beat the other 
participant’s AI. This would increase the

ponent, which would then lead to an increase of the 
number of rules. The reason that this would occur is 
because the participants would then be playing against a 
higher level of intelligence and therefore they would have 
to adapt their AI to compete against it.  

To get an indication of the ease of AI creation, the 
session times were recorded and graphed. A session 
refers to when a user opens the AI editor, does something 
with it, and closed the AI editor. Fig. 4 shows the average 
time of the first 30 sessions from all the participants, where 
the left hand side is the first session. The data that was 
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used had the largest session time removed from each 
session. This was done because some users tended to 
have the occasional large session time. This could be 
attributed to reasons such as the user leaving the 
computer and doing something else while the AI editor 
was still running. Therefore the largest session time out of 
each session was removed to help prevent this from 
affecting the results. From Fig. 4, it can be seen that the 
session times are randomly distributed. However, when a 
trend line was introduced, it showed that the general trend 
was that the time taken to use the AI editor was dropping 
as the number of sessions increased. This can be 
attributed to several reasons. The user would start 
becoming used to the AI editor, and therefore become 
faster at the AI creation process. It can be seen from the 
graph that as the AI size increases (as it would when 
people are adding rules from one session to the next), the 
time it takes to create AI reduces. The benefit behind this 
is that it shows that the size of the AI does not affect 
time it takes to create the AI. This shows that us
MCRDR segments the AI into manageable pieces that do
not need to be considered in context with the rest of the
system.  
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7. Conclusions 

It can be seen that AI can be personalize d using the 
MCRDR method used in this study. The user-interface 
must be enhanced to emphasize the case-based 
approach and to make the AI creation process more 
intuitive. In similar respects, a more graphical 
representation of a case would help to increase a user’s 
understanding of the game situation. This would show the 
user what was happening when that case was created. A 
programmer implementing this method into a game must 
decide whether they wish to allow the user to create AI 
from nothing, or only allow them to extend the pre-
programmed base AI. If the user is allowed to create 
his/her own base AI, then it is probably a good idea to give 
the user an opportunity to create it with some other 
general form of AI creation. This would allow the user to 
create a base AI and then allow them to refine it with the 
MCRDR system. If a base AI was included rather than 
allowing the user to create their own, it would be useful to 
have some way to find out what that base AI was. It can 
be seen that the participants were finding the important 
aspects of the game by focusing on similar areas when 

creating their AI. The strategies were, however, different 
and this shows that people were personalizing the AI to 
what they believed to be useful. This showed that MCRDR 
could be used to create AI and personalize it to what a 
user wanted. Participants mentioned that this system for 
AI personalization allowed them to segm

c
owed them t

fun. This indic
definitely an interest for personalizing AI. 
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