
International Journal of Multimedia and Ubiquitous Engineering

Vol. 1, No. 1, March, 2006

Maintenance of Game Character’s AI by Players

Stephen Burman1, Yang Sok Kim1, Byeong Ho Kang1, Gil-Cheol Park2
1School of Computing, University of Tasmania

e-mail : {sburman, yangsokk, bhkang}@se.ac.kr
2 Dept. of Multimedia Engineering, Hannam University

e-mail : gcpark@mail.hannam.ac.kr

Abstract With the development of computer games, different game worlds and various game characters
are found within them. Various Artificial Intelligence (AI) techniques are usually used to define behavior s of the
characters within game worlds, which are controlled by AI algorithms in the computer as well as by the user. The
AI techniques defined for these characters are generally developed by the game creators and cannot be changed
without going to some effort, which means that if a user wished to control the behavior s of a character within a
game, they could not easily do so. Being able to edit the behavior s of AI characters is beneficial as it gives the
user extra control over their characters. Therefore a method for allowing a user to easily personalize the AI
characters was needed. This goal was achieved by using an incremental knowledge acquisition method, called the
MCRDR. The MCRDR allows the user to easily acquire new control knowledge of the AI characters by combining
rule-based and case-based knowledge acquisition approach. Our experiment results showed that AI of a character
could be personalized with this method of knowledge extraction.

Keyword: Computer Game, Game Character Personalization, Knowledge Acquisition, MCRDR

1. Introduction

Artificial Intelligence (AI) can be found within the
various characters of a computer game. Being able to
personalize the AI of a character would allow the user to
gain higher levels of control over game characters that
they can command. Some games such as Quake 2,
Unreal Tournament and Half-Life provide an interface that
allows anyone to write code to control a character within
the game [1]. The problem with this approach is that one
would need knowledge of programming to use such an
interface. Similarly, these interfaces are generally only
used to create purely computer-controlled character AI. It
can be seen that it is hard to personalize the AI of a
character for the average game player. To try and find an
easy way to allow someone to edit the AI of a character,
one must understand what goes into a game character’s
AI.

The aim of this research is to try and place the
knowledge of the user into a game character such that the
user can personalize AI of the game character to what
they believe is appropriate behavior and therefore give the
user higher levels of control. MCRDR is a proven way to
extract knowledge from an expert in their respective field.
Therefore it has been chosen as the method for extracting
knowledge from the game player to increase the levels of
control the game player can have within a game. For the
purpose of our study, an RTS game was created as well
as an AI editor to allow the user to create AI using MCRDR.

This paper consists of following contents: Section 2
summarizes various AI architectures that are employed in
the computer game area and provide limitations of current
approach. Section 3 provides a detailed explanation of our
approach, called MCRDR. Section 4 explains
implementation details, including game itself, MCRDR,
and AI editor. Section 5 summaries what experiments are
conducted and what results are obtained from them. The
conclusions of this paper are in the Section 6.

2. AI Techniques in the Game Characters

Following are some different types of AI techniques that

are applied in the computer game:
Finite State Machine (FSM). FSM works by pre-

programming a set of states that a game character can be
in. A state is chosen for the character depending on the
information about the game world that the character is
given, as well as the current state that the character is
already in [2],[3],[4]. A state is basically a condition. The
FSM can be seen as a ‘black box’ that takes inputs
(information about the game world) and produces outputs
(actions that the character can perform in the game world)
[2]. The output is an abstraction of a set of lower level
movement and actions [1]. The benefit of a FSM is that it
is considered reliable and still has a good enough result.
From the issues that were discussed in the AI roundtables
at the 2000 Game Developers Conference, the general
trend for game character AI tended to be for more
traditional FSM methods than neural nets and genetic
algorithms [5]. This is due to the fact that a FSM is useful
for reducing complex behavior s into smaller and simpler
behaviors that make it easier to debug and tune than
neural nets and genetic algorithms [6]. The drawback of
this approach is that the states are pre-programmed, and
therefore the character’s actions will generally be
predictable. The programmer can try to add new rules to
make the character more complex and unpredictable;
however there will always be a limited level of
unpredictability.

SOAR. SOAR architecture [7] consists of operators.
Each operator can be primitive performable actions,
internal actions such as remembering the last position of
the enemy or more abstract higher-level actions that
decompose into lower-level primitive actions. SOAR can
be viewed as a set of user-written if-else rules [2]. The
way in which SOAR works is by continually proposing,
selecting, and applying operators to the current state with
the if-else rules that match against the current state. There
is the possibility that if an operator is selected it cannot be
applied immediately. In this case a sub-state is created
where additional operators are chosen until the original
operator can be applied or the state changes so much that
the original operator is no longer required [1].

 1

International Journal of Multimedia and Ubiquitous Engineering

Vol. 1, No. 1, March, 2006

Explanation-base Learning (EBL). EBL is a method
for learning that increasing execution speed. By
remembering actions that were selected for previously
similar situations, the sequence of conditions that lead to
the original conclusion are remembered and a new rule is
proposed that gives the same conclusion given the same
conditions. As the character’s AI does not have to compute
the same result given similar input, the speed of execution
time is increased [1].

AI Scripts. A script is a way of defining AI outside of the
actual program [4, 8, 9]. Scripts are used to specify an
action or sequence of actions that should occur given a
specific event. Therefore if the condition holds true, then
the scripted action will fire. The AI script is read into the
game and is therefore useful for allowing people to create
their own AI and have it imported [3].

Many programmers consider a method from those
described in the above to be good enough when creating
AI. However, one needs to have a top-down view of the
entire internal representation of the character in order to
create the desired actions. This makes it harder for a non-
programmer to implement such an AI, especially since
they probably did not create it in the first place or have
access to the AI now. In a similar respect, these methods
make the assumption that knowledge can be successfully
extracted from the user such that they can represent the
knowledge in the intended way. Therefore, a method is
needed that easily allows a user to place their knowledge
into the game character. It must also be easy to change
this knowledge without disrupting the previous
performance of the rest of the system. This would allow
the user to be able to change a small piece of a
character’s AI without having to consider the entire
structure. Knowledge must also be quickly retrieved so
that the system will cope in a game-playing environment. A
solution that incorporates these areas is a method of
knowledge acquisition known as Multiple Classification
Ripple Down Rules (MCRDR).

3. MCRDR

MCRDR. MCRDR is an altered version of standard
RDR, an approach to building a knowledge-based system
without the aid of knowledge engineers to extract or
maintain the knowledge [10]. As the name suggests, the
main differences between RDR and MCRDR is that
multiple classifications for a case can be returned with
MCRDR [11]. There are, however, differences in how the
inference processes work. MCRDR is represented in a
tree structure. However, MCRDR is an n-ary tree rather
than a binary tree and therefore each rule in the tree can
have any number of children [11]. Each rule has a
condition and a classification associated with it. When a
case is to be classified in MCRDR, the case is given to the
root rule. From here, the condition evaluates the case to
be either true or false. If it is true, then the root rule passes
the case onto its children. If the condition evaluates the
case to false, then case is not passed. The case can
follow multiple paths down the rule tree [12], unlike RDR
where it can only go down one unique path. For every
path that is taken down the rule tree, the classification
associated with the last rule on every path that returns true
for the evaluation of the case is considered to be a
classification for that case. In this way, MCRDR can return
multiple classifications for a given case [13].

Example. An example of the MCRDR classification
process is shown in Fig.1 The case has attributes A, B, C,
D, H, X, Y. This case is given to the root rule and is

evaluated. It can be seen that the case is evaluated by the
root rule to be true as the condition for the root rule
requires that A holds for the case, which it does. The case
is then passed to the children of the root rule. Rule 5
evaluates the case to be false and therefore the case is
not passed down that path any further. Rule 2 evaluates
the case to be true and therefore it is passed down to Rule
2’s children. Each rule that is passed the case can pass it
down to its children if they evaluate the case to be true. At
the end of this process, Rule 10 and Rule 8 are the last
rules on their paths to have evaluated the case to true and
therefore whatever classification is associated with these
cases is considered to be the classifications for the given
case. Therefore this case is considered to be a
Classification 7, and a Classification 15.

(Fig.1) MCRDR inference example. After the case is
given to the root rule, the final classifications that are
returned are Classification 7 and Classification 15

How the MCRDR Grows. There are several ways in
which a new rule can be added to prevent
misclassifications. The first way is to simply add a rule with
the appropriate classification after the node that caused
the misclassification [14]. Adding a rule in this way may be
thought of as a refinement of the parent rule. The expert
can, however, add a new rule higher in the rule tree
anywhere along the path that lead to the misclassifying
rule [15]. This can be done to add another classification
path.

Since MCRDR allows for multiple classifications, it is
possible for a case to be correctly classified by some of
the rules, but wrongly classified by others. Therefore it is
possible that the only change to the rule-base that is to be
made is to stop the rules that are causing the
misclassification. The user can do this by inserting a

Case
A, B, C, D,
H, X, Y

Rule 1
Condition: A
Classification 1

Rule 5
Condition: Z

Rule 2
Condition: C
Classification 2 Classification 3

Rule 7
Condition: B
Classification 8

Case

Rule 3
Condition: D,E
Classification 4

Rule 4:
Condition: Y
Classification 5

Rule 11
Condition: E
Classification 14

Rule 8:
Condition: D
Classification 7 Rule 6

Condition: X, B
Classification 6

Rule 9
Condition: Z, E
Classification 11 Rule 10

Condition: H
Classification 15

Classification
of the case is
Classification 7 and
Classification 15

= Rule with
Condition
that has
evaluated
to true

 2

International Journal of Multimedia and Ubiquitous Engineering

Vol. 1, No. 1, March, 2006

stopping rule. This rule is inserted and used in the same
way as a refinement rule, except that the classification is a
null classification [11, 12]. This means that if the stopping
rule is called upon to provide a classification, then there
will be no classification from this rule, as it will give null.
The condition, however, must still be carefully chosen so
that the stopping rule does not break the previous
performance of the system. Stopping rules are a major
way for preventing wrong classifications [12].

In a similar way to RDR, MCRDR stores cornerstone
cases with every rule in the rule tree. RDR only requires a
single cornerstone case, whereas MCRDR requires one or
more [12]. When a new rule is created, the case that
prompted the creation of the new rule is stored with the
new rule as its cornerstone case. This case also becomes
a cornerstone case for all the rules that gave a correct
evaluation (i.e. evaluate to true) for the case along the
path to the new rule [11, 12]. It can be seen that the root
rule will have a copy of all the cornerstone cases in the
rule tree since it is the beginning of every path. Similarly,
rules that are lower down the tree have less cornerstone
cases associated with them [12].

MCRDR requires validation for the same reasons that
RDR does, however MCRDR must validate against more
cornerstone cases. All rules share the same parent. When
the parent passes down the cornerstone case of any of its
children, all of its children will receive this case. Therefore
a rule can be reached by the cornerstone cases that are
associated with any of its sibling rules. Similarly, a rule can
also be reached by the cornerstone cases associated with
the children of sibling rules. For this reason, a rule must
make sure that its condition does not evaluate to true for
these cases [12]. Otherwise, the addition of the new rule
may give a new and unwanted classification to a
previously stored cornerstone case. When these
cornerstones cases are being used to create a new
condition, the expert is presented with a difference list of
all the cornerstone cases that are to be considered in the
creation of the condition for the new rule. The difference
list is used to determine which features of the current case
make it different from the stored cornerstone cases [15].

Benefits of MCRDR. Using MCRDR/RDR has
following benefits: From the method just described, it can
be seen that the MCRDR rule tree can grow without the
help of a knowledge engineer. This means that the
knowledge engineer is not relied upon for the acquisition
of knowledge [16]. This is beneficial as the expert may not
be able to convey their ideas correctly to the knowledge
engineer. MCRDR/RDR also operates on a case-by-case
basis. Knowledge acquisition can be improved with
MCRDR/RDR because experts generally tend to be good
at judging between cases rather than giving knowledge in
abstract form. Similarly, the explanation of certain data can
be situation dependant and the justification may vary with
context [12]. Therefore, if such situations occur, the expert
may be able to give more accurate information dealing
with that specific case. Since MCRDR/RDR grows from
fixing errors as they occur, it does not require any
modeling or analysis of the domain for knowledge
acquisition and maintenance. Studies have shown that
knowledge bases produced by correcting errors as they
occur are similarly as compact and accurate as those
produced by induction [11]. On average, a knowledge
base created with MCRDR will only be about 10% to 15%
larger than the same knowledge base created using
standard machine learning methods. As well as size, a
benefit of MCRDR is that information is retrieved quickly.

In addition common benefits of MCRDR/RDR, MCRDR
gives another benefit because it obviously supports
multiple classifications. A result of this is that the rule tree
for an MCRDR system can be considerably smaller than
the rule tree for an RDR system. The reason for this is
because in an RDR rule tree, there tends to be more
duplication of information. The duplication occurs because
only a single path through the rule tree can be made for a
classification. Therefore if a classification was to be made
for a certain case, and another classification was to be
made for a similar case with a slightly different property,
then a new rule would have to be created with a combined
classification [17].

4. Implementation

4.1 AI and Game Considerations

Game World Considerations. The character’s AI will
depend on the type of game world that is created. From a
movement point of view, the game world has been
segmented into logical squares. Any object within the
game has to occupy a square. The reason that this
approach was taken rather than a more continuous game
world was to simplify the game. The AI creation process
was simplified with the square system due to the fact that
users could determine a position on the game area simply
with an x y coordinate. The game area was limited to a 40
x 30 square grid size. There are two main reasons for this.
Firstly, because the game was designed more for AI
creation rather than advanced game features, it was more
beneficial to have the entire game area visible at the one
time so that an AI creator can see exactly what is going.
Therefore the game area is not large and fits on the entire
screen. Secondly, the path-finding algorithm is
recommended to work on a maximum area of 40 x 40
squares [18]. To make the game more realistic, a fog of
war was implemented to stop the user (and game
characters) from knowing the positions of enemy units that
are not within sight range of any friendly units. Therefore,
the game world that was created was made inaccessible.
To help make the game more non-deterministic, the
random action selection was introduced. Similarly, the
user can use the mouse and keyboard to control the user
team’s characters, making the environment more random.
The game area itself is static, however, the characters
themselves can move, making the general environment
dynamic. The game area was designed to be discrete as
there are only a limited number of positions on the game
area that can be reached.

Character Movement Considerations. Since the
individual character takes care of its own movement and
path-finding, then a path-finding algorithm must be
implemented. The A* algorithm is a commonly used and
effective path-finding algorithm for computer games [5, 19,
20]. To try and increase the speed and realism of path-
finding, some alterations were made to the base A*
algorithm. When considering if a square is taken or not
taken, other game characters are only considered if they
are within sight range of the character. Though this varies
with the character type, it is roughly 4 squares. Otherwise
the character would implicitly know about characters that it
could not see. If the destination square is occupied by a
game object (i.e. terrain, a character, a mine or a factory),
the closest non-taken square is selected as the destination.
This is to stop the character from trying to reach an
unattainable goal. The game area is split up into two
regions, one for each side of the river. If the destination

 3

International Journal of Multimedia and Ubiquitous Engineering

Vol. 1, No. 1, March, 2006

square is over the river, then the path-finding algorithm
first finds a path to the bridge and then from the bridge to
the destination. This saves some path-finding time. Finally,
if a destination square is surrounded (i.e. unattainable),
then the A* algorithm searches the entire game area to try
and find a way in. To stop this, a check is done to see if
the destination is within sight range. If it is, then a path
from the destination to the character is attempted. If a path
is found, then there is no problem. If the path is not found
but leads outside the sight range of the character, then this
is acceptable as the character itself may be surrounded
and when the real path-finding starts it will terminate very
quickly. If no path is found, then the destination is
surrounded and therefore a path cannot be found to that
location.

4.2 Implementation of MCRDR

Cases. The AI’s decision making process depends on
information regarding the game world in its current state
and from previous states of the game world. Information is
examined by an MCRDR engine via cases. The case must
include all the information regarding the game world’s
current state at the point in time when the decision is
being made. If more complex AI is to be created, then the
case should also contain information regarding the
previous events and game states that have already
occurred. For this study, the only information used
regarding the previous state was the previous five actions.

It is preferred to have computer-controlled characters to
only have access to information that a human controlled
character would have in the same position [1]. This allows
for more realistic behavior, as well as making the game
fairer. Therefore, the only information that a case for a
character will contain is information regarding itself (eg the
character’s hit points, position etc), its fellow team
members (eg a team member is being attacked, number
of team members left etc), its team’s factory (eg the
number of units produced etc) as well as any enemies that
are seen by the character or its team members. Regarding
actions, the character can only know what action it is
currently performing or has performed. The character does
not know what actions its team members are performing,
or what actions the enemy is performing. The exception to
this is if a character or a character’s team member is being
attacked. This would indicate to the character that the
enemy is attacking since it is attacking a friendly unit. This,
however, is the only time when a character can specifically
know what action an enemy is performing. When an
enemy is seen, the only information that a character can
know about that enemy is its position, hit points, and unit
type. The location of the enemy’s factory is always known,
as it does not move. However, information about the
enemy’s factory such as the number of units produced
cannot be known.

Classifications. The next major consideration when
implementing MCRDR is how to represent classifications
in the game environment. In the computer game context,
AI aims to allow computer controlled characters to show
some kind of cognitive process when taking actions or
reacting to human players. The cognitive process that
must be shown can be seen by the action the computer
controlled character decides to perform. Therefore, at the
end of the MCRDR inference process, the classifications
that are found are actions that the character can perform.

Number of MCRDR Engines. It had to be decided
whether there was to be only one MCRDR engine for the

entire game, an MCRDR engine for each team, an engine
for each character type or whether each character was to
have its own individual MCRDR engine. The choice of
having only one engine would be useful in terms of saving
memory space as some rules may be reused for several
characters. The problem with this approach is that there
would need to be some easy way of determining which
character is which and from what team.

If there would be separate sub-trees for each character
types, then there is no real need to put them all together
into one tree. There may as well be just a separate tree for
each character type. This has a benefit as it means that
there does not need to be rules deciding which team or
which character a case is for. After these considerations it
was decided that the best approach for this
implementation was to use either a separate MCRDR
engine for each character or a separate engine for each
character type of a team.

MCRDR Structure Considerations. MCRDR deals
with multiple classifications. The problem with using a
multiple classification system in the context of AI for a
game character is that the game character can only apply
one action at a time. To address the problems resulting
from using traditional MCRDR, an alternative was chosen.
This alternative was to use the MCRDR engine but to
remove the multiple classification aspect. From doing this,
the problem of having to handle many cornerstone cases
when creating a new rule is addressed. This simplifies the
process of validation and the problem of deciding which
action to apply from the list of actions is also no longer an
issue as there is only one action returned. Since pure
MCRDR returns multiple classifications, there are also
multiple contexts for which these rules were created.
Therefore the user would only have to consider one
context for a given case when the multiple classification
aspects were removed. The one draw back of using
MCRDR in this manner is that, like RDR, rules may need
to be repeated. Similarly, the knowledge base will be
slightly larger than a traditional MCRDR knowledge base.
Despite this problem, using MCRDR in this way was
considered more beneficial, as it is less complex for the AI
creator.

Rule Considerations. As with the typical MCRDR
structure, a rule would need to incorporate a condition and
a classification. Because the case is a game situation
taken from the point of view of the character, the condition
of a rule must specify what aspect of the game situation
must hold true for that rule to fire. Therefore the AI editor
allows the user to select conditions regarding the game
situation that would return true or false. The case is only
the game situation from the point of view of the character.
Therefore conditions that can be selected in the AI editor
cannot check for information that is not allowed to be
known for that character. Apart from the condition, a rule
must contain a classification that is an action that the
character can perform. MCRDR only stores one action per
rule. Therefore it can be seen that if the same case is
given to the MCRDR engine, then the same action will
always be returned. A desirable game feature is to have a
character that is unpredictable [2, 21]. It can be seen that
MCRDR does not support this feature. Therefore the
MCRDR engine was modified to try and add an element of
randomness. The way it works is that a rule does not have
to store a single action as its classification, it can store
several. When that rule is reached, then one of its actions
is chosen at random. Returning more than one action from
a rule can be thought of as similar to traditional MCRDR.

 4

International Journal of Multimedia and Ubiquitous Engineering

Vol. 1, No. 1, March, 2006

The main difference is that with this method, the same set
of actions is always given for a case as only the one rule is
ever returned. This method of action selection is random;
however it is not completely emergent. This is because the
actions of a rule are all relevant to the situation for which
the rule was created and if multiple actions are not desired,
they are simply not added. It was considered that the
random actions could be weighted, so that certain actions
have a higher chance of getting picked than others. This
would be useful; however, it was discarded for this
experiment as it was considered to add an extra level of
complexity.

4.3 The Game and AI Editor

The Game. A game called “Forsaken Malice” was
developed in C++, and was created for the purpose of this
paper. The game allows for the ability to import and use
the artificial intelligence created by the AI Editor. While the
game is being played, the AI that has been imported does
not change at all. The game is purely used to test and
explore the AI from the editor. The game is a basic RTS
game that allows the user to control their team either by
selecting characters with the mouse and manually
commanding them, and/or by creating AI for the
characters with the AI editor. There are two teams, where
each starts with ten characters and a factory that is a
production plant for more characters. The only restriction
on unit production is how long it takes to make a unit. The
characters within this game environment can be one of
five classes.

 Infantry – This unit has no special abilities and is the

quickest to build at the factory.
 Mine Layer – Abilities such as firepower etc of the

Mine Layer are reduced, however it can lay mines.
 Mine Sensor – The mines laid by enemy Mine Layers

can be found with this unit.
 Bazooka – This unit runs slower, however it has

greater firepower.
 Malice Warrior – Being the strongest unit in the game,

the Malice Warrior has twice the abilities of the other
units. The weakness of this unit is that it can be killed
with one shot of the Bazooka unit.

Each character can perform actions. Following is a list

of all the actions that can be performed by a character.

 Move – Simply move from one place to another.
 Attack – Attack a specified target.
 Follow – Follow a specified target.
 Move Attack – Move from one location to another. If

an enemy is seen along the way, then attack them.
Once the enemy is lost or killed, then resume to the
specified location.

 Scout – The character progressively sweeps across
the game area. This can be done aggressively (attack
enemies if seen) or passively (ignore enemies).

 Patrol – A character continually Move Attacks
between a specified source and destination.

 Nothing – The character does nothing and just stands
idle.

 Lay Mine – If the character is a Mine Layer, then they
possess the ability to lay a mine onto the game area.

The game is won when a team destroys all characters and
the factory of the other team. The terrain is randomly

generated, however, the elements are roughly the same
and there is always a river that divides the game area into
two halves. Each team starts on a different side of the river.
There is also an indestructible bridge that is the only way
to cross the river. A user can only see enemy units that are
within the sight range of their units. An AI editor was also
created that allowed the user to edit and create AI for the
game. The user had to load or create a character’s AI
engine, then give this engine a case (which is a game
situation). The AI engine could then evaluate this case.
The user could then create a new rule for this case if they
believed the currently returned action or actions were
unsatisfactory. If a rule were to be created, then the user
would have to create a condition and an action (or list of
actions if desired) for the rule before it was added. The
rule’s condition was only excepted if it evaluated to true for
the current case. Cases could be saved while the game
was being played. This allowed the user to view and use
cases in the AI editor later. A case in the AI editor could
either be constructed manually or imported from the ones
saved during the game. A case in the AI editor is
represented textually. The AI created in the AI editor is
team independent. This means that the AI can be used for
the user’s team, or it can be used for the computer’s team.
In this way, the user can play against their own or other
people’s AI if they wish.

The MCRDR process within the Game. Each
character in the game receives a new action from their
engine every time an event happens within the game.
These events include when a character is produced at the
factory, when a character is killed and when a character
moves position. In the event that the engine does not
return an action, then the character simply does nothing.
Otherwise, the action retrieved from the engine is
examined before it is applied to the character. If there are
several actions stored within a rule, then a different one
could be chosen each time that rule is reached. If a rule is
reached several times in a row (eg when the game
situation has not changed), then a different action will
probably be returned each time. However, if the same
situation occurs later in the game then any of the actions
listed for a rule could be returned. After that check, the
new action is compared to the previous action, where
parameters are considered as well. For example, “Move to
location x, y” is different from “Move to location x, z”. In the
previously mentioned situation where the new action is the
previous action, it is still compared to itself as the
parameter it points to may have changed (eg the “Any
Attacker” parameter of “Attack Any Attacker” may not be
the same attacker as when it was first called). The
comparison is to see if the new action gives the same
result as the current action. If the actions are different,
then the new action is applied. If the new action gives the
same result as the previous action, then the character’s
current state is checked. If the current state of the player is
the same as the state the character would be in if they
applied the new action, then the player is currently
performing that action and it does not need to be reapplied.
If the current state is different, then the previous action has
either finished or could not be completed for some reason
(eg the character’s path is blocked etc), therefore the new
action is applied again.

4.4 Experiments

The experiment consisted of recruiting subjects to use

the AI editor in order to create AI for the game. All but two

 5

International Journal of Multimedia and Ubiquitous Engineering

Vol. 1, No. 1, March, 2006

of the participants were university students, where most
were doing degrees in computing or engineering. The
subjects where given the user manual and offered a
tutorial on how to use the system, although not all
participants opted for the tutorial. The subjects were asked
to return relevant files that were generated while the
software was being used. From this, the returned files
were examined. There were several files that were
collected from the participants of the experiment when
they returned their results. The first was the log file from
the AI editor. This log file contained all information about
anything that was done while the AI editor was being used.

5. Results

5.1 Selected Actions

From the results that were collected, the AI editor log
files and the final AI engines were examined first. The
actions that were selected by the participants were
then inspected, followed by the selected conditions.
When an action for a rule was being created in the AI
editor, the selected action was written to the log file.
(Fig.2) Number and type of actions created with the AI
Editor vs. the number and type of actions found in the
final AI Engines

 shows all the action types graphed against the number
of times each one was created in the AI editor and the
number of times each action type actually appeared in the
final AI engines.

Action Frequency, AI Editor vs AI Engines

0

Noth
ing

La
y M

ine
Mov

e

Sco
ut

Agr

Sco
ut

Pas

Mov
e A

t

20
40
60
80

100
120
140
160
180

t

Actions

Q
ua

nt
ity

Foll
ow

Atta
ck

Patr
ol

AI Editor
AI Engines

eople may feel more comfortable with the
basic commands as they are the fundamental building

participants were given more
tim

ermine what feature of
a case must hold true for this rule to be activated.
Therefore it would be naturally harder to create a condition
than to create an action. Since this area is one of trouble
for the user, the user-interface must be considered
carefully as to not add confusion.

(Fig.2) Number and type of actions created with the AI
Editor vs. the number and type of actions found in the
final AI Engines

It can be seen from Fig. 2 that the most used action in
the final AI engines was Move Attack. After this, the next
most used action was Attack. If one considers the basic
fundamental actions that can occur within the game, they
would be to either move to a location or attack an object. It
can be seen that the users preferred to use these basic
commands than to use the more abstract higher-level
commands such as Patrol or Scout. This could be
because Patrol and Scout were the only higher-level
commands and participants would have used the higher-
level commands more often if there were more of them.
Alternatively, p

blocks for strategy. If the
e to become more comfortable with the process, they

may have ventured further and used the higher level
commands.

6. Selected Conditions

In the Section 6.1, it could be seen that the number of
actions created in the AI editor were greater than the
number found within the actual AI engines. From Fig. 3 it
can be seen that the same applies to conditions. Also from
this figure, it can be seen that the ratio of AI editor to AI
engine Boolean values (roughly 4:1) is higher than the
ratio of AI editor to AI engine actions (roughly 3:1).
Therefore the user created more Boolean values than
actions in the AI editor compared to the final AI engines.
This implies that the user may have had more trouble
creating a condition for a rule than simply deciding on the
action. The condition is used to det

Conditions and Actions, AI Editor vs AI Engines

0

100

200

Conditions Actions

300

400

500

600

700

800

900

Q
ua

nt
ity AI Editor

AI Engines

(F

 complexity of the
op

ig.3) The number of actions and conditions that
were created in the AI Editor vs. the number of actions
and conditions found in the final AI Engines
Knowledge Acquisition Activities

From all the AI engines that were gathered from the
participants, there were 60 in total. From all of these
engines, there were 251 rules. On average, each
participant created 14 to 15 rules for their team, where the
maximum number of rules for a participant was 40. Given
more time, participants would have started to create more
complex AI. If the participants were asked to swap their AI
engines and use them for the computer team’s AI, then the
participants could then try and make their AI beat the other
participant’s AI. This would increase the

ponent, which would then lead to an increase of the
number of rules. The reason that this would occur is
because the participants would then be playing against a
higher level of intelligence and therefore they would have
to adapt their AI to compete against it.

To get an indication of the ease of AI creation, the
session times were recorded and graphed. A session
refers to when a user opens the AI editor, does something
with it, and closed the AI editor. Fig. 4 shows the average
time of the first 30 sessions from all the participants, where
the left hand side is the first session. The data that was

 6

International Journal of Multimedia and Ubiquitous Engineering

Vol. 1, No. 1, March, 2006

used had the largest session time removed from each
session. This was done because some users tended to
have the occasional large session time. This could be
attributed to reasons such as the user leaving the
computer and doing something else while the AI editor
was still running. Therefore the largest session time out of
each session was removed to help prevent this from
affecting the results. From Fig. 4, it can be seen that the
session times are randomly distributed. However, when a
trend line was introduced, it showed that the general trend
was that the time taken to use the AI editor was dropping
as the number of sessions increased. This can be
attributed to several reasons. The user would start
becoming used to the AI editor, and therefore become
faster at the AI creation process. It can be seen from the
graph that as the AI size increases (as it would when
people are adding rules from one session to the next), the
time it takes to create AI reduces. The benefit behind this
is that it shows that the size of the AI does not affect
time it takes to create the AI. This shows that us
MCRDR segments the AI into manageable pieces that do
not need to be considered in context with the rest of the
system.

the
ing

Sessions vs. Time

0

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Session Number

2

3

4

5

6

7

8

Ti
m

e
(m

in
ut

es
)

at(Fig.1) The number of actions and conditions th
we

ent the system
and only focus on was important. This was one of the
reasons why MCRDR was hosen. They said that this
project was interesting, all o explore various
strategies and was ates that there is

er, 2001. 34(7): p. 70-75.

,

tser, P. and J. Wiles, Scripting versus

ulations, 2005. 4(1): p.

d, J.E. and P.S. Rosenbloom, The Evolution of

f

tion of multiple
classification ripple down rules. in 10th AAAI-

[6] Treglia, D., Game Programming Gems 3. Game

Programming Gems Series, ed. D. Treglia. 2002,
Hingham, Massachusetts: Charles River Media.

] Lairre created in the AI Editor vs. the number of actions

and conditions found in the final AI Engines.

7. Conclusions

It can be seen that AI can be personalize d using the
MCRDR method used in this study. The user-interface
must be enhanced to emphasize the case-based
approach and to make the AI creation process more
intuitive. In similar respects, a more graphical
representation of a case would help to increase a user’s
understanding of the game situation. This would show the
user what was happening when that case was created. A
programmer implementing this method into a game must
decide whether they wish to allow the user to create AI
from nothing, or only allow them to extend the pre-
programmed base AI. If the user is allowed to create
his/her own base AI, then it is probably a good idea to give
the user an opportunity to create it with some other
general form of AI creation. This would allow the user to
create a base AI and then allow them to refine it with the
MCRDR system. If a base AI was included rather than
allowing the user to create their own, it would be useful to
have some way to find out what that base AI was. It can
be seen that the participants were finding the important
aspects of the game by focusing on similar areas when

creating their AI. The strategies were, however, different
and this shows that people were personalizing the AI to
what they believed to be useful. This showed that MCRDR
could be used to create AI and personalize it to what a
user wanted. Participants mentioned that this system for
AI personalization allowed them to segm

c
owed them t

fun. This indic
definitely an interest for personalizing AI.

References

[1] Laird, J.E., Using a Computer Game to Develop
Advanced AI. Comput

[2] Watt, A. and F. Policarpo, 3D Games: Real-Time

Rendering and Software Technology. Vol. 1. 2000
NY: Addison Wesley.

[3] DeLoura, M., Game Programming Gems 2 (Game

Programming Gems Series). 2001, Rockland,
Massachusetts, USA: Charles River Media, inc.

] Swee[4

Emergence: Issues for Game Developers and Players
in Game Environment Design. International Journal
of Intelligent Games and Sim
1-9.

[5] Woodcock, S., Game AI: the state of the industry, in

Game Developer. 2000.

[7
the Soar Cognitive Architecture, in Mind Matters: A
Tribute to Allen Newell, D.M. Steier and T.M.
Mitchell, Editors. 1996: Erlbaum, Mahwah, NJ. p. 1-
50.

[8] Kendall, G. and K. Spoerer. Scripting the Game o

Lemmings with a Genetic Algorithm. in Congress on
Evolutionary Computation 2004 (CEC'04). 2004.
Portland, Oregon.

[9] MacNaughton, M., et al. ScriptEase: Generative

Design Patterns for Computer Role-Playing Games.
in 19th IEEE International Conference on Automated
Software Engineering (ASE). 2004. Linz, Austria.

[10] Richards, D. and P. Compton. Combining formal

concept analysis and ripple down rules to support
reuse. in Software Engineering Knowledge
Engineering SEKE'97. Madrid: Springer-Verlag.

1] Preston, P., et al. An implementa[1

 7

International Journal of Multimedia and Ubiquitous Engineering

Vol. 1, No. 1, March, 2006

Sponsored Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop. 1996. Banff,
Canada, University of Calgary.

[12] Kang, B., P. Compton, and P. Preston. Simulated

Expert Evaluation of Multiple Classification Ripple
n for

algary.

n Ripple Down Rules : Evaluation and
Possibilities. in 9th AAAI-Sponsored Banff

d

4] Kang, B.H., W. Gambetta, and P. Compton,

,

5] Compton, P., et al., Knowledge acquisition without

ed systems. Modeling
and Using Context. Third International and

nce

7] Compton, P. and R. D. Extending Ripple-Down Rules.

ements
(EKAW'2000). 2000. Juan-les-Pins, France.

c Pathfinding, in
Game Developer Magazine. 2001.

I Game Programming Wisdom. 1 ed. Vol.
2. 2004: Delmar Learning - ITP.

Star. 2006.

21] Rousa, R., Game Design: Theory & Practice Second
Edition. 2001, Texas, America: Wordware Publishing.

tephen Burman

000 – 2002 University of Tasmania,
ustralia (BA)

n
2002-2004 University of Tasmania

g)
ersity of Tasmania,

g)
s Univ.,

Lab, Japan, Research Fellow

 U ssor
2000-Now Univer a, Australia, Senior
Lecturer

wan Univ.,
)

niv., Australia
niv., Professor.

oncerning and Interesting Recent Research Area
e & Ubiquitous Web Service platform

-Real-time Multimedia Communication.
-Security Engineering

Down Rules. in 11th Banff knowledge acqusitio
knowledge-based systems workshop. 1998. Banff,
Canada: SRDG Publications, University of C

[13] Kang, B., P. Compton, and P. Preston. Multiple

Classificatio

Knowledge Acquisition for Knowledge-Base
Systems Workshop. 1995. Banff, Canada, University
of Calgary.

[1

Verification and validation with ripple-down rules.
International Journal of Human-Computer Studies
1996. vol.44, no.2: p. 257-269.

[1

analysis. Knowledge Acquisition for Knowledge-
Based Systems. 7th European Workshop, EKAW '93
Proceedings, 1993: p. 277-299.

[16] Richards, D., Combining cases and rules to provide

contextualised knowledge bas

Interdisciplinary Conference, CONTEXT 2001.
Proceedings (Lecture Notes in Artificial Intellige
Vol.2116), 2001: p. 465-469.

[1

in 12th International Conference on Knowledge
Engineering and Knowledge Manag

[18] Pinter, M., Toward More Realisti

[19] Rabin, S., A

[20] Patel, A.J., Amit's Thoughts on Path-Finding and A-

[

Authors

S

2
A

Yang Sok Kim

1987-1995 University of Seoul
1994-2001 Hyundai Information
Technology Co., Ltd
2001-2002 E -2 Corporatio

(Master of Computin
2005. 2- Now Univ
Australia, PhD Student

Byeong Ho Kang
1982-1988 Pusan National University
1988-1990 University of Tasmania,

ustralia (Master of ComputinA
1990-1995 New South Wale
Australia (PhD)
1995-1996 Hitachi Advance Research

199 niversity, Assistant Profe

sity of Tasmani
6-1999 Hoseo

Gil-Cheol Park
1979-1983 HanNam Univ.(BA)
1983-1985 SungSil Univ., Graduate

chool(MA) S
1994-1998 SungKunK
Graduate School(Ph.D
1985-1990 SamSung Advanced
Institute of Technology

1991-1996 DaeKyo Computer Co., LTD.

r 1996-1998 HanSeo University, Professo
 of Tasmania State U2005 Visiting Professor

998- Present, HanNam U1
C
-Mobil

 8

