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Abstract    Dubins showed that any shortest path of a car-like robot consists of exactly three path segment 

which are either arcs of circles of radius r(denoted C), or straight line segments(denoted S). Possible six types 
classified into two families, i.e. CSC and CCC. CSC includes 2 types(LRL and RLR) and CSC includes 4 
types(LSL, RSR, LSR, RSL). This paper proposes new formulae for CSC family to find the shortest smooth path 
between the initial and final configurations of the car-like robot. The formulae are used for finding connection 
points explicitly between C→S and S→C which are necessary for a real application. The formulae have simple 
forms mainly because they are transformed to origin of their original coordinates of initial and target configuration, 
and derived from standard forms which are representative configurations of type LSL and LSR, respectively. The 
formulae in this research, which are derived from the standard forms, are simple and new. 
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1. Introduction 

The classical result by Dubins[1] gives a sufficient set of 
paths which always contains the optimal path for a car-like 
mobile robot that only moves forwards from an initial 
position to a target position. He showed that any shortest 
path of the car-like mobile robot consists of exactly three 
path segment which are either arcs of circles of radius, or 
straight line segments.  

Melzak[2], Robertson[3], and Cockayne and Hall[4] 
studied the accessibility regions in which the robot can 
reach, but all these works do not concentrate on optimality 
of the paths. Bui et. al.[5] proposed the synthesis problem 
for a car-like robot only moving forward in a plane. Then 
Boissonnat and Bui[6] considered that the partition of the 
plane w.r.t. the types of the optimal paths and found the 
shapes of the shortest path accessibility regions for a car 
that only moves forwards along optimal paths.  

Reed and Shepp[7] showed that the initial and final 
configurations define a sufficient set of 48 paths which 
contains the optimal path. Each of these paths has at most 
two cusps and five segments, which are either line 
segment or arcs of a circle of radius. These result has 
been proved again by Sussman and Tang[8] and 
Boissonnat et. al respectively. These authors produced a 
more elegant proof and added more necessary conditions 
on the optimality of a path. They reduced the number of 
path types to a sufficient set of 46 paths. Boissonat[9] et. 
al. approached this problem using a well-known control 
theory. And Soueres and Laumond[10,11] proposed an 
alternative approach to the problem with reversals. The 
problem was treated by the combined Pontryagin's 
optimality principle with geometric reasoning.  

To find the shortest path using Dubins method, it is 
selected among all possible paths that are calculated, but 
it may become a problem that it takes much computation 
time in applications. Shkel and Lumelsky[12] proposed the 
logical classification scheme to extract the shortest path 
from the Dubins set directly, without explicitly calculating 
the candidate paths. But this method has a weak point in 
occurrence of several number of equivalency groups, 

based on the angle quadrants of the corresponding pairs 
of the initial and final orientation angles.  

To reach a target position starting from an initial position 
using the Dubins method, we must know the connection 
point between a circle of the initial position and a line 
segment, and the connection point between a circle of the 
target position and the line segment of CSC type path 
respectively. Using the known initial position and the final 
position we can find a rotational angle of the initial position 
and the final angle individually. To find the two rotational 
angles, in this research, we propose new formulae in 
simple forms. After transforming a robot configuration 
located an arbitrary point to an origin of coordinate, the 
standard form of type LSL and type LSR is defined and the 
formulae are derived from the standard form. Comparing 
to Shkel and Lumelsky[12] method, the proposed method 
has ability to accomplish the faster calculation for 
searching the shortest path. 

 
2. Dubins’ car model 

A position of a robot is represented by ( , , )w x y θ . The 

coordinates of the robot are represented by ( , )x y  and 
the direction is represented by . Dubins[1] showed that 
any path from an initial position to a target position can 
have 6 admissible paths. The shortest path consists of 
exactly three path segments and presents a sequence 
CCC or CSC, where C for an arc of circle will be denoted 
R for right-arc and L left-arc, and S for a straight line 
segment. CSC includes 2 types(LRL and RLR) and CSC 
include 4 types(LSL, RSR, LSR, and RSL). Fig 1(a) shows 
RSR type, (b) for RSL, and (c) for LRL. Others not shown 
in this figure are represented by symmetry of the 3 types.  

θ
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(a) Type RSR 

 
(b) Type RSL 

 
(c) Type LRL 

(Fig.1) Examples of Dubins shortest paths 

 
3. Calculation of coordinates for a shortest path 

 
3.1 The coordinates transformation 

 
The first step of calculating a shortest path for Dubins 

robot is to transform an arbitrary position to an origin. The 
position translated by T(a,b) , and then rotated by R(θ) as 
in Fig 2. After all process of calculation, the position is 
transformed to the original position in a reverse order.    

Standard forms have type LSL and type LSR. Type 
RSR is symmetrical to type LSL, and type LSR is 
symmetrical to type RSL about x-axis. Calculation of Type 
LSL and type LSR can be applied to type RSR and type 
RSL in symmetrical forms, which are explained in Sec. 3.1 
and 3.3.  

After transformation the arbitrary position to the origin, 
the angle of the target configuration is set to π  for type 
LSL, and 0 for type LSR. These cause the angle 
differences between the original and the standard form. 
Calculations of the difference angles are very essential for 
the proposed formulae. In Sec 3.4 and 3.5, the details of 
the formulae are shown.   

 
(Fig.2) Process of the coordinates transformation 

 

(Fig.3) Examples of Dubins shortest paths 

3.2 The case of type LSL 

 
The initial (at the original point) and the final (after 

reaching at the final point) forms are located at an arbitrary 
position and direction. These forms are transformed to the 
forms in Fig. 4 by the coordinate transformation. Type LSL 
consists of rotation-linear motion-rotation. When a robot 

rotates clockwise by iθ  on the basis of the center AC
 of 

a circle with the rotational radius of ρ  there exists the 

cross point AP
 of the circle and a straight line. And BP

 is 

the cross point of the tangent at AP
 and the target circle 

which revolves round BC
 as a center. The length of the 

line A BP P
 is . The robot reaches to the standard form 

by revolving round 

l

BC
 by fθ . The goal is to obtain the 

coordinates of AP
 and BP

 by calculating iθ  and 

fθ since the standard form s  which is the result of 

rotation by dθ  from the position . t

The length  equals to the distance between l

(0, )AC ρ
 and 

( , )BC x y ρ−
 as the following equation. 

( )22 2l x y ρ= + −       (1) 

R(θ) Calculation of 
Coordinates

T(a,b) 

R-1(θ) T-1(a,b)
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(Fig.4) The standard form of type LSL 

The angle δ  between AC
 and BC

 can be 
calculated as follows. 

1tan
2

x

y
δ

ρ
−=

−

⎛ ⎞
⎜ ⎟
⎝ ⎠     (2) 

Then, iθ  which revolves counterclockwise round AC
 

as a center is obtained. 

2i

π
θ π δ= − +⎛ ⎞

⎜ ⎟
⎝ ⎠      (3) 

The line A BC C
 runs parallel to A BP P

 and crosses at 

the right angles with B BP C
. Consequently the angle 

A C BC P C∠
 makes ( )π δ− . And then the angle aθ  is 

obtained as follows. 

( )
2a 2

π π
θ π π δ δ= − − − = −

   (4) 

According to the equation (4), the angle fθ  can be 
determined. 

2 2 2f a

π π π
θ θ δ= + = − + = δ

   (5) 

The coordinates of AP
 is obtained by revolving the 

original point counterclockwise round 
(0, )AC ρ

 as a 
center. 

( )
( )

sin

cos
A i

A i

x

y

ρ θ

ρ θ

=

=      (6) 

In the same manner, the coordinates of BP
 is obtained 

by rotating ( , )s x y  clockwise by fθ centering around 
( , )BC x y ρ−

. 

( )
( )

sin

cos

B f

B

x x

y y

ρ θ

 
3.3 The case of type LSL 

ordinates transformation an 
arbitrary point to the origin.  

The initial position of type LSR is , and the 

tar

 
Fig.5 represents the co

(0, 0)iP

get position is 
( , )f ft x y

.  
To transform to the standard forms, rotation of 

( , )f ft x y
 by dθ  reaches ( , )s x y .  

 

 

(Fig.5) The standard form of type LSR 

andard 
po

n n

The direction of the initial position and the st
sition is set to 0 degree, respectively.   
The rotational radius of the i itial positio  is ρ  and it 

is rotated counterclockwise by iθ  about AC
.  

The rotation of the standard position ( , )s x y  

fρ ρ θ

= +

= − +
    (7) 

counterc fθ  reaches the point BP
lockwise by .  

We assume the length of A BP P
 is , the length of 2l

A CP P
 is , and the distance l A CC P

 is . The distance 

resented by

d

d  is rep  
(0, )AC ρ

and 
( , )BC x y ρ−

 as 
s.  follow

( )22 2 /d x y ρ= + − 2

tance is represented by the distance d as 
follows.  

                                     (8) 
The dis l  

      
2l d 2ρ= −

                                              (9)  

 angle The β  is represented as follows.  

     

1tan
l

ρ
β −= ⎛ ⎞

⎜ ⎟
⎝ ⎠                                                (10)  

The angle δ  can be calculated as follows.  

      

1tan
2

x

y
δ

ρ
−=

−

⎛ ⎞
⎜
⎝

⎟
⎠                                         (11)  

 is / 2α π β= − , iθBecause the angle α  can be 
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represented as follows.  

 

1 1tan tan
2 2l y

i

x

θ π α δ

π ρ

ρ
− −

= − −

= + −
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟

Because the circles of the initial point A and the target 

point B is symmetrical to the point , the angle 

−⎝ ⎠ ⎝ ⎠                     (12)  

CP iθ  is 

identical to fθ .  

     f iθ θ=
                                                          (13) 

The point AP
 is calculated by rotating the origin by iθ  

about AC
.  

    

( )
( )

sin

cos
A i

A i

x

y

ρ θ

ρ θ

=

=      

     The point 

                                           (14)  

BP
is calculated by rotating 

( , )s x y counterclockwise by fθ about BC
 as follows.  

f

x x

y

ρ θ

    By

( )
( )

sin

cos

B f

ρ ρ θ

= +

− +
                                   (15)  

3.4 Conversion to the standard form-type LSL 

d fo

=

          

 
In type LSL, the standar rm of the target point is 

determined by setting sθ π=
 at the position ( , )s x y . 

Consequently the robot toward tθ must be d 

wis y 

revolve

counterclock e b dθ on the basis of BC
. Only 

( , )f ft x y
 and tθ  are known values. The coordinates of 

BC
 are ca d by using lculate these values. Then the 

coordinate ( , )s x y is obtained. 

 

(Fig.6) Conversion to type LSL standard form 

The position 
( , )f fr x y ρ+

 at intervals of ρ  from 
( , )f ft x y

 in the directi  is calculated. And then 

at point is located at 

on of 

th

y

BC
by tating process.  The angle ro

rθ  has the same value as tθ  which is the angle of th

tangent at 

e 

( , )f ft x
(E

y
q. (16)). 

r tθ θ=
            (16)  

Then, the center of a circle BC
 based on the rotation 

angle rθ  can be obtained as fol ng equations. lowi
( )
( )

BC f ty y

sin

cos
BC f tx x ρ θ

ρ θ= +
        17) 

The point ( , )

= −

  (
s x y is located at intervals of ρ+  from 

BC y in the directi . Therefore the coor nates of 
that point are as the equation (18). 

on of di

( )
( )

sin

cos
f tx x ρ θ

f ty yρ ρ θ

= −

= + +

 
dard point i

setting 

          (18) 
 

3.5 Conversion to the standard form-type LSR 

In type LSR, the stan form of the target s 

determined by 
0sθ =

 at the position , ) (s x y . 

ition 
( , )

f f
r x y

The pos
ρ−

 at intervals of  ρ−  from 
( , )f ft x y

 in the direction o  is obtained. Then the 

nt is moved to the point 

f y

poi BC
 by rotating the point by 

rθ . The coordinates of BC
 rotat  by red

θ
 are as the 

equatio  (1n 9) because the angle rθ  is the same as the 

e angl tθ . 
( )
( )

BC f ty y

sin

cos
BC f tx x ρ θ

ρ θ= +
        19) 

The point ( , )

= −

  (
s x y is located at intervals of ρ+  from 

BC
 in fore the coo nates of the direction of y . There rdi

( , )s x y  are as the equation (20). 
( )

( )
sin

cos
f t

f t

x x

y y

ρ θ

ρ ρ θ

= −

= + +
           (20) 

 

(Fig.7) Conversion to type LSR standard form 
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4. 

h  o

Simulation 

Fig. 8 and 9 represent the results of simulation for type 
LSL. In Fig. 8, the coordinates of the initial point of a robot 
are (100,100) and those of the target point are (310,264). 
The angles at the initial point and at the target point are 0 
and 90 respectively. T e units f all coordinates are pixel. 

The coordinates of AC
 and BC

 which are the centers of 

rotations are (100,150) and (260,263), respectively. iθ  

and fθ  obtained by the equation (4) and (5) are the 
degree of 35.23 and 54.77 respectively. The cross point of 
the initial circle obtained by applying these rotational 

angles to the equation (6) and (7) and a straight line AP
 

(128,109). And tis hat of the target circle and a straight line 

BP
 is (288,222). 
 

 

(Fig.8) Case 1 for type LSL 

In Fig. 9, the position and the direction of the initial 
point of a robot are (100,300) and the degree of 270 
respectively. And those of the target point are (351,171) 
and the degree of 135. The centers of rotations of the 

initial point are AC
=(149,300) and BC

=(315,136). he 

cross point of the initial circle and a straight line 

 T

AP
 is 

4,266) and that of the tar t circle and a straight line (11 ge

BP
(279,101). i is 

θ
 and  fθ  have the degree 5 

and 270 respectively.  
 

s of 4

 

(Fig.9) Case 2 for type LSR 

The position and the direction of the target point are 
. T

of the initial point 

 

The results of simulation for type LSR are represented 
in Fig. 10 and 11. In Fig. 10, the position of the initial point 
of a robot is (100,100) and the angle is the degree of zero. 

(317,217) and the degree of 225 he centers of rotation 

AC
 and BC

(281, 2). The cross point of the initial circle and a straight 

line 

 are (100,150) and 
25

AP
 is (14 23). And that of e targe ircle and a 2,1  th t c

ine straight l BP
 and fθ is (238,278). iθ  have the 

degrees of 58.17 and 192.17 respectively. 
 

 

(Fi

and the 
deg

g.10) Case 1 for type LSR 

In Fig. 11, the position of the initial point of a robot is 
(320,100) and the angle is the degree of 35. The position 

direction of the target point are (81,290) and the 
ree of -10. The centers of rotation of the initial point 

AC
 and BC

 are (292,140) and (73,2 0). The cross point 

of the initial circle and a straight line 

4

AP
 is (291,190). And 

rget circle and a straight line that of the ta BP
 is (74,190). 

iθ  fθand  have the degrees of  and 190.11 
respectively. 

 

 -214.89

 

(Fig.11) Case 2 for type LSR 

5. Conclusions  

 This paper is about Dubins’ car-like robot in which the 
shortest path between the initial form and the final form 
can be accomplished. We derived the formulae for 
calculating the rotational angles at the initial form and the 
final form to obtain the coordinates of the connection 
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ulae. 
An

eds and Shepp’s method in which moving forward 
and backward is possible must be performed as a further 
study. 
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points between C→S and S→C in the type CSC by using 
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deriving the formulae is novel and simple in comparison 
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