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Abstract 

Twin support vector machine (TSVM) is widely applied in a multitude of aspects. It 

works faster than SVM, since it solves a pair of smaller-sized quadratic programming 

problems rather than a larger one. Random projection (RP) is an oblivious feature 

extraction and dimension reduction method. This paper proposes a novel algorithm, 

named random projection for twin support vector machine (RP-TSVM), which inherits the 

high precision and fast solving speed of TSVM bounded with high efficiency and data-

independent property of RP. We give two proofs on the geometry of TSVM under random 

projection. The first is that the sum of squared distances from the hyper-plane to points of 

one class in TSVM is almost unchanged with high probability, which insure the accuracy 

of RP-TSVM. The second is that the minimum enclosing ball in the feature space is 

preserved to within  - relative error, ensuring comparable generalization as in the 

original space. Numerical experiments demonstrate the theoretical discoveries. And the 

computational experimental results also show that the accuracy of the proposed RP-

TSVM is higher than RP-SVM. What’s more, when solving large scale problems, the 

proposed algorithm performs almost at least twenty times faster than RP-SVM. 
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1. Introduction 

The support vector machine (SVM) [1] is a popular effective and promising classifier 

in machine learning. It is good at solving difficulties such as the ‘curse of dimensionality’, 

‘over-fitting’, and so forth. SVM has been successfully applied in various fields like text 

categorization, speech recognition, remote sensing image analysis, time series forecasting, 

and so on.  

However, the main challenge of SVM is the high computational complexity. Recently, 

Jayadeva et al. [2] proposed twin support vector machines (TSVM) to improve the 

computational speed.  TSVM generates two nonparallel proximal hyper-planes by solving 

two smaller-sized quadratic programming problems (QPPs) while SVM solves a larger 

one, hence the learning speed of TSVM is faster than SVM. And TSVM has become one 

of the popular methods for its low computational complexity. Many variants of TSVM 

have been proposed, such as least squares TSVM [3], twin support vector regression 

(TSVR) [4] and rough v-TSVM [5]. 

For the very high dimensionality problem, high dimensionality also poses high 

computational overhead to machine learning and data mining algorithms. Dimensionality 

reduction is an effective technique to tackle the problem. The commonly used 

dimensionality reduction methods are principal component analysis (PCA) [6], linear 

discriminant analysis (LDA) [7] and independent component analysis (ICA) [8]. 

Dimensionality reduction maps data from a high-dimensional space to a low-dimensional 

sub-space of under the assumption that the intrinsic structure of the high-dimensional data 

can be retained in the low-dimensional space.   
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However, these methods can only achieve limited performance during the classification. 

Firstly, the direct projection from the original space to a subspace cannot extract the most 

discriminative information for classification. Secondly, the most representative structural 

information in the original space may not be preserved. Thirdly, when adding or deleting 

a new sample, these methods inevitably need to re-compute the projection matrix which is 

data-dependent, time-wasting and inefficiently.  

Random projection [9, 10] (RP) is a good dimensionality reduction technique due to its 

efficiency and data-independent property. RP is based on Johnson and Lindenstrauss’s 

(JL) pioneering work. It is a technique of projecting a set of points to a randomly chosen 

low-dimensional space. The pair-wise distance between samples can be preserved. And 

the projected dimension r is irrelevant to original dimension d, but relevant to the number 

of points n. In other words, no training samples are needed to calculate the projection 

matrix which can be generated beforehand. And even if the data changes, RP does not 

need to update the projection matrix.  

 Recently, Paul et al., [11] studied the performance of SVM under RP in the feature 

space. The theoretical and empirical results indicate that the geometry of SVM can be 

preserved under RP. The direct use of RP in the classifiers is an interesting research 

direction. Motivated by the aforementioned works, we proposed a new method named 

RP-TSVM to solve high dimensional small sample size problem. Firstly, we analyze the 

geometry properties in terms of theoretical aspects for the proposed method. And 

empirical experiments demonstrated the discoveries. That is, the accuracy of RP-TSVM 

keeps almost the same with TSVM. Secondly, the computational experiments show that 

the classification accuracy of our method is higher than that of RP-SVM under the same 

dimension. And the solving speed of our method is almost at least twenty times faster 

than RP-SVM for large scale problems. 

The remainder of this paper is organized as follows. Section 2 outlines the prior work 

based on RP and TSVM. Section 3 mainly introduces our RP-TSVM and analyzes its 

geometry performance. Numerical experiments in Section 4 testified the efficiency and 

feasibility of our proposed algorithm. Finally, we make conclusions in Section 5. 

 

2. Prior Work 

Suppose the training dataset is 1 1 2 2{( , ),( , ),...,( , )}n nT y y y x x x , where 
d

i x ¡  are 

inputs and { 1,1}
i

y    are the corresponding outputs. A hyper-plane 
* *T
w X Yα is used 

to separate the data and maximizes the geometric margin in the primal form of SVM, 

where n dX  is the original input matrix; n nY  is the diagonal matrix with 

entries ii iyY ; 1 2[ , , , ]n

n   α  is the Lagrange multiplier vector. And the dual 

formulation of SVM is denoted as follows, 
1

 max
2

s.t.    0,    .

T T T

T



  

α

e α α YXX Yα

e Yα 0 α C

                                           (1) 

 

2.1. Random Projection Matrices 

Random projections are popular techniques in dealing with the curse-of dimensionality. 

There are many random projections that satisfy JL theorem. And we list some of the 

common used random projection matrices. 

1) Gaussian random matrix [12]: (0,1).ijr N  

2) Random sign matrix [13, 14]: 
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3  ,    =1/6,
3   ,  =1/2,

0   ,     =2/3,     or 
3  ,    =1/2.

3 ,   =1/6,

ij ij

p
p

r p r
p

p


 

 
 


 




  

Later, Li used sparse random projection matrix to improve random sign matrix [15]. 

3) Sampling random matrix of Hadamard transform [16], it is also called fast Hadmard 

transform:  /SRHT d rR DHS , where d dD is a random diagonal matrix 

satisfying 
1 ,  1/ 2

1 ,  1/ 2
ii

p

p





 


 
D ; d dH is the normalized Hadmard transform matrix; 

d rS is a random sampling matrix which randomly samples columns of DH . 

4) Generalized sparse embedding matrices [17]. 

Random projection is an effective and efficient method of feature extraction and 

comprehensively applied in the area of compressed sensing [18] , camera fingerprint 

matching [19], texture classification [20] and face recognition [21]. 

 

2.2. Twin Support Vector Machine 

TSVM seeks two nonparallel proximal hyper-planes instead of a single one in 

traditional SVMs. These two nonparallel hyper-planes are obtained by solving two 

smaller-sized QPPs instead of a larger one, which makes TSVM work faster than SVM. 

For a binary classification problem, suppose there are p samples belongs to class +1 and q 

samples belongs to class -1, and p q n  . Let matrix 
p d

A ¡  and 
q d

B ¡  represents 

the positive and negative samples, respectively. Then the linear TSVM seeks the 

following pair of nonparallel hyper-planes:  

( ) 0b
 
  w x  and ( ) 0b

 
  w x .                                            (2) 

such that each hyper-plane is closer to one of the two classes and is as far as possible 

from the other. For the linear case, TSVM is obtained by solving the following pair of 

QPPs: 

1
, ,

1
min   ( ) ( )

2

s.t.       -( ) ,   

T T

b

b b c

b

  

       

     

  

   

w ζ

Aw e Aw e e ζ

Bw e ζ e ζ 0

                                    (3) 

and 

2
, ,

1
min   ( ) ( )

2

s.t.       ( ) ,   

T T

b

b b c

b

  

       

     

  

   

w ζ

Bw e Bw e e ζ

Aw e ζ e ζ 0

                                    (4) 

where 0,  1,2
i

c i   are the penalty parameters, 
e and 

e are vectors of ones of 

appropriate dimensions, 
ζ and 

ζ are slack vectors of appropriate dimension. By 

introducing the Lagrangian coefficient α and γ , we can derive their dual problems as 

follows: 

-11
max   

2

s.t.     

T T T T






 
1

e α α G(H H) G α

0 α c

 

where, [ ], [ ]
 

 H A  e G B  e .                                                 (5) 

and  
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11
max   ( )

2

s.t.    

T T T T








 
2

e γ γ P Q Q P γ

 0 γ c

 

where, [ ], [ ]
 

 P A  e Q B  e .                                               (6) 

Therefore, 
1

( , ) ( )
T T T T

b


 
 w H H G α  and 

1
( , ) ( )

T T T T

 
w b Q Q γP . 

A new testing point 
dx ¡  is predicted by 

.

arg min | ( ) |
k k

k

Class b
 

  w x , where | |  

is the perpendicular distance of point x  from the two planes ( ) 0,  ,
k k

b k     w x .  

Besides, we give two definitions. 

Definition1: The sum of squared distances from one hyper-plane to points of one class 

of TSVM: 
*2 -1 -1( ) ( )T T T T T T  α G H H G α γ P Q Q P γ . 

Definition2: Data radius:
* x

*
2

x
B min max || ||

i
i x x , where *x is the center of the 

minimum inclosing ball. 

In fact, we usually use 
T

H H I  and 
T

G G I  to replace 
T

H H and 
T

G G in order 

to ensure the matrices are singular, where I is an identity matrix of appropriate 

dimensions,  is a positive scalar, small enough to keep the structure of data.  

 

2.3. RP-SVM 

Paul et al. [11] showed that random projection can preserve the subspace geometry, 

and it can preserve the performance of SVM. That is they proved that with high 

probability, the margin and minimum enclosing ball in the feature space are preserved to 

within  -relative error.  

Let 
d r

R ¡ be the dimension reduction matrix that reduces the dimensionality of 

input from d to r (r<d), and R  is a random projection matrix. So the input dataset 

becomes =X XR% , and the dual form of RP-SVM optimization model is:  

1
max  -

2

s.t.    0, and  

T T T T

T



  

e α α YXRR X Yα

e Yα 0 α C

%
% % %

% %

                                                 (7) 

where 1 2[ , , , ]n

n   α is the Lagrange multiplier vector. 

Let
*

 , 
*

%be the resulting margin after solving the optimization problem in the original 

space and in the transformed space, respectively; B , B%be the data radius of the minimum 

ball enclosing all points in the original space and projected space, respectively. The 

following inequalities are satisfied： *2 *2
(1 )   % ;

2 2
B (1 )B % . 

 

3. Our Work 

In this paper, we proposed a new algorithm, named random projection for linear twin 

support vector machine (RP-TSVM). We also prove that with high probability, the sum of 

squared distances from one hyper-plane to points of one class of TSVM and the minimum 

enclosing ball enclosing all the points in the feature space are preserved, that is 
*2 *2(1 2 )      and 2 2(1 )B B  . 

 

3.1. Random Projection for Linear Twin Support Vector Machine 

In real life, especially in web or image classification, the size of dimension (d) is 
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usually extremely huge and its orders of magnitude up to millions. It is a big challenge to 

solve these kind of problems. RP is an overwhelmingly popular technique of 

dimensionality reduction and it can maintain the basic data structure unchanged with high 

probability. Therefore, we deal with the original data using RP and propose RP-TSVM to 

improve the running speed and testing accuracy.  

We use RP to reduce the dimension, but we cannot reduce the dimension arbitrary and 

we need to find the most reasonable and effective reduced dimension. Achilioptas gives 

the theoretical basis in 2001 [13], in which he gave a lower bound of the reduced 

dimension. 

Theorem (Achlioptas, 2001): 

Suppose that A is a n d matrix with n points in
d¡ . Fix constants ,  >0  , and choose 

an integer r such that 

0 2 3

4 2
: log

/ 2 / 2
r r n



 


 


. 

We introduce the transformed dataset , A AR B BR% %  and RP-TSVM is denoted as 

follows: 

T 11
max  ( )

2

s.t.     

T T T








 
1

 e α α G H H G α

0 α c

% %% %% % %

%

 

where, [   ], [  ]
 

 H A e G B e%% % .                                         (8) 

and 

11
max   ( )

2

s.t.     

T T T T




 

α

2

e γ γ P Q Q P γ

0 γ c

% %% %% % %

%

 

where, [  ], [   ]
 

 P A  e Q B e%% % .                                          (9) 

By solving the two above dual QPPs, the nonparallel hyper-planes can be obtained 

by:
1

( , ) ( )
T T T T

b


 
 w H H G α% %% % %%  and 

1
( , ) ( )

T T T T
b



 
w γQ Q P% %% % % % . 

Similarly, the sum of squared distances from one hyper-plane to points of one class of 

RP-TSVM: 
* * * **2 -1 -1

( ) ( )
T T T T T T

 α G H H G α γ P Q Q P γ . 

Solving the dimensionally-reduced problem above is computationally more 

efficient than solving the original d-dimensional problem. The running time of 

reducing the original data is nearly linear on the size of the original data [11].  

 

3.2. Geometry of TSVM Is Preserved Under Random Projection 

In this subsection, we state our main findings. We still use Lemma 3.1 in [11], which is 

crucial in the following proofs. 

Lemma1: Fix (0,1 / 2], (0,1]   . Let d V  be any matrix with orthonormal 

columns and let d rR be the Gaussian random projection matrix with 
2( log( / ))r O    . Then with probability at least 1  , 

2|| ||T T T  V V V RR V . 

Here, we give the definition of the Singular Value Decomposition (SVD) [9] of matrix. 

Suppose n dA ,  min{ , }rank n d A , then matrix A can be decompose to 
TA UΣV , and the column vector of U  is called left singular vector of matrix A , 

n U satisfy T U U Ι ; the column vector of V  is called right singular vector of 

matrix A , d V satisfy T V V I ;  Σ  is a diagonal matrix, 
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1 2( , , , )diag   Σ , its singular value satisfy 
1 2 0     . The spectral norm 

of matrix A is 
12

A . Then we give our main theorem and proofs as follows: 

Theorem1: Let   be an accuracy parameter and let d rR  be a matrix satisfying 

2|| ||T T T  V V V RR V . Let *2 and *2 be the sum of squared distances from the hyper-

plane to points of one class obtained by solving the dual TSVM problems (5) and dual 

RP-TSVM problem (8). Then, 
*2 *2(1 2 )     . 

Proof: 

Firstly, we prove the TSVM1’s the sum of squared distances from the hyper-plane to 

points of one class satisfies the theorem. And the other QPP will be proved by the same 

method. 

Then we give a transformation of QPP(5), and its objective function can be written as 

follows: 

1

1 1

1 1

1
( )

2

1
     

2

1
     

2

1
     

2

( )

T T T T

T T T

T T

T T

T

T

opt

T

Z




 



 





 

 

 

 

e α α G H H G α

e α α GH H G α

e α α GH GH α

e α α αMM

 

Then we can rewrite QPP (5) as  

1
max   

2

s.t.     

T T T






 
1

e α α α

0 α c

MM
                                             (10) 

Similarly, we rewrite eqn.(8) as follows. Let M MR , then we can get the following 

equation. 

1
max   

2

s.t.     

T T T






 
1

e α α α

0 α c

MM% % %

%

%%
                                             (11) 

Let * * * *
1 2[ , , , ] pT

p   α  be the vector achieving the optimal solution for the 

problem of eqn.(10). Then, 

* * *

* * *

* * *

* *

1

2

1
     

2

1
     

2

1
        

2

T
opt

T T T

T T T T

T T

Z  

 

 



Tα α MM α

α α UΣV VΣU α

α α UΣV RR VΣU α

α UΣEΣU α

                                 (12) 

where,  T T T E V V V RR V .We still use SVD of matrices, and TM UΣV . 

Let * * * *
1 2[ , , , ] pT

p   α  be the vector achieving the optimal solution for the 

dimensionally-reduced TSVM of eqn.(11) using M MR . Using the SVD of M , we get 
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* * *

* * *

* * *

1

2

1
     

2

1
     

2

T

T

T

T
opt

T

T T T T

Z













α α MM α

α α MRR M α

α α UΣV RR VΣU α

                                   (13) 

Since the constrains on *α , *α  do not depend on the data, it is clear that *α is a feasible 

solution for the problem of eqn.(10). Thus, from the optimality of *α , and using upper 

eqn.(13), it follows that 

* * * * *

* * * * *

* *

1 1

2 2

1 1
      

2 2

1
      

2

T T T T T T
opt

T T T T T T

T T
opt

Z

Z

  

  

 

α α UΣV RR VΣU α UΣEΣU α

α α UΣV RR VΣU α α UΣEΣU α

α UΣEΣU α

 

That is      * *1

2
T T

opt optZ Z  α UΣEΣU α                                      (14) 

Let us taking the second term of eqn.(14) using standard sub-multiplicativity properties 

and T V V I . Taking *TQ α UΣ , we get   

* *
2 2 2

2
2 2

* 2
2 2

* 2
2 2

1 1
|| || || || || ||

2 2

1
                           = || || || ||

2

1
                           = || || || ||

2

1
                           = || || || ||

2

T T T

T T

T

α UΣEΣU α Q E Q

E Q

E α UΣV

E α M

                                        (15) 

Combining eqn.(14) and (15), we get 

* 2
2 2

1
|| || || ||

2
T

opt optZ Z  E α M   .                                              (16) 

Now we see the second term of eqn.(16), we could find the difference: 
* * * *

* *

* *

* 2
2 2

* 2
2 2

* 2
2 2

    | |

 | ( ) |

 | ( ) |

 || || || ||

 || || || ||

 || || || ||

T T T T T

T T T T T

T T

T

T T

T



 

 







α MRR M α α MM α

α UΣ V RR V V V ΣU α

α UΣ E ΣU α

E α UΣ

E α UΣV

E α M

 

Because 
* 2 * 2

2 2

* 2 * 2
2 2

* * * *

* 2
2 2

 || || || |||| || || ||  

                                        | |

                                        || || || ||

T TT T

T T T T T

T

 

 



α MR α Mα M α MR

α MRR M α α MM α

E α M

 

Then, we can get 

* 2 * 2
2 2

2

1
|| || || ||

1 || ||
T T


α M α MR

E
.                                         (17) 

We combine eqn.(14) and (15), we get 

* 22
2

2

|| ||1
|| ||

2 1 || ||
T

opt optZ Z
 
  
 

 


E
α MR

E
                                       (18) 
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As the discussion in [2], that we get 

* 2
2

1
|| ||

2
optZ  , and * 2

2

1
|| ||

2
optZ  .                                         (19) 

Solving eqn.(6) we get 
1

( , ) ( )
T T T T

b


 
 w H H G α  and  * 2 * * * 2

2 2|| || || ||T T T T  α MR α MRR M α .          (20) 

So from eqn.(16), we get 

* 2 * 2 * 22
2 2 2

2

|| ||1 1 1
|| || || || || ||

2 2 2 1 || ||
  

 
  
 

 


E

E
                                   (21) 

That is  

* 2 * 22
2 2

2

|| ||
|| || 1 1 || ||

1 || ||
 

  
    

  

  


E

E
                                            (22) 

From 2 2|| E || || ||T T T   V V V RR V , thus 2

2

|| ||
2

1 || ||




E

E
, then *2 *2(1 2 )      is 

proved. 

Our second theorem discusses the radius of the minimum ball enclosing all points in 

original feature space and projected feature space is really close to each other. Here is the 

theorem. 

Theorem2: Fix 1
2

(0, ], (0,1]   . Let B  be the radius of the minimum ball 

enclosing all points in the full-dimensional space (the rows of the matrix X  ), and let B  

be the radius of the ball enclosing all points in the dimensionally reduced space (the rows 

of the matrix XR ). Then, if 2( log( / ))r O    , that is d rR be the Gaussian 

random projection matrix, with probability at least 1  , 
2 2(1 )B B  . 

Proof: 

We set , A AR B BR% % and let 
 
 
 


A

X
B

, so
   
   
   

 
AR A

XR R
BR B

. We consider the 

matrix ( 1)n d
B

 X , whose first n rows are the rows of X  and whose last row is the 

vector T
Bx , where Bx  denotes the center of the minimum radius ball enclosing all n points. 

So the progress of proving is the almost same as [11]. Here we will not give the detailed 

proof. 

 

4. Experiments 

To evaluate the performance of our algorithm, in this section, we compare our RP-

TSVM with RP-SVM, SVM and TSVM on eight benchmark datasets. These datasets 

come from Mldata [22] and UCI database [23], and they all satisfy n d .  

These datasets are Orlface, Dbworld emails, Eyes, Yale face, Arcene.nips, Yahoo web 

directory topics, Dmoz web directory topics. For Orlface, we choose (32,32) pixel and get 

1024 dimension, naming it Orlface32; we choose (64,64) pixel and get 4096 dimension, 

naming Orlface64; Arcene.nips includes Arcene_train and Arcene_valid. Dmoz web 

directory topics includes five different classes, we choose data with labels 6 and 7 as 

dataset Dmoz67, data with labels 7 and 8 as dataset Dmoz 78 and data with labels 5 and 9 

as dataset Dmoz 59. Yahoo web directory topics includes four different classes, we 

divided it into two part: data with label 1 and 2 as a dataset named Yahoo12, and the 

others as Yahoo34. We use these datasets for binary classification. 

 In conclusion, we use three different kinds of datasets to do our experiment. The first 

part with light blue stands for the dataset with small sample size and light low dimension; 
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the second part with light pink stands for small sample size and slight high dimension; the 

third part with light green stands for larger sample size and high dimension. 

We set =0.3 in theorem to certain the value of 2 3 1
0 4( 2 3) logn 1r      with 

Gauss random matrix and the entries of matrix are chosen independently from N(0,1). The 

dataset’s composition is displayed as Table 1. We set the parameter c1=c2 in TSVM and 

RP-TSVM. All these experiments run in the computer Intel (R) Core (TM) 2 Duo CPU 

E7500 2.94GHz, with memory of 4.00GB（3.00GB available）32 bits Windows7 in the 

platform of MATLAB 7.10.0 (R2010a).  

We partitioned the data randomly for five-fold cross-validation in order to estimate the 

accuracy. The parameters c, c1, c2 are chosen from{2 | 5, 4, ,5}i i    . We report its 

mean value  and its standard deviation  . The title ‘Accuracy’ is composed by the form 

of   . ‘Time’ concludes the time of computing random matrix and the time of five-

fold cross-validation. 

Table 1. Description of Datasets 

Dataset Samples Positive Negative Dimension r0 

Orlface32 20 10 10 1024 334 

Orlface64 20 10 10 4096 334 

Dbworld 64 35 29 4702 464 

Eyes 80 40 40 4704 488 

Yale face 22 11 11 10000 345 

Arcene_train 100 44 56 10000 513 

Arcene_valid 100 44 56 10000 513 

Dmoz67 524 261 263 10629 697 

Dmoz78 528 263 265 10629 698 

Dmoz59 540 268 272 10629 701 

Yahoo12 548 254 294 10629 702 

Yahoo34 558 284 274 10629 704 

 

4.1. Experiments on Benchmark Datasets 

The results are displayed in TABLE 2. We find that it is difficult for SVM and TSVM 

to solve large scale problem, especially when the dimension is high. While RP-SVM and 

RP-TSVM can deal with high dimensional problems effectively and efficiently. What’s 

more, the accuracy of TSVM and RP-TSVM are almost the same, which validate our 

proposed theorem1. 

For dataset Orl32, Orl64 and Eyes, the accuracy of the four compared algorithms all 

yields 100%, and RP-SVM takes the least time, followed by SVM, RP-TSVM and TSVM. 

When the scale of dataset increase, like Yale dataset and Arcene dataset, i.e. the size of 

sample or the dimension increase, the accuracy of RP-TSVM yields the highest, but the 

time advantage is not obvious. The scale of Dmoz datasets and Yahoo datasets are larger 

scale datasets. The proposed RP-TSVM have an obvious advantage, in terms of not only 

the accuracy but also the running time. 

The reason is that RP-TSVM embedded the data from high space into appropriate low 

subspace and the distance of different data are controlled in a small error. Besides, it 

solves two smaller-sized QPPs rather than a single large one to shorten the time, thus it 

offers more space to make more specific decision function. 

 

 

 

mailto:E7500@2.93GHz
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Table 2. Accuracy on Different Datasets 

Datasets Metrics SVM RP-SVM TSVM RP-TSVM 

Orlface32 
Accuracy 100.00±0.00 100.00±13.69 100.00±0.00 100.00±0.00 

Time(s) 0.69 0.75 240.50 15.69 

Orlface64 
Accuracy 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 

Time(s) 0.75 0.68 2862.00 15.79 

Dbworld 
Accuracy 85.00±12.36 83.33±13.18 82.55±12.45 84.36±5.20 

Time(s) 4.33 3.18 26558.00 4.79 

Eyes 
Accuracy 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 

Time(s) 4.77 3.69 29341.00 35.48 

Yale face 
Accuracy 100.00±0.00 100.00±0.00 N/A 100.00±0.00 

Time(s) 1.19 0.82 N/A 16.21 

Arcene_train 
Accuracy 88.42±5.77 85.26±7.81 N/A 87.42±6.15 

Time(s) 5.89 2.530 N/A 40.48 

Arcene_valid 
Accuracy 84.21±7.44 85.26±7.81 N/A 84.92±9.38 

Time(s) 6.65 3.38 N/A 40.21 

Dmoz67 
Accuracy N/A 65.38±5.81 N/A 77.23±5.46 

Time(s) N/A 2090.30 N/A 105.00 

Dmoz78 
Accuracy N/A 64.19±7.02 N/A 81.04±4.22 

Time(s) N/A 1450.40 N/A 109.02 

Dmoz59 
Accuracy N/A 49.35±0.78 N/A 60.28±9.33 

Time(s) N/A 2687.40 N/A 111.07 

Yahoo12 
Accuracy N/A 58.70±3.85 N/A 69.64±2.27 

Time(s) N/A 2482.70  N/A 113.04 

Yahoo34 
Accuracy N/A 58.00±5.73 N/A 67.70±3.32 

Time(s) N/A 2799.80 N/A 115.56 

 

4.2. Influence of Parameter   

In order to see the performance of RP-TSVM with different (0,1)  , we choose a 

medium scale dataset Arcene_train and a large scale dataset Yahoo34, Dmoz67 to do the 

experiment. At the same time, we record the lowest dimension 0r  under different  .  

The results on Arcene_train dataset are shown in Table 3 and Figure1. From Table 3, 

we can see that as the increase of  , the lowest value of dimension r0 decrease slightly. 

Under the same  , the accuracy of RP-TSVM all higher than RP-SVM，but the running 

time of RP-TSVM is not obvious compared with RP-SVM, especially when  =0.1 or 0.2, 

the time of RP-TSVM is very slow. In order to see the change of accuracy and time, we 

draw Figure1. 

From Figure1(a), we can see that the accuracy of RP-TSVM is higher than RP-SVM 

under the same  . As  increase, the accuracy of RP-TSVM and RP-SVM both decrease, 

but the decrease speed of RP-TSVM is slower than RP-SVM, which indicates the stability 

of RP-TSVM is better than that of RP-SVM. When (0,0.5]  , the accuracy of RP-

TSVM and RP-SVM are stable, while (0.5,0.9)  , their accuracy fall sharply, that 

indicates the value of  cannot beyond the range of values (0,0.5] . That further verified 

our proposed Theorem1. From Figure1(b), RP-TSVM takes more time compared with 

RP-SVM, but it falls deeply when  =0.2. That shows it is available to get better 

classification ability for RP-TSVM in a large scale problem.  
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Table 3. Accuracy of Arcene_Train Datasets(100*10000) 

    RP-SVM RP-TSVM 

  r0 Accuracy Time(s) Accuracy Time(s) 

0.1 3949 87.37±6.00 4.97  84.83±5.51 11757.00 

0.15 1821 86.32±7.98 3.65  86.52±4.94 1238.00  

0.2 1064 84.21±6.44 2.75  84.83±9.43 264.06  

0.25 709 83.16±4.40 3.71 84.83±5.51 81.84  

0.3 513 85.26±7.81 2.53  87.42±6.15 40.49  

0.35 394 84.21±9.85 2.73  85.71±3.69 22.86  

0.4 315 85.26±10.79 2.92  85.71±4.95 15.32  

0.45 261 80.00±6.86 2.65  88.75±8.15 10.88  

0.5 223 80.00±10.12 2.90  86.17±5.08 8.08  

0.6 172 81.05±7.06 3.23 83.42±10.83 6.41  

0.7 142 77.89±6.86 3.64 79.75±8.12 6.36  

0.8 125 76.84±9.56 3.90 84.83±7.06 5.07  

0.9 115 72.63±7.81 3.88 79.75±5.18 4.80  

 

      

(a)                                                               (b) 

Figure1. Accuracy (a) and Time (b) Vary from Epsilon in Arcene_train 
Dataset 

In order to see the rationality of RP-TSVM dealing with large scale problems. We 

choose Yahoo34 to do the experiment which is a larger scale dataset. The result is shown 

in TABLE 4. The results indicate that as the increase of  , the lowest value of dimension 

r0 decrease slightly. When   equals 0.1, it cannot use RP-TSVM to obtain the result. 

Under the same  , both the testing accuracy and the running time of RP-TSVM is better 

than RP-SVM. In order to see the variation of accuracy and time as  , we draw Figure2. 

From Figure2(a), we see that the accuracy of RP-TSVM is higher than RP-SVM under 

the same  . As  increase, the accuracy of RP-TSVM and RP-SVM vary slightly. From 

Figure2(b), we get that RP-TSVM takes less time compared with RP-SVM under the 

same   except when epsilon equals 0.15. That indicates our RP-TSVM can deal with 

large scale problem quickly and efficiently. And as   increase, RP-SVM needs more and 

more time to solve the problem. RP-TSVM all need almost over 2500 seconds while the 

time of RP-TSVM less than 1000 seconds whenever   is. That states our RP-TSVM can 

shorten the time sharply and keep the accuracy unchanged at the same time. 
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Table 4. Accuracy of Yahoo34 Datasets (558*10629) 

    RP-SVM RP-TSVM 

  r0 Accuracy Time(s) Accuracy Time(s) 

0.1 5422 58.36±5.73 2755.20 N/A N/A 

0.15 2500 59.45±4.24 3016.60 73.32±6.53 3247.1 

0.2 1461 58.55±6.19 2720.90 70.63±3.61 712.18 

0.25 973 58.18±4.98 2827.60 71.53±2.56 230.85 

0.3 704 58.18±3.91 2830.00 67.70±3.32 115.56 

0.35 540 60.73±5.28 3080.90 63.02±4.31 72.20 

0.4 433 58.73±4.84 2842.40 62.99±4.94 53.84 

0.45 358 61.64±4.83 3220.30 66.60±3.85 47.28 

0.5 305 60.00±3.75 3472.70 61.45±4.74 47.13 

 

   

(a)                                                                  (b) 

Figure 2. Accuracy (a) and Time (b) Vary from Epsilon in Yahoo34 Dataset 

In order to test our theorem further, we do the experiment on Dmoz67 dataset. The 

results are displayed in Table 5. It shows that r0 decrease as  increase, when  equals 0.5, 

r0 equals 302. When  equal 0.1, r0 equal 5,368 which is still a large scale problem, we 

cannot use RP-TSVM; When  equal 0.2, r0 equal 1,446, using RP-TSVM can get higher 

accuracy and use almost a half time compared with using RP-SVM, the accuracy 

increased almost 10%; When (0.3,0.5)  , we use less time and get higher accuracy 

using RP-TSVM. In order to see the tendency of accuracy and time vary from  , we draw 

Figure 3. 

Table 5. Accuracy of Dmoz67 Datasets(524*10629) 

    RP-SVM RP-TSVM 

  r0 Accuracy Time(s) Accuracy Time(s) 

0.1 5368 65.96±5.97 2253.30  N/A N/A 

0.15 2475 63.85±5.29 2220.30  73.20±5.19 3137.20  

0.2 1446 64.04±6.14 1681.00  73.44±5.99 705.76  

0.25 913 61.54±2.71 2314.70  72.27±6.29 231.83  

0.3 697 63.27±10.82 2078.90  69.39±3.67 108.54  

0.35 535 63.84±8.34 2154.70  73.46±3.81 68.21  

0.4 428 63.46±1.80 2033.00  71.04±3.80 53.00  

0.45 355 62.88±2.59 2509.00  68.41±2.96 51.12  

0.5 302 63.65±6.52 2755.70  67.21±4.17 50.20  
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(a)                                                             (b) 

Figure 3. Accuracy (a) and Time (b) Vary from Epsilon in Dmoz67 Dataset 

From Figure3(a), we can see it clearly that the accuracy of our RP-TSVM is all 

higher than RP-SVM. From Figure3(b), we can see it clearly that our RP-TSVM 

takes less time compared with  RP-SVM. When (0.15,0.5]  , the time of RP-SVM 

vary slowly as  increase, the time keeps around 2,000 seconds; while (0.3,0.5]  , 

RP-TSVM cost the least time, and the time keeps around 50 seconds, i.e. our RP-

TSVM is almost forty times faster than RP-SVM. 

 

5. Summary 

In this paper, we propose a new algorithm named random projection for twin 

support vector machine. RP-TSVM inherits not only the high solving speed and high 

precision of TSVM but also the efficiency and data-independent property of RP. The 

crucial contribution of this paper is that we find two paramount theorems and give 

detailed proofs. We prove that within high probability, the sum of squared distances 

from the hyper-plane to points of one class of TSVM and the minimum enclosing 

ball in the feature space are preserved, ensuring comparable generalization as in the 

original space. Large amounts of experiments verified our proposed theorem. 

What’s more, the experiment results also show that the accuracy of our proposed 

RP-TSVM is higher than RP-SVM, and the solving speed of our proposed RP-

TSVM is faster. In further research, we will study the different random production 

under different SVMs, and it will be a great value in the area of big data. 
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