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Abstract 

Recently, wireless sensor networks (WSNs) have gained increasing attention from 

researchers due to their wide range of applications. Main aim of deploying WSNs based 

applications is to make real time decision. As WSNs are highly resource constraint, it is 

difficult to make computation on huge volume of sensed data. Clustering has always been 

a basic method to organize large number of objects into suitable groups. Clustering in 

WSNs helps in network scalability, conserve the communication bandwidth, and increase 

the networks life time. In addition to these advantages, clustering is now an active area of 

research in WSNs. Most of the existing clustering techniques in literature are based on 

network topology or distribution of the sensor nodes. In this paper, we propose an 

adaptive clustering protocol that exploits spatial and temporal correlation among the 

sensor based upon sensed data. 
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1. Introduction 

Wireless sensor networks (WSNs) have many applications ranging from environmental 

monitoring, healthcare applications, habitat monitoring, and avalanche prediction to 

virtual fencing, agriculture, structure monitoring [1-5]. The main reason of deploying the 

WSNs is to collect the suitable data desired in particular application. One of the 

advantages of WSNs is their ability to operate unattended in harsh environments in which 

contemporary human-in-the-loop monitoring schemes are risky, inefficient and sometimes 

infeasible. Therefore, sensors are expected to be deployed randomly in the area of interest 

by a relatively uncontrolled means, e.g. dropped by a helicopter, and to collectively form 

a network in an ad-hoc manner. As sensor networks are deployed in finite boundaries, the 

collected data may exhibit temporal and spatial correlation. By exploiting these 

correlations, we can save several resources in terms of bandwidth consumption, energy, 

etc. In general, by forming a cluster of nodes whose readings are spatially correlated, 

there are chances to reduce the cost of coverage and reporting a group sensor reading [6]. 

Consequently, dealing with the large volume of data produced by WSNs possess a 

challenge, as the communication consumes a significant amount of energy in a WSN, 

minimizing it is another major challenge. 

Data mining is the computational process of discovering patterns in large data sets by 

using supervised or un-supervised methods. In un-supervised methods, there is no 

identified target variable as such. Instead, the data mining algorithm searches for patterns 

and structure among all the variables. In supervised methods, there is a pre-specified 

target variable with algorithm. The given algorithm helps to decide which values of the 

target variable are associated with which values of the predictor variables. 
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In this paper, we exploit temporal and spatial relations among the sensor nodes 

and propose a Temporal Spatially Correlation based Adaptive Clustering (TSCAC) 

for WSNs. In proposed approach, we are exploiting temporal correlation locally and 

spatial correlation globally to form clusters. To form clusters, we initially collect 

data values at grid level and process these values to find frequent pat terns. These 

frequent patterns are further processed at sink to identify the spatial relationship 

between patterns from neighboring grids to form the clusters. 

The rest of the paper is organized as follows. Section 2 discusses about related 

work. Section 3 describes the various assumptions regarding system model. 

Proposed adaptive algorithm for clustering is discussed in Section 4. In Section 5, 

we have given performance evaluation of our proposed algorithm. Section 6 gives 

the conclusion. 

 

2. Related Work 

Clustering is done to form logical groups of similar nodes and it saves 

unnecessary energy wasted in direct data transmission to the base station. Many 

clustering algorithms have also been proposed in the past in various contexts. In k-

mean clustering algorithm [7], authors proposed two types of clustering: Centralized 

k-mean clustering and Distributed k-mean clustering. These algorithms use 

Euclidian distances and energies for choosing cluster head. This information i s 

obtained by every node by exchanging messages among themselves.  

The Weighted Clustering Algorithm (WCA) elects a node as a cluster head based 

on the number of neighbors, transmission power, battery-life and mobility rate of 

the node [8]. In Distributed WSN Data Stream Mining based on Fuzzy Clustering 

[9], authors proposed Subtractive Fuzzy C-Means Algorithm (SUBFCM) clustering 

approach of given data streams. Chen et al. proposed an algorithm in which first core 

points are detected [10]. Core points are the points which always present or exist in a 

cluster. On the basis of these core-points, other points or nodes are covered or linked to 

form the clusters. Core points are always chosen to be cluster head. This algorithm 

effectively works on spatio-temporal correlation of data streams. Yeo et al., propose 

modified TDMA scheme to form the clusters in senor networks [11]. 

 

3. System Model  

In this work, we assume that set of homogeneous sensor nodes are randomly 

deployed in the square field to continuously monitor the phenomenon under 

inspection [12],[13]. All nodes have same sensing and communication range R. The 

location of the sensors and the base station are set and known apriori. It is assumed 

that localization process is carried out just after the deployment, so all sensor nodes 

have the knowledge of their location. Due to several environmental conditions, 

battery recharge is not possible. Therefore, energy efficient, energy-aware sensor 

network protocols are required for enhancing network lifetime. All nodes have 

similar capabilities and equal significance. Each sensor produces some information 

as it monitors its surrounding area. We suppose that initially the whole network is 

divided into a number of square grids [14]. 

Generalized energy consumption model is based on first order energy 

consumption. This generalized model is used for energy consumption calculation for 

the sensor nodes within the sensing area [15]. The energy consumption of a sensor 

node for transmitting k bits of data over a distance d can be expressed as Equation 

(1) and (2) [16], [17]: 

                              (1) 
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                                    (2) 

 

Eelect-Tx is transmission electronics energy; which is energy consumed by the 

sensor node for modulation, coding, spreading schemes, filtering operations, etc. 

Eamp-Tx(k, d) is the power amplifier stage energy consumption of sensor node to 

transmit k bits of data over a distance of d meter with acceptable signal to noise 

ratio (SNR). k is the number of bits transmitted over a distance d (distance between 

transmitter and receiver). Eelect (nJ/bit) is energy dissipation per bit to run transmitter 

and receiver electronic circuitry. ε fs (pJ/(bit-m-2)) is energy coefficient of power 

amplifier stage of sensor node for free space energy dissipation model, when 

transmission distance is less than threshold i.e. d < d0. εmp (pJ/(bit-m-4)) is energy 

coefficient of power amplifier stage of sensor node for multipath energy dissipation 

model, when transmission distance is greater than threshold i.e. d ≥ d0. The energy 

consumption of sensor node to receiver k bits of data is given by Equation (3):  

                                                                           (3) 

Table 1. Notation Used 

Notation  Meaning 

NR Maximum number of items in an itemset 

k-itemset An itemset with k items/sensors 

Fk The set of frequent k-itemsets (with minimum support) 

fi, fj Any of the frequent (k-1) itemsets within Fk-1 

fi[m] mth item in itemset fi 

fk A new frequent k-itemset obtained by combining a frequent (k-1) 

itemset with one item 

vavg Average value of the pattern 

δ Threshold difference between sensor values 

vi Data value of the si sensor node 

EL Empty list (initially ) 

Ci ith Cluster (initially ) 

CVavg Average data value of the cluster 

RD(i, j) Relative distance between sensor nodes si and sj 

RD(CH, i) Relative distance between CH and sensor node si 

R Communication range of sensor nodes 

Tr Re-clustering time interval 

 

4. Proposed Work 

In this section, we propose an adaptive clustering protocol for wireless sensor 

networks. Proposed protocol is based on spatial and temporal correlation among the 

sensor nodes. Initially whole sensor field is divided in to virtual grids. Each grid is 

of size  as shown in Figure 1. The grid side  is a vital factor for effective 

cluster formation. For reliable communication, it is to ensure that any two nodes in 

adjacent grids are within the communication range, R, of each other.  

In worst case scenario, the grid side l should be such that the maximum distance 

between two nodes placed at the corners of two diagonally adjacent grids must be 

less than or equal to R. Therefore, to ensure one hop communication among the 

nodes between adjacent grids, d (diagonal distance as shown in Figure 1) given by 
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 = l must be less than or equal to maximum transmission range 

(R), i.e. . Hence, l ≤ . If l is set to , all sensors in adjacent 

grid can communicate to one another in one hop. 

Every grid has Grid Id Gx,y. For a node si with coordinates (x i, yi), the grid id is 

computed as follows: Gx,y = , where  is the largest integer less than 

equal to b. After splitting the sensor field into equal sized grids, one cluster head 

will be selected in each grid. Each cluster head is responsible for determining sensor 

reading patterns among the nodes and these patterns are used during temporal 

correlation. In addition to this, each cluster head is also responsible for data routing 

and data aggregation. Each cluster head can communicate directly or through 

another cluster head to the sink depending upon its distance from the sink.  

 

d

l

l

l l

Sensor 

Node

CH

l

 

Figure 1. Formation of Virtual Grids in a WSN 

To exploit spatial correlation, initially we divide the given sensor field into 

virtual grid like clusters as shown in Figure 1. Thereafter, data mining techniques 

are applied to exploit the temporal correlation among sensors based upon their 

sensed values over a time interval. The initial selection of cluster head (CH) within 

a grid/cluster is based upon the choice of a node that is located nearest to the 

centroid of the grid. The centroid (xc, yc) inside a grid with Grid ID Gx,y is given as 

, . Each node si with coordinates (x, y) 

calculate its distance d i from the centroid (xc, yc) as  . 

We use the concept of back-off timer to select a CH. For a node s i, the back off 

timer ti is set as  where Bt is a random number whose value is in the 

range (0.9, 1). Bt is used to resolve the tie for nodes having same value of d i. Each 

node si sets its back-off time ti and decreases it with increase of time. A node whose 

back-off timer decreases zero, elects itself as CH and broadcasts the CH declaration 

message to the members of the cluster. Further the proposed adaptive clustering 

technique exploits temporal correlation among the sensor nodes.  
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4.1. Finding Frequent Itemsets 

In this section, we propose an algorithm to find frequent itemsets from central database 

(CD) based upon temporal correlation. The algorithm accepts CD, minimum support and 

threshold difference (δ) as inputs. In the first step, CD is analyzed to find the frequent 1-

itemsets. This is done by calculating the support of each data item and comparing it to the 

minimum support. As a result, every data item that has minimum support forms one 

frequent 1-itemset. The second step is to find all the frequent 2, 3, …, k itemsets. Each 

itemset is paired with other if and only if they are reported at the same time interval and 

the difference between their sensed values is less than . This process is repeated, until it 

is not possible to find new itemset or number of items in an itemset exceeds the 

predefined limit in NR (maximum number of items in an itemset). At the end, algorithm 

returns all the frequent itemsets generated in that iteration. Algorithm 1 illustrates the 

steps to generate frequent itemsets. 

 

4.2. Correlation Based Cluster Formation 

This section describes adaptive cluster formation based upon frequent itemsets 

generated using Algorithm 1. To do this we exploit the spatial and temporal 

correlation among the sensor nodes. The algorithm accepts frequent itemsets, 

location coordinates of sensor nodes and communication range R as inputs. This is 

done by processing each element of the frequent itemset. Any two elements of the 

frequent itemset may be member of the same cluster if they belong to same grid or 

adjacent grid. After processing all the itemsets there might be some nodes which are 

left alone. Such nodes form an empty list EL. To accommodate nodes of the EL, we 

increase δ from 1 of 1.5 and nodes will be part of the cluster C i whose relative 

distance with that node is less than R. Algorithm 2 illustrates steps of proposed 

correlation based cluster formation. 

 

5. Simulation Results  

In this section, we evaluate the performance of proposed algorithm TSCAC through 

simulating using MATLAB. We first define simulation parameters and performance 

metrics used. We then see the effect of various factors like transmission range, number of 

nodes and network size on performance metrics to measure the effectiveness of proposed 

algorithm. Simulation results are compared with grid based scheme GBS [18], where grid 

type clustering is used based upon spatial correlation among the nodes. This approach 

does not consider temporal correlation. In this approach head rotation takes place after 

every round and all the nodes participate in cluster head re-election. 

 

Algorithm 1:   Finding Frequent Item Sets 
1 F1 = {frequent 1-itemset}  
2 vavg = vi        // initialize vavg to vi 
3 k =2  
4 while Fk-1 ≠  ∧ k ≤ NR do 
5  Fk =  
6  for each itemset fi  ∈ Fk-1 do 
7   for each itemset fj  ∈ Fk-1  

8    if fi[1] = fj[1] ∧ fi[2] = fj[2] ∧…∧ fi[k-2] = fj[k-2] ∧ fi[k-1]< fj[k-1] ∧ 

(vavg -vi) ≤ δ then 
9    f = {fi} ∪ {fj [k-1]} 
10    Fk  = Fk  ∪  {f} 
11    vavg = (vavg + vi )/2 
12    for each (k-1)-subsets s ∈ f do  
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13     if s ∉ Fk-1 then 
14     Fk = Fk – {f}; break 
15          for each itemset fi ∈ Fk  do 
16  if support (fi) < minimum support then 
17  Fk = Fk  - {fi} 
18 k = k+1 
19 return  

 

Algorithm 2: Cluster Formation 

1 for(i = 1; i ≤ k; i++) 

2 if fk[i] is already processed then  

3     i = i+1 

4     else  Ci = Ci  ∪ {fk[i]} 

5       Ci.x = xi 

6       Ci.y = yi 

7       CVavg = vi 

8          for(j=i+1; j≤k; j++) 

9  if fk[j] is already processed then j = j+1 

10  else if fk[i] & fk[j] belong to same Grid then 

11  Ci = Ci  ∪ {fk[j]} 

12  Ci.x = (Ci.x + xj)/2 

13   Ci.y = (Ci.y + yj)/2 

14  CVavg = (CVavg + vj)/2 

15  mark fk[j] as processed break 

16  else if fk[j] ∈ (Gx,y+1|| Gx,y-1 ||Gx+1,y ||Gx-1,y ) && RD(fk[i], fk[j])≤ R then 

17        Repeat step 11-15 

18            else EL = EL ∪ {fk[j]} 

19 for each xi ∈ EL 

20        for each Ci cluster in C list 

21          Find the cluster whose (CVavg – vi) ≤ 1.5×δ 

22                             if RD (Cj, xi) ≤ R then 

23                                    Repeat step 11-15 

 

Effect of Transmission Range on Network Lifetime 

We define network lifetime as the time until a fraction of sensor nodes run out of 

energy. We use two measures for network lifetime i.e. FND (first Node Die) i.e.   

the number of rounds since initial deployment when first node dies, and HND (Half 

of Nodes Die) i.e. the number of rounds since initial deployment to the time when 

50% of the nodes die. Figure 2 shows the results of network lifetime as a function of 

transmission range of sensor node. Figure 2(a) gives the variation of network 

lifetime calculated in terms of FND and Figure 2(b) indicates the variation of 

network lifetime obtained in terms of HND. 

To see the effect of transmission range on the network lifetime, the number of 

nodes and the network size are kept fixed at its default values. Simulation results 

have been compared with GBS. From the Figures 2(a) and 2(b), it is observed that 

when the transmission range of node is small, the WSN is divided into large number 

of smaller grids because the grid size is directly related to the transmission range of 
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sensor node. Therefore, the average number of hops for the sensed data to reach the 

sink increases which results in more consumption of energy. As a result of which 

the number of rounds for the FND and HND are less. 
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Figure 2. Effect of Transmission Range on (a) FND and (b) HND 

With the increase in transmission range, the grid size increases that decreases 

average number of hops for the sensed data to reach the sink. Because of this the 

energy consumption decreases and the number of rounds for the first node to die and 

half the nodes to die increase. At this stage, an optimal transmission range is 

achieved. 

If the range continues to increase, the data communications are subject to d 4 

attenuation and the energy consumption associated with transmission increases 

super linearly with the radio range, so the total energy consumption grows 

exponentially with node separation which results in the decrease in network 

lifetime. From the simulation, it has been observed that the transmission range of 

node should be between 100 m to 140 m in order to optimize the network lifetime. 

Results of TSCAC are better than GBS because in GBS cluster heads are elected 

after every round so the frequency of head rotation is quite high. Moreover, in GBS 

all the nodes participate in cluster head re-election process irrespective of their 

current residual energy, whereas in TSCAC only current CH is responsible to elect 

the new cluster head, thus TSCAC gives better results than GBS approach. 
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It can be observed that TSCAC at δ = 2 performs better than TSCAC at δ = 1.5. 

This is due to fact that when δ increases from 1.5 to 2, there will be more sensor 

nodes, which are part of the same cluster. This results into lower average load on a 

sensor node. 

 

Effect of Transmission Range on Network Latency 

Figure 3 shows the result of network latency as a function of transmission range 

of sensor nodes. From the graph, it has been observed that when the transmission 

range of sensor node is small, the numbers of hops for the data transmission from 

sensor node to the cluster head and from cluster head to sink are more and therefore 

the time taken by the data to reach the sink is more. With the increase in 

transmission range, the number of hops decreases which results in decrease in the 

data transmission time and network latency. With the further increase in 

transmission range, sensor node will be able to reach the cluster head or to the sink 

in almost one hop distance and hence results in constant data transmiss ion time 

which makes the network latency to appear constant after a transmission range of 

around 100 m. TSCAC at δ = 2 and TSCAC at δ = 1.5 results are better than GBS 

approach.  
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Figure 3. Effect of Transmission Range on Network Latency 

Effect of Transmission Range on Energy Consumption 

From Figure 4, it is observed that when the transmission range of node is small, 

data transmission follows the Friis free-space model. Although signal attenuation is 

not significant, but the number of grids which is a function of transmission range are 

more which further increases the average number of hops required for the transfer of 

data to the sink. Therefore, when the transmission range is less, the energy 

consumption is more. With the increase in transmission range, some data 

communications are subject to d4 attenuation, but with the increase in transmission 

range the grid size increases and the average number of hops for the transfer of data 

to sink decreases and also more redundant nodes can be put to sleep mode in larger 

clusters. Therefore, energy consumption decreases with increase in transmission 

range. At this stage, an optimal transmission range is achieved. If the range 

continues to increase further, the energy consumption associated with transmission 

increases super linearly with the radio range, so the total energy consumption grows 

exponentially with node separation which results in the decrease in network 

lifetime. From the simulation, it has been observed that the transmission range of 
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node should be about 100 m in order to optimize the network lifetime. Results of 

TSCAC at δ = 2 and TSCAC at δ = 1.5 are better than GBS because in GBS, 

frequency of head rotation is quite high and all the nodes participate in cluster head 

re-election, thus leading to poor energy utilization and lower network life.  
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Figure 4. Effect of Transmission Range on Energy Consumption 

Effect of Transmission Range on Percentage of Nodes Acting as Cluster Head 

Figure 5 shows the plot of transmission range versus percentage of nodes acting 

as cluster head. As the transmission range increases the size of cluster increases. 

This results into less number of clusters. Hence with the increase in transmission 

range percentage of nodes acting as cluster head decreases. TSCAC at δ = 2 and 

TSCAC at δ = 1.5 are better than GBS because TSCAC exploits temporal as well as 

spatial correlation. 
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Figure 5. Effect of Transmission Range on Percentage of Nodes Acting 
as Cluster Head 

As transmission range increase from 40 to 140, the number of grids decreases 

hence the number of clusters as well as cluster heads. However, in case of TSCAC, 

after grid formation, temporal and spatially cohesive clusters are formed which 

results into less number of clusters as well as cluster heads.  
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Effect of Transmission Range on Percentage of Single Node Clusters 

From 6, it is observed that when the transmission range of node is small, the 

percentage of single node cluster is high. As transmission range increases, the 

percentage of single node cluster decreases because the size of clusters increases, 

which leads to more number of sensor nodes in a single cluster. In case of TSCAC, 

clusters are temporally and spatially correlated, which leads to less number of single 

node clusters as compared to GBS. Moreover, TSCAC at δ = 2 performs better than 

TSCAC at δ = 1.5 because TSCAC at δ = 2 possess more temporal and spatial 

cohesiveness. 
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Figure 6. Effect of Transmission Range on Percentage of Single Node 
Cluster 

6. Conclusion 

In this paper, an adaptive clustering algorithm for wireless sensor networks has been 

proposed. The proposed clustering algorithm ensures the formation of uniform clusters 

within square sensing field size. Temporal and spatial correlations among data values are 

exploited to form the clusters. To demonstrate the effectiveness of proposed protocol, 

simulation is performed and results show that proposed protocol performs better than 

existing protocol. 
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